CN113758974A - 一种氧化物半导体气体传感器及其制备方法和用途 - Google Patents

一种氧化物半导体气体传感器及其制备方法和用途 Download PDF

Info

Publication number
CN113758974A
CN113758974A CN202111003403.8A CN202111003403A CN113758974A CN 113758974 A CN113758974 A CN 113758974A CN 202111003403 A CN202111003403 A CN 202111003403A CN 113758974 A CN113758974 A CN 113758974A
Authority
CN
China
Prior art keywords
gas sensor
oxide semiconductor
ceramic substrate
semiconductor gas
insulating ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111003403.8A
Other languages
English (en)
Other versions
CN113758974B (zh
Inventor
孟钢
代甜甜
邓赞红
方晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei Institutes of Physical Science of CAS
Original Assignee
Hefei Institutes of Physical Science of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei Institutes of Physical Science of CAS filed Critical Hefei Institutes of Physical Science of CAS
Priority to CN202111003403.8A priority Critical patent/CN113758974B/zh
Publication of CN113758974A publication Critical patent/CN113758974A/zh
Application granted granted Critical
Publication of CN113758974B publication Critical patent/CN113758974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

本发明涉及电子器件技术领域,具体涉及一种氧化物半导体气体传感器及其制备方法和用途。该气体传感器包括绝缘陶瓷基片,绝缘陶瓷基片的上表面设置有测试电极,下表面设置有微加热器;测试电极和测试电极所在绝缘陶瓷基片的上表面涂覆有氧化物敏感材料,氧化物敏感材料由WO3纳米颗粒和附着在WO3纳米颗粒外表面的Pt纳米颗粒组成,Pt呈单原子或团簇分布,Pt通过Pt‑O键跟WO3键合,该材料相较于纯WO3材料具有较高浓度的表面活性位点,有利于充分发挥脉冲温度调制对痕量(ppb量级)气体分子的响应灵敏度,显著提升了传感器对ppb量级二甲苯、三甲胺气体分子的响应灵敏度及检测限。

Description

一种氧化物半导体气体传感器及其制备方法和用途
技术领域
本发明涉及电子器件技术领域,具体涉及一种氧化物半导体气体传感器及其制备方法,以及在检测低浓度(ppb量级)二甲苯气体或三甲胺气体中的用途。
背景技术
金属氧化物半导体气体传感器由于出色的材料稳定性、较小的尺寸、极低的成本、硅工艺兼容性、易于布网等优点,迅速成为物联网气体传感器的热门候选之一。检测限及痕量气体的灵敏度是评价气体传感器性能指标的重要参数,直接决定了气体传感器的应用场合。受检测原理限制,现有半导体型气体传感器(工作在大气/空气背景下)的检测限通常高于100ppb,并且,传感器在低浓度范围灵敏度通常较低,这种情况下,器件对特定浓度目标气体与干扰气体灵敏度的比值较低——即传感器的选择性较差,这样会大幅削弱传感器在低浓度气体检测中的准确监测。半导体型气体传感器的选择性通常对高浓度(几十到几千ppm)目标气体有较好的选择性(呈现相对较高的灵敏度)。因此,半导体型气体传感器现阶段多应用于泄露源(目标气体局域浓度较高)监测。半导体型气体传感器对痕量(ppb级)气体较低的灵敏度限制了其在很多新兴领域(如室内外大气监测、气味识别、呼吸检测)中的应用。比如,中华人民共和国室内空气标准(GB/T 18883-2002)规定了二甲苯1小时均值浓度为0.2mg/m3(46ppb),中华人民共和国恶臭污染物排放标准(GB 14554-201)规定了周界恶臭污染物三甲胺浓度限值为0.05mg/m3(59ppb)。
如何提升氧化物半导体气体传感器对痕量气体分子的灵敏度及检测限是科研人员关注的课题。围绕高灵敏气体传感器开发,科研人员进行了大量尝试,提出了粒径/形貌控制、贵金属敏化、异质掺杂、构筑异质结等策略来提升敏感材料的活性位点。由于温度是影响传感器(灵敏度、响应/恢复时间)的重要参数,传感器通常需要加热到100-300℃激活器件对待测气体分子的电学响应,升高温度有利于提升传感器表面活性氧的浓度、加快响应及恢复速率,但同时会促进待测气体分子的脱附、及传感器基线电阻的下降,从而降低传感器灵敏度。因而,传感器通常工作在恒定(最优)温度——即传感器在该工作温度下灵敏度最高,同时响应、恢复时间较快。但恒定高温显然不利于痕量待测气体分子的吸附。2020年,申请人团队对常规WO3 MEMS传感器进行脉冲温度调制(Generic Approach to Boostthe Sensitivity of Metal Oxide Sensors by Decoupling the Surface ChargeExchange and Resistance Reading Process,ACS Applied Materials Interfaces2020,12,37295-37304),报道了脉冲低温测试相对于脉冲高温、恒定高温测试,能显著放大高浓度(~100ppm)挥发性有机物(VOCs)分子的灵敏度。尽管脉冲温度调制已取得不小的进展,却也存在一些不足:首先,MEMS敏感区、微加热器尺寸通常在100-300μm,负载的敏感材料有限(厚膜容易脱落、也不容易加热到~300度的高温),导致敏感材料同待测痕量气体接触的区域较小,即传感层的利用率低,不利于进一步提升传感器的灵敏度;其次,先前的脉冲低温测试采用常规WO3纳米颗粒,材料本身活性位点较少,仅能实现高浓度VOCs气体灵敏度的放大。
发明内容
本发明要解决的技术问题为克服现有技术中脉冲温度调制所用MEMS器件敏感区区域小带来的敏感材料气体利用率低、敏感材料活性位点低的不足之处,提供一种氧化物半导体气体传感器及其制备方法和用途。
为了解决本发明的技术问题,所采取的技术方案为,一种氧化物半导体气体传感器,包括绝缘陶瓷基片,所述绝缘陶瓷基片的上表面设置有测试电极,下表面设置有周期脉冲电压加热的微加热器;所述测试电极和测试电极所在绝缘陶瓷基片的上表面涂覆有氧化物敏感材料,所述氧化物敏感材料由WO3纳米颗粒和均匀附着在WO3纳米颗粒外表面的Pt单原子组成,所述Pt单原子通过Pt-O键与所述WO3纳米颗粒键合,部分所述的Pt单原子聚集形成团簇
作为氧化物半导体气体传感器进一步的改进:
优选的,所述氧化物敏感材料中WO3纳米颗粒和Pt单原子的质量比为(50-210):1。
优选的,所述WO3纳米颗粒的粒径为50-100nm。
优选的,所述周期脉冲电压加热的波形为矩形波,单个加热周期的高压为2.65-5.8V,持续时间为3-4s,低压为1.5-2.5V,持续时间为10-15s。
优选的,所述团簇的粒径<4nm。
优选的,所述陶瓷绝缘基片为边长1.5-5mm的正方形状的薄片,厚度为0.1-0.2mm,材质为氧化铝。
优选的,所述氧化物敏感材料的厚度为15-20μm。
优选的,所述氧化物敏感材料由以下步骤制得:
步骤11、将脱脂棉依次用去离子水和乙醇清洗后烘干;
步骤12、在冰水浴条件下,将金属钨粉与过氧化氢反应,制得过氧聚钨酸前驱体溶液;
步骤13、将步骤11的脱脂棉浸入步骤12制得的过氧聚钨酸前驱体溶液中,充分吸附后取出,用无水乙醇清洗后烘干,制得前驱体棉花复合材料;
步骤14、将步骤13的前驱体棉花复合材料放入管式炉,在空气氛围中以0.5-3℃/min的速率从室温升至500-600℃,然后保温1-10h,得到WO3纳米颗粒;
步骤15、将WO3纳米颗粒按照1:20的质量比加入到去离子水中,搅拌得到WO3纳米颗粒悬浮液;
步骤16、在步骤15中的WO3纳米颗粒悬浮液中滴加H2PtCl6水溶液,其中WO3纳米颗粒与H2PtCl6水溶液中H2PtCl6的质量比为1:(0.001-0.03),充分搅拌后离心,下层产物用蒸馏水洗涤,在150-200℃烘箱中烘干,即制得氧化物敏感材料。
为解决本发明的技术问题,所采取的另一个技术方案为,一种上述任意一项所述氧化物半导体气体传感器的制备方法,包括如下步骤:
步骤21、将氧化物敏感材料分散在无水乙醇中,超声分散制成浆料;
步骤22、在绝缘陶瓷基片的上表面设置测试电极,下表面设置微加热器;
步骤23、将步骤21制得的浆料均匀涂覆在测试电极和测试电极所在绝缘陶瓷基片的上表面,自然晾干;
步骤24、调节微加热器的温度在150-300℃,将传感器在空气中老化1-24h,即制得氧化物半导体气体传感器;
其中,步骤21、22不分先后顺序。
为解决本发明的技术问题,所采取的又一个技术方案为,一种上述任意一项所述的氧化物半导体气体传感器在检测浓度为10-1000ppb的二甲苯气体或三甲胺气体上的用途。
本发明相比现有技术的有益效果在于:
1)本发明公开了以下技术方案:通过将单原子或团簇分布的Pt修饰WO3制得Pt@WO3敏感材料,在制备过程中,脱脂棉在过氧聚钨酸前驱体溶液中充分吸附后取出,用无水乙醇洗掉与脱脂棉吸附不紧密的过氧聚钨酸离子,使过氧聚钨酸离子以薄层(甚至单层)均匀吸附在脱脂棉模板上,在空气中烘干、煅烧后,脱脂棉模板被烧掉,吸附在脱脂棉模板上的过氧聚钨酸离子分解成WO3纳米颗粒;将WO3纳米颗粒浸入H2PtCl6水溶液充分吸附后倒入离心管离心分离,离心管下层产物用蒸馏水洗涤,洗掉未紧密吸附在WO3纳米颗粒的Pt盐离子。将Pt@WO3敏感材料涂覆在镀有叉指电极的绝缘陶瓷衬底上表面,经老化后,制成Pt@WO3气体传感器,Pt@WO3敏感材料相较于纯WO3材料具有较高浓度的活性位点,有利于充分发挥脉冲温度调制对痕量(ppb量级)气体分子的响应灵敏度;
2)本发明采用片式陶瓷基片,相比现有技术中直径约0.1-0.3mm的MEMS基片,提升了敏感膜的面积,同时也可获得较厚、较均匀的敏感膜,有利于提高敏感材料的利用率因子,从而充分放大传感器脉冲温度调制下的灵敏度;
3)本申请的微加热器采用周期脉冲电压对绝缘陶瓷基片进行加热,单个周期中,高压2.65-5.8V对应的传感层温度为100-300℃、持续3-4s,低压为1.5-2.5V对应的传感层温度为20-50℃、持续10-15s,敏感层电阻的测试同脉冲温度调制同步。由于敏感层电阻本身随温度升高而下降(及材料固有的电阻-温度特性),通过记录器件在空气背景及待测气体背景下的敏感层的电阻变化,分别提取传感器在脉冲高温阶段空气中(Ra-HT)、待测气体中(Rg-HT)电阻,及脉冲低温阶段空气中(Ra-LT)、待测气体中(Rg-LT)的电阻,能够得到脉冲低温阶段器件的灵敏度(Ra-LT/Rg-LT)。Pt敏化的Pt@WO3传感器在恒温(最优温度)下的二甲苯、三甲胺检测限约100ppb(灵敏度小于1.3),而相同器件在脉冲测试下,对100ppb的灵敏度提升了一个数量级,理论计算的检测限低于1ppb。
4)本发明方法简单、可扩展到多种痕量气体分子的高灵敏、快速检测,相较于传统稳态测试,亦可降低传感器功耗,对半导体型气体传感器在今后痕量气体分子的选择性检测有重要借鉴意义。
附图说明
图1是实施例3制备的Pt@WO3敏感材料的结构表征,其中(a)为透射电子显微镜(TEM)图;(b)为扫描透射电子显微镜高角环形暗场像(HAADF-STEM,对原子序数敏感),虚线圆圈内高亮的原子为Pt;(c)为X射线衍射(XRD)图谱;(d)为X射线光电子能谱(XPS)W4f谱线;(e)为XPS O 1s谱;(f)为XPS Pt 4f谱。
图2为对比例(WO3)与实施例3(Pt@WO3)在不同测试(恒定)温度下,对1ppm二甲苯、三甲胺的响应灵敏度。
图3(a)为脉冲温度调制、恒温测试温度波形示意图,圆圈表示传感器进行电阻测试;(b)为对比例的传感器在脉冲温度调制下对1ppm三甲胺的电学响应,(c)为实施例3的传感器在脉冲温度调制下对1ppm三甲胺的电学响应;(d)为对比例与实施例3在脉冲低温、恒温测试模式下,对10-1000ppb三甲胺的响应灵敏度。
图4(a)为对比例传感器在脉冲温度调制下对1ppm二甲苯的电学响应;(b)为实施例3传感器在脉冲温度调制下对1ppm二甲苯的电学响应;(c)为实施例3在450-700s响应的放大图;(d)对比例与实施例3在脉冲低温、恒温测试模式下,对10-1000ppb二甲苯的响应灵敏度。
图5为实施例3与对比例的气体传感器传感器(Pt@WO3传感器)在脉冲温度调制下对10ppb三甲胺电学响应的重复性。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
步骤1、取0.2g脱脂棉,用去离子水和乙醇洗2-3次,80℃烘24h;
步骤2、称5g钨粉,放入80ml 30%的H2O2与4ml去离子水,在室温下反应约72h,用80ml乙醇除去过量的过氧化氢,静置约48h,得到过氧聚钨酸前驱体溶液;
步骤3、将步骤1获得的脱脂棉浸入到过氧聚钨酸前驱体,吸附24h后将脱脂棉取出,用无水乙醇清洗数次,在80℃烘箱烘24小时;
步骤4、将步骤3的前驱体棉花复合材料放入管式炉,在空气中以1℃/min的升温速率从室温升温至600℃,保温1-10h,制得WO3纳米颗粒;
实施例2
选用尺寸为1.5×1.5×0.2mm3的氧化铝作为陶瓷绝缘基片,通过丝网印刷将测试电极、微加热器分别涂覆在陶瓷基片上、下表面,重复操作,分别制得多个涂覆有测试电极和微加热器的陶瓷基片备用。
实施例3
本实施例提供一种涂覆Pt@WO3敏感材料的气体传感器的制备方法,包括如下步骤:
步骤1、取实施例1制得的WO3纳米颗粒0.1g加入到20mL去离子水中,搅拌得到WO3纳米颗粒悬浮液;
将200μL浓度0.01g/mL的H2PtCl6水溶液滴入到WO3纳米颗粒悬浮液中,搅拌12h,将溶液离心,用蒸馏水洗涤3次,在160℃烘箱中烘干24h,得到Pt修饰的WO3敏感材料,简称为Pt@WO3敏感材料;
将Pt@WO3敏感材料分散在无水乙醇中,超声分散制成浆料;
步骤2、取实施例2制得的陶瓷基片,用软毛刷将上述制得的浆料均匀涂覆在测试电极和测试电极所在绝缘陶瓷基片的上表面上,自然晾干;
步骤3、将绝缘陶瓷基片下方的传感器加热在300℃,在空气中老化1.5h,制得涂覆Pt@WO3敏感材料的气体传感器。
对比例
本对比例提供一种WO3敏感材料的气体传感器的制备方法,包括如下步骤:
步骤1、取实施例1制得的WO3纳米颗粒0.1g分散在无水乙醇中,超声分散制成浆料;
步骤2、取实施例2制得的陶瓷基片,用软毛刷将上述制得的浆料均匀涂覆在测试电极和测试电极所在绝缘陶瓷基片的上表面上,自然晾干;
步骤3、将绝缘陶瓷基片下方的传感器加热在300℃,在空气中老化1.5h,制得涂覆WO3敏感材料的气体传感器。
将实施例3中步骤1制得的Pt@WO3敏感材料的结构进行表征,结果如图1所示,其中图1(a)为透射电子显微镜(TEM)图;图1(b)为扫描透射电子显微镜高角环形暗场像(HAADF-STEM,对原子序数敏感),虚线圆圈内高亮的原子为Pt,表明部分Pt呈现单原子分布;由于单原子Pt气敏活性很高(气敏灵敏度高),在制备过程中部分,部分Pt单原子不可避免的聚集形成团簇,团簇粒径<4nm;图1(c)为X射线衍射(XRD)图谱,显示Pt@WO3物相以单斜相的WO3为主,未发现Pt及其氧化物的衍射峰;图1(d)为X射线光电子能谱(XPS)W4f谱线,表明Pt@WO3中W呈+6价;图1(e)为XPS O 1s谱,其中断点线为O化学吸附,实线粗线为O缺陷,实线细线为O晶格;图1(f)为XPS Pt 4f谱;由图1的表征结果可知,Pt的化合价为+2价,表明Pt主要同O成键(Pt-Pt金属键显示0价),侧面说明了Pt通过Pt-O键跟WO3键合,从而呈现高气敏活性位点。
取实施例3涂覆PtOx@WO3敏感材料的气体传感器和对比例涂覆WO3敏感材料的气体传感器,分别用来测试对1ppm二甲苯、三甲胺的响应灵敏度,在不同测试恒定温度下的响应曲线如图2所示,由图2可知Pt敏化可显著提升WO3的灵敏度,在最优温度(200-250℃)下,涂覆Pt@WO3敏感材料的气体传感器对1ppm二甲苯、三甲胺的灵敏度是涂覆WO3敏感材料的气体传感器的2倍多。
取实施例3涂覆Pt@WO3敏感材料的气体传感器和对比例涂覆WO3敏感材料的气体传感器,在300℃温度条件下分别进行10-1000ppb三甲胺脉冲和恒温气敏性能测试,结果如图3所示,其中图3(a)为脉冲温度调制、恒温测试温度波形示意图,圆圈表示传感器进行电阻测试;图3(b)为对比例的传感器在脉冲温度调制下对1ppm三甲胺的电学响应,(c)为实施例3的传感器在脉冲温度调制下对1ppm三甲胺的电学响应;(d)为实施例3与对比例在脉冲低温、恒温测试模式下,对10-1000ppb三甲胺的响应灵敏度,脉冲低温响应灵敏度通过Ra-LT/Rg-LT得到,其中Ra-LT、Ra-HT分别表示器件在空气中脉冲低温、高温下的电阻;Rg-LT、Rg-HT分别表示器件在待测气体中脉冲低温、高温下的电阻。由图3可以看出实施例3的气体传感器在脉冲低温模式下灵敏度是常规恒温模式的1-3个数量级,检测限从50ppb下降到10ppb;都采用脉冲温度测试的情况下,实施例3气体传感器的灵敏度是对比例气体传感器灵敏度的5.5-43倍左右。
取实施例3涂覆Pt@WO3敏感材料的气体传感器和对比例涂覆WO3敏感材料的气体传感器,在300℃温度条件下进行10-1000ppb对二甲苯脉冲和恒温气敏性能测试,结果如图4所示,其中图4(a)为对比例的气体传感器在脉冲温度调制下对1ppm二甲苯的电学响应;图4(b)为实施例3的气体传感器在脉冲温度调制下对1ppm二甲苯的电学响应;图4(c)为实施例3的气体传感器在450-700s响应的放大图;图4(d)为实施例3的气体传感器与对比例的气体传感器在脉冲低温、恒温测试模式下,对10-1000ppb二甲苯的响应灵敏度。由图4可以看出,实施例3的气体传感器脉冲低温模式下灵敏度是常规恒温模式的1-2个数量级,检测限从500ppb下降到10ppb;都采用脉冲温度测试的情况下,实施例3气体传感器的灵敏度是对比例气体传感器灵敏度的3.1-26倍左右。
将实施例3与对比例的气体传感器在300℃温度条件下进行脉冲气敏性能测试,结果如图5所示,图5可以看出,实施例3的器件在脉冲温度调制模式下,测试信号更为稳定。
本领域的技术人员应理解,以上所述仅为本发明的若干个具体实施方式,而不是全部实施例。应当指出,对于本领域的普通技术人员来说,还可以做出许多变形和改进,所有未超出权利要求所述的变形或改进均应视为本发明的保护范围。

Claims (10)

1.一种氧化物半导体气体传感器,其特征在于,包括绝缘陶瓷基片,所述绝缘陶瓷基片的上表面设置有测试电极,下表面设置有周期脉冲电压加热的微加热器;所述测试电极和测试电极所在绝缘陶瓷基片的上表面涂覆有氧化物敏感材料,所述氧化物敏感材料由WO3纳米颗粒和均匀附着在WO3纳米颗粒外表面的Pt单原子组成,所述Pt单原子通过Pt-O键与所述WO3纳米颗粒键合,部分所述的Pt单原子聚集形成团簇。
2.根据权利要求1所述的氧化物半导体气体传感器,其特征在于,所述氧化物敏感材料中WO3纳米颗粒和Pt的质量比为(50-210):1。
3.根据权利要求1所述的氧化物半导体气体传感器,其特征在于,所述WO3纳米颗粒的粒径为50-100nm。
4.根据权利要求1或2或3所述的氧化物半导体气体传感器,其特征在于,所述周期脉冲电压加热的波形为矩形波,单个加热周期的高压为2.65-5.8V,持续时间为3-4s,低压为1.5-2.5V,持续时间为10-15s。
5.根据权利要求1或2所述的氧化物半导体气体传感器,其特征在于,所述团簇的粒径<4nm。
6.根据权利要求4所述的氧化物半导体气体传感器,其特征在于,所述陶瓷绝缘基片为边长1.5-5mm的正方形状的薄片,厚度为0.1-0.2mm,材质为氧化铝。
7.根据权利要求1所述的氧化物半导体气体传感器,其特征在于,所述氧化物敏感材料的厚度为15-20μm。
8.根据权利要求1或2所述的氧化物半导体气体传感器,其特征在于,所述氧化物敏感材料由以下步骤制得:
步骤11、将脱脂棉依次用去离子水和乙醇清洗后烘干;
步骤12、在冰水浴条件下,将金属钨粉与过氧化氢反应,制得过氧聚钨酸前驱体溶液;
步骤13、将步骤11的脱脂棉浸入步骤12制得的过氧聚钨酸前驱体溶液中,充分吸附后取出,用无水乙醇清洗后烘干,制得前驱体棉花复合材料;
步骤14、将步骤13的前驱体棉花复合材料放入管式炉,在空气氛围中以0.5-3℃/min的速率从室温升至500-600℃,然后保温1-10h,得到WO3纳米颗粒;
步骤15、将WO3纳米颗粒按照1:20的质量比加入到去离子水中,搅拌得到WO3纳米颗粒悬浮液;
步骤16、在步骤15中的WO3纳米颗粒悬浮液中滴加H2PtCl6水溶液,其中WO3纳米颗粒与H2PtCl6水溶液中H2PtCl6的质量比为1:(0.001-0.03),充分搅拌后离心,下层产物用蒸馏水洗涤3-5次,在150-200℃烘箱中烘干,即制得氧化物敏感材料。
9.一种权利要求1-8任意一项所述氧化物半导体气体传感器的制备方法,其特征在于,包括如下步骤:
步骤21、将氧化物敏感材料分散在无水乙醇中,超声分散制成浆料;
步骤22、在绝缘陶瓷基片的上表面设置测试电极,下表面设置微加热器;
步骤23、将步骤21制得的浆料均匀涂覆在测试电极和测试电极所在绝缘陶瓷基片的上表面,自然晾干;
步骤24、调节微加热器的温度在150-300℃,将传感器在空气中老化1-24h,即制得氧化物半导体气体传感器;
其中,步骤21、22不分先后顺序。
10.一种权利要求1-8任意一项所述氧化物半导体气体传感器在检测浓度为10-1000ppb的二甲苯气体或三甲胺气体上的用途。
CN202111003403.8A 2021-08-30 2021-08-30 一种氧化物半导体气体传感器及其制备方法和用途 Active CN113758974B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111003403.8A CN113758974B (zh) 2021-08-30 2021-08-30 一种氧化物半导体气体传感器及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111003403.8A CN113758974B (zh) 2021-08-30 2021-08-30 一种氧化物半导体气体传感器及其制备方法和用途

Publications (2)

Publication Number Publication Date
CN113758974A true CN113758974A (zh) 2021-12-07
CN113758974B CN113758974B (zh) 2023-06-27

Family

ID=78791908

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111003403.8A Active CN113758974B (zh) 2021-08-30 2021-08-30 一种氧化物半导体气体传感器及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN113758974B (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450756A (ja) * 1990-06-18 1992-02-19 Figaro Eng Inc アミンセンサ
JP2004077458A (ja) * 2001-11-14 2004-03-11 Matsushita Electric Ind Co Ltd ガスセンサ,およびガスセンサの製造方法
JP2008070216A (ja) * 2006-09-13 2008-03-27 Ritsumeikan ガスセンサ及びその製造方法
KR20100054482A (ko) * 2008-11-14 2010-05-25 성균관대학교산학협력단 플러렌 박막층을 포함하는 소자 및 이를 제조하는 방법
US20150268207A1 (en) * 2012-04-13 2015-09-24 University Of Maryland, College Park Highly Selective Nanostructure Sensors and Methods of Detecting Target Analytes
CN105668637A (zh) * 2016-01-05 2016-06-15 天津大学 一种氧化钨纳米棒束结构气敏材料制备方法
CN105712396A (zh) * 2016-03-23 2016-06-29 云南大学 一种高灵敏度二甲苯气体敏感材料及其制备方法
CN105784789A (zh) * 2016-05-25 2016-07-20 吉林大学 一种基于担载贵金属Pt的介孔WO3材料的NH3传感器及制备方法
CN108982599A (zh) * 2017-06-05 2018-12-11 天津师范大学 多孔硅基氧化钨薄膜复合材料气敏传感器及其制备方法和应用
CN109626436A (zh) * 2018-12-28 2019-04-16 宁夏大学 一种高比表面积大介孔氧化钨硫化氢敏感材料及其制备方法
JP2021012110A (ja) * 2019-07-08 2021-02-04 フィガロ技研株式会社 Wo3系ガスセンサの改質方法
CN113030196A (zh) * 2021-02-25 2021-06-25 合肥微纳传感技术有限公司 一种wo3气敏材料的制备方法、制得的气敏材料及其应用

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450756A (ja) * 1990-06-18 1992-02-19 Figaro Eng Inc アミンセンサ
JP2004077458A (ja) * 2001-11-14 2004-03-11 Matsushita Electric Ind Co Ltd ガスセンサ,およびガスセンサの製造方法
JP2008070216A (ja) * 2006-09-13 2008-03-27 Ritsumeikan ガスセンサ及びその製造方法
KR20100054482A (ko) * 2008-11-14 2010-05-25 성균관대학교산학협력단 플러렌 박막층을 포함하는 소자 및 이를 제조하는 방법
US20150268207A1 (en) * 2012-04-13 2015-09-24 University Of Maryland, College Park Highly Selective Nanostructure Sensors and Methods of Detecting Target Analytes
CN105668637A (zh) * 2016-01-05 2016-06-15 天津大学 一种氧化钨纳米棒束结构气敏材料制备方法
CN105712396A (zh) * 2016-03-23 2016-06-29 云南大学 一种高灵敏度二甲苯气体敏感材料及其制备方法
CN105784789A (zh) * 2016-05-25 2016-07-20 吉林大学 一种基于担载贵金属Pt的介孔WO3材料的NH3传感器及制备方法
CN108982599A (zh) * 2017-06-05 2018-12-11 天津师范大学 多孔硅基氧化钨薄膜复合材料气敏传感器及其制备方法和应用
CN109626436A (zh) * 2018-12-28 2019-04-16 宁夏大学 一种高比表面积大介孔氧化钨硫化氢敏感材料及其制备方法
JP2021012110A (ja) * 2019-07-08 2021-02-04 フィガロ技研株式会社 Wo3系ガスセンサの改質方法
CN113030196A (zh) * 2021-02-25 2021-06-25 合肥微纳传感技术有限公司 一种wo3气敏材料的制备方法、制得的气敏材料及其应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
MASSIMILIANO D’ARIENZO ETAL.: "Macroporous WO3 Thin Films Active in NH3 Sensing: Role of the Hosted Cr Isolated Centers and Pt Nanoclusters", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, pages 5296 *
P.]. SHAVER: "ACTIVATED TUNGSTEN OXIDE GAS DETECTORS", APPLIED PHYSICS LETTERS *
孙彩芹 等: "纳米WO3 材料的制备及掺杂改性进展", 重庆师范大学学报, vol. 26, no. 3 *
李宇东 等: "Pt表面修饰3 WO 纳米花薄膜对酒精气体 传感性能的影响", 五邑大学学报, vol. 31, no. 3 *
梁士明;储向峰;张千峰;: "WO_3纳米粉体的制备及其气敏性能分析", 安徽工业大学学报(自然科学版), no. 01 *
褚状状 等: "有害气体检测的光纤传感技术发展", 传感器与微系统, vol. 35, no. 9 *
黎先财,柯勇,杨沂凤,饶国华: "超细三氧化钨的制备及催化应用", 中国钨业, no. 04 *

Also Published As

Publication number Publication date
CN113758974B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
Zhang et al. Synthesis and gas sensing properties of porous hierarchical SnO2 by grapefruit exocarp biotemplate
Zhang et al. ZnO hollow spheres: preparation, characterization, and gas sensing properties
Kaur et al. Highly sensitive NO2 sensor based on ZnO nanostructured thin film prepared by SILAR technique
WO2014171634A1 (ko) 크롬이 도핑된 산화니켈 나노구조체를 이용한 메틸벤젠 가스 센서 및 그 제조 방법
Imran et al. Template based sintering of WO 3 nanoparticles into porous tungsten oxide nanofibers for acetone sensing applications
Deng et al. High sensitivity and selectivity of C-Doped ${\rm WO} _ {3} $ Gas sensors toward toluene and xylene
Li et al. ZrO2/ZnO nanocomposite materials for chemiresistive butanol sensors
Li et al. UV light activated SnO2/ZnO nanofibers for gas sensing at room temperature
Bi et al. Synthesis of NiO-In2O3 heterojunction nanospheres for highly selective and sensitive detection of ppb-level NO2
Liu et al. Highly sensitive and selective trimethylamine sensors based on WO3 nanorods decorated with Au nanoparticles
CN111060560B (zh) 一种Ru-WO3纳米材料及其制备方法和应用
Huang et al. Pt surface modification of SnO 2 nanorod arrays for CO and H 2 sensors
Jain et al. Ultra-low NO2 detection by gamma WO3 synthesized by Reactive Spray Deposition Technology
CN111830089A (zh) 一种基于双壳形Cu2O分等级结构微米球敏感材料的正丙醇气体传感器及其制备方法
CN109725039A (zh) 一种Pd修饰ZnO纳米棒阵列的制备及其应用
CN111573744A (zh) 一种钴酸镍气敏材料、钴酸镍气敏传感器及其制备方法
Qin et al. A ZnO/ZnFe 2 O 4 n–n heterojunction and Au loading synergistically improve the sensing performance of acetone
CN114839231A (zh) 一种用于半导体可燃气体传感器的抗干扰气敏涂层及其制备方法、应用
Cui et al. Pt-decorated NiWO4/WO3 heterostructure nanotubes for highly selective sensing of acetone
Han et al. In situ gold nanoparticle-decorated three-dimensional tin dioxide nanostructures for sensitive and selective gas-sensing detection of volatile organic compounds
Parthangal et al. Direct synthesis of tin oxide nanotubes on microhotplates using carbon nanotubes as templates
Lian et al. Synthesis of coryphantha elephantidens-like SnO2 nanospheres and their gas sensing properties
CN110615693B (zh) 一种硫化氢气体传感材料、传感器及制备方法与使用方法
CN113758974A (zh) 一种氧化物半导体气体传感器及其制备方法和用途
CN115015328B (zh) 一种基于PtAu合金纳米晶修饰的花状WO3敏感材料的正戊醇气体传感器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant