CN113774559A - 一种Janus膜及其制备方法 - Google Patents
一种Janus膜及其制备方法 Download PDFInfo
- Publication number
- CN113774559A CN113774559A CN202111183362.5A CN202111183362A CN113774559A CN 113774559 A CN113774559 A CN 113774559A CN 202111183362 A CN202111183362 A CN 202111183362A CN 113774559 A CN113774559 A CN 113774559A
- Authority
- CN
- China
- Prior art keywords
- spinning
- layer
- membrane
- spinning solution
- relative humidity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4374—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece using different kinds of webs, e.g. by layering webs
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0015—Electro-spinning characterised by the initial state of the material
- D01D5/003—Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
- D01D5/0061—Electro-spinning characterised by the electro-spinning apparatus
- D01D5/0092—Electro-spinning characterised by the electro-spinning apparatus characterised by the electrical field, e.g. combined with a magnetic fields, using biased or alternating fields
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/425—Cellulose series
- D04H1/4258—Regenerated cellulose series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/4358—Polyurethanes
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43835—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43838—Ultrafine fibres, e.g. microfibres
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
- Nonwoven Fabrics (AREA)
Abstract
本发明公开了一种Janus膜,该Janus膜具有三层结构,具有适当的厚度,且具有中间过渡层,能够提升不同材料之间的界面相容性,最终提升膜的机械强度。本发明还公开了Janus膜的制备方法,用顺序叠加法将PU纺丝溶液、CA/PU纺丝溶液、CA纺丝溶液依次进行静电纺丝叠加成膜,静电纺丝条件为:电压为1.0‑2.0 kV/cm,相对湿度为40‑60%,纺丝液进料速度为0.6‑1.0mL/h,纺丝时间为5‑15小时。本发明提高了膜的热稳定性和不同性质纳米纤维膜的界面相容性,提高了PU‑(CA/PU)‑CA膜的力学性能,渗透性能和分离能力,使得PU‑(CA/PU)‑CA纳米纤维膜的拉伸强度,渗透率和油水分离效率比没有过渡夹层的PU‑CA双层结构纳米纤维膜分别提高了31.9%,233%和2.8%。
Description
技术领域
本发明涉及Janus膜领域,具体涉及一种Janus膜及其制备方法。
背景技术
Janus膜是指两侧具有不对称性质的膜,其不对称性质来自于不同的膜材料和/或膜结构。Janus膜两侧的润湿性能差异会导致膜内产生独特的传输行为。例如单向液体渗透和油水分离等。这使得Janus膜在分离和纯化领域有着独特的地位。
Janus膜可以通过简单的顺序叠加方法获得。但是由于膜两侧是不同的材料,不同材料之间的界面相容性并不能得到保证,Janus膜的机械强度继而无法获得保证。
发明内容
为解决上述问题,本发明目的在于提供一种Janus膜,该Janus膜具有三层结构,具有适当的厚度,且具有中间过渡层,能够提升不同材料之间的界面相容性,最终提升膜的机械强度。本发明还公开了Janus膜的制备方法,用顺序叠加法将PU纺丝溶液、CA/PU纺丝溶液、CA纺丝溶液依次进行静电纺丝叠加成膜,静电纺丝条件为:电压为1.0-2.0 kV/cm,相对湿度为40-60%,纺丝液进料速度为0.6-1.0mL/h,纺丝时间为5-15小时。
本发明通过下述技术方案实现:
一种Janus膜,具有三层结构,第一层为PU纳米纤维膜,第三层为CA纳米纤维膜,第二层即中间过渡层,为CA/PU共混纳米纤维膜,整个膜厚度为50-150μm,PU纳米纤维膜层厚度:CA/PU共混纳米纤维膜层厚度:CA纳米纤维膜厚度=2:1:2。
现在的Janus膜为了保证膜的定向传输功能,通常是由两层膜结构构成,主要是疏水/亲水性膜,用于实现水分的定向传输和油水分离功能。而膜两侧的不同材料导致了膜本身的界面相容性差,不利于机械强度,影响应用推广。为了提升膜的机械强度,发明人设置三层结构,将由原两侧材料混合纺丝形成过渡层,和原有结构层构成全新的三层膜结构:层与层之间的结合更加牢固,界面相容性得到提升,并且控制了膜厚度和各层膜厚比,使得在保证膜的渗透能力和油水分离能力的前提下,提升了膜的机械强度。中间过渡层的设置,并不单只提升了膜的机械强度,更加提升了膜的渗透能力和分离能力。
一种Janus膜的制备方法,用顺序叠加法将PU纺丝溶液、CA/PU纺丝溶液、CA纺丝溶液依次进行静电纺丝叠加成膜,静电纺丝条件为:电压为1.0-2.0 kV/cm,相对湿度为40-60%,纺丝液进料速度为0.6-1.0mL/h,纺丝时间为5-15小时。本发明通过控制工艺条件,进而控制各层的厚度和膜厚比,最终提升了层与层之间的界面相容性。
PU纺丝溶液的静电纺丝过程中,电压为1.0-1.5 kV/cm,相对湿度为40-50%。
CA纺丝溶液的静电纺丝过程中,电压为1.2-1.8 kV/cm,相对湿度为50-60%。
CA/PU纺丝溶液的静电纺丝过程中,电压为1.5-2.0 kV/cm,相对湿度为50-60%。
PU纺丝相对湿度为45%,CA和CA/PU纺丝二者的相对湿度均为55%。
CA/PU纺丝液进行静电纺丝的电压为1.8 kV/cm,PU纺丝液进行静电纺丝的电压为1.2 kV/cm,CA纺丝液进行静电纺丝的电压为1.6 kV/cm。
发明人对各层纺丝过程中的静电电压和相对湿度进行了进一步优化设置,以调控纺丝直径和成膜密度,进而控制膜厚。
在成膜过程中,CA/PU过渡层沉积在CA层结构上时,发明人发现CA和CA/PU的共溶剂(丙酮/DMAc混合溶剂)有利于CA/PU层和CA层之间结合的充分,有利于相容性的提升,这可能是共溶剂能够使得纺丝聚合物在界面层混溶,纺丝成形后聚合物分子间相互缠结,加上CA的羟基与PU的氨基形成了氢键,使得聚合物在界面上的结合力增强。纺丝液进行静电纺丝的电压和相对湿度的调整配合共溶剂的使用能够促进膜层之间的结合,从而提高了膜的强度。
本发明与现有技术相比,具有如下的优点和有益效果:
1、本发明通过顺序静电纺丝,构建了CA/PU共混纳米纤维为过渡夹层的PU-(CA/PU)-CA纳米纤维Janus膜,过渡夹层提高了膜的热稳定性和不同性质纳米纤维膜的界面相容性,提高了PU-(CA/PU)-CA膜的力学性能,渗透性能和分离能力,使得PU-(CA/PU)-CA纳米纤维膜的拉伸强度,渗透率和油水分离效率比没有过渡夹层的PU-CA双层结构纳米纤维膜分别提高了31.9%,233%和2.8%。
2、本发明的PU-(CA/PU)-CA纳米纤维膜具有较高的渗透性能和选择分离能力。
3、本发明的PU-(CA/PU)-CA纳米纤维膜还具有较好的防污性能和可重复使用性。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定。在附图中:
图1为本发明的PU-(CA/PU)-CA纳米纤维膜电镜图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例1
(1)首先,将10gCA溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到10wt%的CA纺丝溶液。10gPU溶于90gDMAc中,得到10wt%的PU纺丝溶液。5gCA和5gPU分别溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到CA/PU共混纺丝溶液。
(2)在室温下,用PU、CA/PU和CA纺丝液依次进行静电纺丝,电压分别为1.2、1.8和1.6 kV/cm,相对湿度分别为45%、55%和55%,纺丝液进料速度为1.0mL/h。PU层、CA/PU层和CA层的厚度比为PU:CA/PU:CA=2:1:2,通过控制纺丝时间来控制每层的厚度和厚度比。纺丝5小时,得到了总厚度为50μm的PU-(CA/PU)-CA纳米纤维Janus膜。如图1所展示的PU-(CA/PU)-CA纳米纤维膜电镜图。
膜的油水分离效率为98.5%,渗透率为10.19 ×104 L/(m2 h bar),拉伸强度为0.95 MPa。
实施例2
(1)首先,将10gCA溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到10wt%的CA纺丝溶液。10gPU溶于90gDMAc中,得到10wt%的PU纺丝溶液。5gCA和5gPU分别溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到CA/PU共混纺丝溶液。
(2)在室温下,用PU、CA/PU和CA纺丝液依次进行静电纺丝,电压分别为1.0、1.6和1.5 kV/cm,相对湿度分别为40%、50%和55%,纺丝液进料速度为1.0mL/h。PU层、CA/PU层和CA层的厚度比为PU:CA/PU:CA=2:1:2,通过控制纺丝时间来控制每层的厚度和厚度比。纺丝8小时,得到了总厚度为80μm的PU-(CA/PU)-CA纳米纤维Janus膜。
膜的油水分离效率为99%,渗透率为3.4 ×104 L/(m2 h bar),拉伸强度为1.28MPa。
实施例3
(1)首先,将10gCA溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到10wt%的CA纺丝溶液。10gPU溶于90gDMAc中,得到10wt%的PU纺丝溶液。5gCA和5gPU分别溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到CA/PU共混纺丝溶液。
(2)在室温下,用PU、CA/PU和CA纺丝液依次进行静电纺丝,电压分别为1.5、2.0和1.8 kV/cm,相对湿度分别为50%、60%和60%,纺丝液进料速度为1.0mL/h。PU层、CA/PU层和CA层的厚度比为PU:CA/PU:CA=2:1:2,通过控制纺丝时间来控制每层的厚度和厚度比。纺丝10小时,得到了总厚度为100μm的PU-(CA/PU)-CA纳米纤维Janus膜。
膜的油水分离效率为99.1%,渗透率为0.64 ×104 L/(m2 h bar),拉伸强度为1.41MPa。
实施例4
(1)首先,将10gCA溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到10wt%的CA纺丝溶液。10gPU溶于90gDMAc中,得到10wt%的PU纺丝溶液。5gCA和5gPU分别溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到CA/PU共混纺丝溶液。
(2)在室温下,用PU、CA/PU和CA纺丝液依次进行静电纺丝,电压分别为1.2、1.5和1.2 kV/cm,相对湿度分别为45%、50%和50%,纺丝液进料速度为1.0mL/h。PU层、CA/PU层和CA层的厚度比为PU:CA/PU:CA=2:1:2,通过控制纺丝时间来控制每层的厚度和厚度比。纺丝15小时,得到了总厚度为150μm的PU-(CA/PU)-CA纳米纤维Janus膜。
膜的油水分离效率为99.6%,渗透率为0.15 ×104 L/(m2 h bar),拉伸强度为1.93MPa。
从实施例1-4可以看出,不同工艺参数的膜的油水分离效率都较高,都在98.5%以上。实施例4的油水分离效率最大,为99.6%,而渗透率最小,仅为0.15×104 L/(m2 h bar)。实施例1的油水分离效率为98.5%,而渗透率最大,为10.19×104 L/(m2 h bar)。为了兼顾高通量和高分离效率,应在保证油水分离效率达到要求的情况下,尽量减少膜的厚度,提高渗透率。
对比例1
(1)将10gCA溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到10wt%的CA纺丝溶液。
(2)在室温,电压为1.6 kV/cm,相对湿度为55%和纺丝液进料速度为1.0mL/h的条件下,用CA纺丝液依次进行静电纺丝。通过控制纺丝时间来控制CA纳米纤维膜的厚度。纺丝5小时,得到了总厚度为50μm的CA纳米纤维膜。
单层CA纳米纤维膜不具备油水分离能力。
对比例2
(1)将10gPU溶于90gDMAc中,得到10wt%的PU纺丝溶液。
(2)在室温,电压为1.2 kV/cm,相对湿度为45%和纺丝液进料速度为1.0mL/h的条件下,用PU纺丝液进行静电纺丝。通过控制纺丝时间来控制PU纳米纤维膜的厚度。纺丝5小时,得到了总厚度为50μm的PU纳米纤维膜。
单层PU纳米纤维膜不具备油水分离能力。
对比例3
(1)将5gCA和5gPU分别溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到CA/PU共混纺丝溶液。
(2)在室温,电压为1.8 kV/cm,相对湿度为55%和纺丝液进料速度为1.0mL/h的条件下,用CA/PU纺丝液进行静电纺丝。通过控制纺丝时间来控制CA/PU纳米纤维膜的厚度。纺丝5小时,得到了总厚度为50μm的CA/PU共混纳米纤维膜。
单层CA/PU共混纳米纤维膜不具备油水分离能力。
对比例4
(1)将10gCA溶于90g丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到10wt%的CA纺丝溶液。10gPU溶于90gDMAc中,得到10wt%的PU纺丝溶液。
(2)在室温下,用PU和CA纺丝液依次进行静电纺丝,电压分别为1.2和1.6 kV/cm,相对湿度分别为45%和55%,纺丝液进料速度为1.0mL/h。PU层和CA层的厚度比为PU:CA=1:1,通过控制纺丝时间来控制每层的厚度和厚度比。纺丝5小时,得到了总厚度为50μm的没有过渡夹层的PU-CA纳米纤维双层结构Janus膜。
没有过渡夹层的PU-CA纳米纤维双层结构Janus膜的油水分离效率为95.8%,渗透率为3.06 ×104 L/(m2 h bar),拉伸强度为0.72 MPa。
对比例5
(1)首先,将10gCA溶于90g丙酮中,得到10wt%的CA纺丝溶液。10gPU溶于90gDMAC中,得到10wt%的PU纺丝溶液。5gCA和5gPU分别溶于90g 丙酮/DMAc混合溶液中(丙酮:DMAc=2:1,质量比),得到CA/PU共混纺丝溶液。
(2)在室温下,用PU、CA/PU和CA纺丝液依次进行静电纺丝,电压分别为1.2、1.8和1.6 kV/cm,相对湿度分别为45%、55%和55%,纺丝液进料速度为1.0mL/h。PU层、CA/PU层和CA层的厚度比为PU:CA/PU:CA=2:1:2,通过控制纺丝时间来控制每层的厚度和厚度比。纺丝5小时,得到了总厚度为50μm的PU-(CA/PU)-CA纳米纤维Janus膜。
膜的油水分离效率为97.8%,渗透率为7.68 ×104 L/(m2 h bar),拉伸强度为0.87MPa。
对比例1-3的单层纳米纤维膜没有油水分离能力,对比例4中没有过渡夹层的PU-CA纳米纤维双层结构Janus膜的分离效率、渗透率和力学性能各项指标都低于同厚度的实施例1中过渡夹层结构PU-(CA/PU)-CA纳米纤维Janus膜。相对对比例4,实施例1得到的膜拉伸强度提升了31.9%,膜的渗透性提高了233%,实施例4得到的膜拉伸强度提升了168%,具有显著的效果。
总之,本发明的过渡夹层结构改善了PU-(CA/PU)-CA纳米纤维Janus膜的性能,显示了其在分离和纯化领域的应用前景。
本发明中,未详细描述的均是现有技术。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (9)
1.一种Janus膜,其特征在于,具有三层结构,第一层为PU纳米纤维膜,第三层为CA纳米纤维膜,第二层即中间过渡层,为CA/PU共混纳米纤维膜,整个膜厚度为50-150μm,PU纳米纤维膜层厚度:CA/PU共混纳米纤维膜层厚度:CA纳米纤维膜厚度为2:1:2。
2.根据权利要求1所述的Janus膜的制备方法,其特征在于,用顺序叠加法将PU纺丝溶液、CA/PU纺丝溶液、CA纺丝溶液依次进行静电纺丝叠加成膜,静电纺丝条件为:电压为1.0-2.0 kV/cm,相对湿度为40-60%,纺丝液进料速度为0.6-1.0mL/h,纺丝时间为5-15小时。
3.根据权利要求2所述的制备方法,其特征在于,PU纺丝溶液的静电纺丝过程中,电压为1.0-1.5 kV/cm,相对湿度为40-50%。
4.根据权利要求2所述的制备方法,其特征在于,CA纺丝溶液的静电纺丝过程中,电压为1.2-1.8 kV/cm,相对湿度为50-60%。
5.根据权利要求2所述的制备方法,其特征在于,CA/PU纺丝溶液的静电纺丝过程中,电压为1.5-2.0 kV/cm,相对湿度为50-60%。
6.根据权利要求2所述的制备方法,其特征在于, PU纺丝相对湿度小于CA纺丝相对湿度,CA/PU纺丝相对湿度和CA纺丝相对湿度保持一致。
7.根据权利要求6所述的制备方法,其特征在于,PU纺丝相对湿度为45%,CA和CA/PU二者的纺丝相对湿度均为55%。
8.根据权利要求2所述的制备方法,其特征在于,CA/PU纺丝液进行静电纺丝的电压为1.8 kV/cm,PU纺丝液进行静电纺丝的电压为1.2 kV/cm,CA纺丝液进行静电纺丝的电压为1.6 kV/cm。
9.根据权利要求2所述的制备方法,其特征在于,成膜过程中,CA层膜的纺丝液和CA/PU中间过渡层的纺丝液均使用同一种混合溶剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111183362.5A CN113774559A (zh) | 2021-10-11 | 2021-10-11 | 一种Janus膜及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111183362.5A CN113774559A (zh) | 2021-10-11 | 2021-10-11 | 一种Janus膜及其制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113774559A true CN113774559A (zh) | 2021-12-10 |
Family
ID=78855089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111183362.5A Pending CN113774559A (zh) | 2021-10-11 | 2021-10-11 | 一种Janus膜及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113774559A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115198442A (zh) * | 2022-06-17 | 2022-10-18 | 青岛大学 | 一种具有定向水分传输和高效抗菌功能的纳米膜的制备方法及应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101397372A (zh) * | 2007-09-28 | 2009-04-01 | 北京化工大学 | 纳米纤维增强增韧树脂基复合材料的方法 |
CN102352543A (zh) * | 2011-09-13 | 2012-02-15 | 福建师范大学 | 改性海藻酸钠-羧甲基纤维素钠为中间界面层的双极膜制备方法 |
CN102862355A (zh) * | 2012-10-09 | 2013-01-09 | 扬州大学 | 一种可降解的高分子复合材料及制备方法 |
CN103640290A (zh) * | 2013-12-13 | 2014-03-19 | 山东汇盈新材料科技有限公司 | 高阻隔性完全生物降解复合膜 |
CN106350946A (zh) * | 2016-10-17 | 2017-01-25 | 安徽工程大学 | 一种功能性pu‑rc复合纳米纤维膜的制备方法及其应用 |
US20180043656A1 (en) * | 2017-09-18 | 2018-02-15 | LiSo Plastics, L.L.C. | Oriented Multilayer Porous Film |
CN107823713A (zh) * | 2017-11-09 | 2018-03-23 | 李瑞锋 | 一种多层融合静电纺丝人工硬脑膜及其制备方法 |
CN111575814A (zh) * | 2020-05-25 | 2020-08-25 | 东华大学 | 一种医卫防护用润湿梯度类蜂巢结构纤维膜及其制备方法 |
-
2021
- 2021-10-11 CN CN202111183362.5A patent/CN113774559A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101397372A (zh) * | 2007-09-28 | 2009-04-01 | 北京化工大学 | 纳米纤维增强增韧树脂基复合材料的方法 |
CN102352543A (zh) * | 2011-09-13 | 2012-02-15 | 福建师范大学 | 改性海藻酸钠-羧甲基纤维素钠为中间界面层的双极膜制备方法 |
CN102862355A (zh) * | 2012-10-09 | 2013-01-09 | 扬州大学 | 一种可降解的高分子复合材料及制备方法 |
CN103640290A (zh) * | 2013-12-13 | 2014-03-19 | 山东汇盈新材料科技有限公司 | 高阻隔性完全生物降解复合膜 |
CN106350946A (zh) * | 2016-10-17 | 2017-01-25 | 安徽工程大学 | 一种功能性pu‑rc复合纳米纤维膜的制备方法及其应用 |
US20180043656A1 (en) * | 2017-09-18 | 2018-02-15 | LiSo Plastics, L.L.C. | Oriented Multilayer Porous Film |
CN107823713A (zh) * | 2017-11-09 | 2018-03-23 | 李瑞锋 | 一种多层融合静电纺丝人工硬脑膜及其制备方法 |
CN111575814A (zh) * | 2020-05-25 | 2020-08-25 | 东华大学 | 一种医卫防护用润湿梯度类蜂巢结构纤维膜及其制备方法 |
Non-Patent Citations (2)
Title |
---|
SHENGNAN TANG等: ""Novel Janus Fibrous Membranes with Enhanced Directional Water Vapor Transmission"", 《APPLIED SCIENCES》, 12 August 2019 (2019-08-12), pages 1 - 13 * |
徐志康等: "《中国战略性新兴产业 新材料 高性能分离膜材料》", 31 December 2017, pages: 259 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115198442A (zh) * | 2022-06-17 | 2022-10-18 | 青岛大学 | 一种具有定向水分传输和高效抗菌功能的纳米膜的制备方法及应用 |
CN115198442B (zh) * | 2022-06-17 | 2024-04-12 | 青岛大学 | 一种具有定向水分传输和高效抗菌功能的纳米膜的制备方法及应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111485329B (zh) | 一种具有三明治结构的纳米纤维絮片及其制备方法 | |
CN111575814B (zh) | 一种医卫防护用润湿梯度类蜂巢结构纤维膜及其制备方法 | |
CN101316646B (zh) | 编织物增强的复合空心纤维膜 | |
US7267872B2 (en) | Braid-reinforced hollow fiber membrane | |
KR101373402B1 (ko) | 관형 편물 및 그를 이용한 복합 중공사막 | |
US7909177B2 (en) | Braid-reinforced composite hollow fiber membrane | |
EP1656197B1 (en) | Wetlaid-spunbond laminate membrane support | |
CN111575917B (zh) | 一种高比表面积类蜂巢结构纳米纤维材料及其制备方法 | |
CN104128099B (zh) | 一种基于静电纺和自组装技术的复合纳滤膜及其制备方法 | |
US10106923B2 (en) | Extra-fine fiber sheet | |
CN113774559A (zh) | 一种Janus膜及其制备方法 | |
CN105797601A (zh) | 一种增强型中空纤维复合膜及其制备方法 | |
CN112452164A (zh) | 一种含纤维素纳米晶体中间层及多巴胺原位改性层的两步改性复合纳滤膜及其制备方法 | |
KR102576129B1 (ko) | 필터여재 및 이를 포함하는 필터유닛 | |
KR101514665B1 (ko) | 고강도 및 고투과성 다중층 중공사막 및 이의 제조방법 | |
US20190276668A1 (en) | Microporous nanofiber films | |
CN115387025B (zh) | 一种高效抗菌低阻熔喷布及其制备方法 | |
KR20180069715A (ko) | 필터여재, 이의 제조방법 및 이를 포함하는 필터유닛 | |
CN114405160B (zh) | 一种高强度流体分离介质的制备方法 | |
KR101005038B1 (ko) | 나노섬유 망상 구조물 및 그의 제조방법 | |
CN113957703A (zh) | 一种串珠状纳米纤维材料及其制备方法 | |
US20240091718A1 (en) | Reverse osmosis composite membrane with an ultrathin desalting layer and preparation method thereof | |
CN114405157B (zh) | 一种高强度流体分离介质 | |
CN217025850U (zh) | 一种吸油材料 | |
KR102400732B1 (ko) | 필터여재 및 이를 포함하는 필터유닛 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |