CN113745648A - 一种电化学储能聚合物电解质及制备方法 - Google Patents

一种电化学储能聚合物电解质及制备方法 Download PDF

Info

Publication number
CN113745648A
CN113745648A CN202010459869.8A CN202010459869A CN113745648A CN 113745648 A CN113745648 A CN 113745648A CN 202010459869 A CN202010459869 A CN 202010459869A CN 113745648 A CN113745648 A CN 113745648A
Authority
CN
China
Prior art keywords
polymer electrolyte
energy storage
electrochemical energy
electrolyte
ionic liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010459869.8A
Other languages
English (en)
Inventor
张楚璠
付春
贾凤
孔京
黄伟
陈琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Nanjing Chemical Industry Corp
Research Institute of Sinopec Nanjing Chemical Industry Co Ltd
Original Assignee
China Petroleum and Chemical Corp
Sinopec Nanjing Chemical Industry Corp
Research Institute of Sinopec Nanjing Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Nanjing Chemical Industry Corp, Research Institute of Sinopec Nanjing Chemical Industry Co Ltd filed Critical China Petroleum and Chemical Corp
Priority to CN202010459869.8A priority Critical patent/CN113745648A/zh
Publication of CN113745648A publication Critical patent/CN113745648A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/22Vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/28Hexyfluoropropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/24Esters of carbonic or haloformic acids, e.g. allyl carbonate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/43Compounds containing sulfur bound to nitrogen
    • C08K5/44Sulfenamides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0422Cells or battery with cylindrical casing
    • H01M10/0427Button cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明公开了一种电化学储能聚合物电解质及制备方法。其组成包括聚合物、电解质锂盐、离子液体、固体氧化物、引发剂和螯合剂,聚合物均匀度好、机械强度佳、离子电导率高。该发明中的聚合物电解质含有FSI‑、TFSI‑、PFSI‑阴离子的离子液体的加入提高了聚合物电解质的阻燃性、热稳定性及电化学稳定性,锂盐LiFSI、LiTFSI、LiPFSI的加入提高了离子电导率。螯合剂有助于离子液体和锂盐较为均匀地分散在聚合物立体骨架结构中,有利于提高聚合物电解质的离子传输效率,同时体系的均匀度和制备聚合物电解质的一致性也得到提高。

Description

一种电化学储能聚合物电解质及制备方法
技术领域
本发明涉及一种电化学储能聚合物电解质及制备方法,属于锂离子电池技术领域。
背景技术
近二十年来,随着技术的发展和需求的进一步升级,市场对高性能特别是高安全性的锂离子电池给出了更高的期待。目前市场化的动力电池大都为液流锂离子电池,这种传统电池在进一步提高能量密度和安全性保障上均受到限制。液流电池由于易发生容量跳水、失效等性能衰减缺陷,甚至过热、爆炸等安全事故等问题,难以应用新型电极材料,因而需要加快新型电池的研发和产业化。固态电池被誉为下一代电池,其与常用锂离子电池的区别在于电解质为固态材料,主要可分为聚合物、氧化物和硫化物等。由于传统锂离子电池的发展遇到了瓶颈如安全性、能量密度限制等,固态电池被普遍看好。
新体系电池的研发和应用发展迅速,目前锂空电池、锂硫电池和固态电池的能量密度分别达到700 Wh/kg、500 Wh/kg和近300 Wh/kg。固态电池电池能量密度大,相比目前最好的锂电池提升了一倍多,电动车的续航里程能从256英里提升到480英里,价格更便宜,每千瓦时100美元。因为不含液态电解质,不需要额外增加冷却装臵和电子控件等,能够有效的减少重量。其中,聚合物全固态电池因具有质轻、黏弹性好、成膜性好、电化学及化学稳定性好、锂离子迁移数较高等优势发展较为迅速,已有企业将其应用于电动汽车上。但仍存在一些问题如电极与电解质的界面阻抗或应力、电解质的稳定性、应用温度、电化学窗口和电导率限制等,阻碍着固态聚合物电池的产业化应用和进一步推广。因此,开发能在宽温度范围使用,电导率与电化学稳定性更高的固体电解质是热点的研究方向。已有研究表明,添加微量液体电解质如溶剂或离子液体、制备凝胶电解质等手段有助于兼顾电导率、界面和安全性并获得一个可行的解决方案。
研究人员将聚合物单体、引发剂和锂盐等按一定比例混合均匀后组装电池,在一定的外界条件(如热引发、光引发、伽马射线等)下引发聚合反应,单体聚合得到立体骨架结构电解质。但由于原位聚合过程中存在外界条件作用不均匀、聚合过程热量效应等因素,这种原位聚合的电解质在一致性、安全性等方面还存在挑战。
离子液体电解液是一种导电熔融盐,具有无饱和蒸气压、电化学窗口宽、电化学稳定性好的优点,在锂电池、超级电容器、电化学传感器、储能等电化学领域具有广泛的应用前景。利用离子液体难燃、挥发性弱、稳定性好、液程宽、导电性好、电化学窗口宽等优点,作为固态电解质的添加剂或主要构成成分,可使所构建的电池工作温度范围拓宽,电极/电解质界面接触问题得到改善,同时相较于其他液态电解质电化学稳定性更好,且防爆性能和阻燃性能明显提升,安全性能更好,符合未来锂电池行业的发展方向,具有广阔的应用前景。
为了进一步兼顾固态电解质的机械性能,保持凝胶固态聚合物的结构,可以通过添加固体颗粒来增强机械性能,同时已有文献报道固态颗粒有可能有助于减少固态电解质的结晶,减少由于结晶造成的分子链段运动抑制等情况。
此外,在聚合和后处理过程中,聚合物电解质体系的均匀性可能不佳,因此采用螯合剂或者说络合剂作为一种“分散剂”将有利于提高体系的均匀度和制备聚合物电解质的一致性。
发明内容
本发明旨在提供一种电化学储能聚合物电解质及制备方法,制备以聚合物、离子液体、锂盐为主要成分的机械强度佳、离子电导率高的聚合物电解质。
一种电化学储能聚合物电解质及制备方法,其特征在于:包括离子液体、锂盐、聚合物、无机氧化物、引发剂及螯合剂;所述离子液体的阴离子为双三氟甲基磺酰亚胺(TFSI-)或双氟磺酰亚胺(FSI-)或双五氟苯基磺酰亚胺阴离子(PFSI-),结构如下:
Figure RE-493657DEST_PATH_IMAGE001
双三氟甲基磺酰亚胺(TFSI-
Figure RE-29812DEST_PATH_IMAGE002
双氟磺酰亚胺(FSI-
Figure RE-640922DEST_PATH_IMAGE003
双五氟苯基磺酰亚胺阴离子(PFSI-
结构中阳离子选自咪唑类、吡咯烷类、哌啶类的一种,结构通式如下:
Figure RE-869909DEST_PATH_IMAGE004
Figure RE-871363DEST_PATH_IMAGE005
Figure RE-601422DEST_PATH_IMAGE006
结构中R1、R2为碳原子数在1~5的烷基。
所述锂盐的阴离子为离子液体相应的阴离子。
所述聚合物由所述单体聚合而成,所述单体为碳酸亚乙烯酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸丙烯酯、甲基丙烯酸甲酯、偏氟乙烯、六氟丙烯、γ-丁内酯、ε-己内酯、乙二醇二丙烯酸酯、丙三醇三丙烯酸酯中的一种或多种。
所述无机氧化物为二氧化硅、三氧化二铝、二氧化钛中的一种或多种。
所述引发剂为过氧化二苯甲酰胺、偶氮二异丁腈,偶氮二异丁酸二甲酯、三氟化硼中的一种或多种。
所述螯合剂为柠檬酸、EDTA、酒石酸中的一种或多种。
进一步地,所述聚合物的制备方法如下:
S1:首先将聚合物单体溶于溶剂中,在30~60℃下混合至均匀;
S2:将离子液体、锂盐、无机固体氧化物、引发剂和螯合剂加入到前述体系中,在60~120℃下搅拌,保温6~12h;
S3:将多余溶剂旋蒸去除。
进一步地,所述锂盐的浓度为0.5~2mol/L。
进一步地,所述无机固体氧化物占电解质总质量的比例为0.1~10%。
进一步地,所述引发剂占电解质总质量的比例为0.1~5%。
进一步地,所述螯合剂占电解质总质量的比例为1~5%。
有益效果:
本发明提出的一种电化学储能聚合物电解质及制备方法,含有FSI-、TFSI-、PFSI-阴离子的离子液体的加入提高了聚合物电解质的阻燃性、热稳定性及电化学稳定性,锂盐LiFSI、LiTFSI、LiPFSI的加入也能够提高电流效率。同时,在聚合阶段加入配合螯合剂,能够使离子液体和锂盐较为均匀地分散在聚合物立体骨架结构中,有助于提高聚合物电解质的离子传输效率。螯合剂也有利于提高体系的均匀度和制备聚合物电解质的一致性。
具体实施方式
下面通过实施例对本发明进行具体描述,但不能理解为对本发明专利保护范围的限制。
实施例1
一种电化学储能聚合物电解质及制备方法,选取碳酸乙烯酯、丙二醇二丙酸酯作为聚合物单体(单体比例1:1),在60℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiFSI(1mol/L),离子液体EMImFSI(2mol/L,结构如下),二氧化硅(含量3%),过氧化二苯甲酰胺(含量0.5%),柠檬酸(含量5%)加入到前述体系中,在80℃下加热12h;最后将多余溶剂在100℃旋蒸去除。
EMimFSI
Figure RE-676825DEST_PATH_IMAGE007
Figure RE-201347DEST_PATH_IMAGE008
电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为3.4×10-3
实施例2
一种电化学储能聚合物电解质及制备方法,选取碳酸甲乙酯、甲基丙烯酸甲酯作为聚合物单体(单体比例1.5:1),在60℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(1mol/L),离子液体MMimPFSI(1.5mol/L,结构如下),二氧化钛(含量3%),偶氮二异丁腈(含量2.5%),EDTA(含量2%)加入到前述体系中,在80℃下加热10h;最后将多余溶剂在100℃旋蒸去除。
Figure RE-627781DEST_PATH_IMAGE009
Figure RE-895951DEST_PATH_IMAGE010
电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为2.6×10-3
实施例3
一种电化学储能聚合物电解质及制备方法,选取偏氟乙烯、六氟丙烯作为聚合物单体(单体比例1:1),在80℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(2mol/L),离子液体PYR13TFSI(1.5mol/L,结构如下),三氧化二铝(含量5%),偶氮二异丁酸二甲酯(含量1.5%),酒石酸(含量5%)加入到前述体系中,在90℃下加热8h;最后将多余溶剂在100℃旋蒸去除。
Figure RE-153757DEST_PATH_IMAGE011
Figure RE-990126DEST_PATH_IMAGE012
电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为5.2×10-3
实施例4
一种电化学储能聚合物电解质及制备方法,选取丙三醇三丙烯酸酯、甲基丙烯酸甲酯、ε-己内酯作为聚合物单体(单体比例2.2:1:0.6),在80℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(1.5mol/L),离子液体PYR22TFSI(1.5mol/L,结构如下),二氧化硅(含量2.5%),偶氮二异丁酸二甲酯(含量1.5%),柠檬酸(含量5%)加入到前述体系中,在80℃下加热8h;最后将多余溶剂在100℃旋蒸去除。
Figure RE-762910DEST_PATH_IMAGE013
Figure RE-707208DEST_PATH_IMAGE014
电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为4.6×10-3
实施例5
一种电化学储能聚合物电解质及制备方法,选取乙二醇二丙烯酸酯、甲基丙烯酸甲酯、γ-丁内酯作为聚合物单体(单体比例2:1.8:0.2),在100℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(2mol/L),离子液体PP13FSI(1.5mol/L,结构如下),二氧化硅、三氧化二铝(含量分别为1%、1.5%),过氧化二苯甲酰胺(含量1%),柠檬酸(含量3%)加入到前述体系中,在80℃下加热8h;最后将多余溶剂在100℃旋蒸去除。
Figure RE-881837DEST_PATH_IMAGE015
Figure RE-951424DEST_PATH_IMAGE008
电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为4.1×10-3
实施例6
一种电化学储能聚合物电解质及制备方法,选取碳酸二乙酯、甲基丙烯酸甲酯、亚硫酸乙烯酯作为聚合物单体(单体比例2:1:1),在100℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiPFSI(2mol/L),离子液体PP14PFSI(1.5mol/L,结构如下),二氧化硅、二氧化钛(含量各1%),过氧化二苯甲酰胺(含量1%),柠檬酸(含量3%)加入到前述体系中,在80℃下加热8h;最后将多余溶剂在100℃旋蒸去除。
Figure RE-86870DEST_PATH_IMAGE016
Figure RE-696843DEST_PATH_IMAGE010
电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为4.1×10-3
实施例7
一种电化学储能聚合物电解质及制备方法,选取碳酸二甲酯、甲基丙烯酸甲酯作为聚合物单体(单体比例1:1),在100℃下将单体溶于N甲基吡咯烷酮中;将电解质锂盐LiFSI(2mol/L),离子液体PP14FSI(2mol/L,结构如下),二氧化钛(含量分别为1.5%),过氧化二苯甲酰胺(含量1%),酒石酸(含量2.5%)加入到前述体系中,在80℃下加热8h;最后将多余溶剂在100℃旋蒸去除。
Figure RE-866925DEST_PATH_IMAGE017
Figure RE-169730DEST_PATH_IMAGE018
电导率测试方法采用传统铸膜法,再装入到扣式电池中,以商业化磷酸铁锂极片和锂片为电极进行电导率测试。测得在30℃的离子电导率为4.8×10-3
对比例
同实施例1,不同之处在于:
不使用离子液体和螯合剂,其他相同。测得的离子电导率为2.0×10-3

Claims (10)

1.一种电化学储能聚合物电解质,其特征在于:包括离子液体、锂盐、聚合物、无机氧化物、引发剂及螯合剂;所述离子液体的阴离子为双三氟甲基磺酰亚胺(TFSI-)或双氟磺酰亚胺(FSI-)或双五氟苯基磺酰亚胺阴离子(PFSI-),结构如下:
Figure DEST_PATH_IMAGE001
双三氟甲基磺酰亚胺(TFSI-
Figure 931678DEST_PATH_IMAGE002
双氟磺酰亚胺(FSI-
Figure DEST_PATH_IMAGE003
双五氟苯基磺酰亚胺阴离子(PFSI-
结构中阳离子选自咪唑类、吡咯烷类、哌啶类的一种,结构通式如下:
Figure 222982DEST_PATH_IMAGE004
Figure DEST_PATH_IMAGE005
Figure 99803DEST_PATH_IMAGE006
结构中R1、R2为碳原子数在1~5的烷基。
2.根据权利要求1所述电化学储能聚合物电解质,其特征在于:锂盐的阴离子为离子液体相应的阴离子。
3.根据权利要求1所述电化学储能聚合物电解质,其特征在于:所述聚合物由单体聚合而成,所述单体为碳酸亚乙烯酯、碳酸乙烯酯、碳酸二甲酯、碳酸二乙酯、碳酸甲乙酯、碳酸丙烯酯、甲基丙烯酸甲酯、偏氟乙烯、六氟丙烯、γ-丁内酯、ε-己内酯、乙二醇二丙烯酸酯、丙三醇三丙烯酸酯中的一种或多种。
4.根据权利要求1所述电化学储能聚合物电解质,其特征在于:所述无机氧化物为二氧化硅、三氧化二铝、二氧化钛中的一种或多种。
5.根据权利要求1所述电化学储能聚合物电解质,其特征在于:所述引发剂为过氧化二苯甲酰胺、偶氮二异丁腈、偶氮二异丁酸二甲酯、三氟化硼中的一种或多种;所述螯合剂为柠檬酸、EDTA、酒石酸中的一种或多种。
6.根据权利要求1-5任一所述电化学储能聚合物电解质的制备方法,其特征在于:制备方法如下:
S1:首先将聚合物单体溶于溶剂中,在30~60℃下混合至均匀;
S2:将离子液体、锂盐、无机固体氧化物、引发剂和螯合剂加入到前述体系中,在60~120℃下搅拌,保温6~12h;
S3:将多余溶剂旋蒸去除。
7.根据权利要求6所述电化学储能聚合物电解质的制备方法,其特征在于:所述锂盐的浓度为0.5~2 mol/L。
8.根据权利要求6所述一种电化学储能聚合物电解质的制备方法,其特征在于:所述无机固体氧化物占电解质总质量的比例为0.1~10%。
9.根据权利要求6所述一种电化学储能聚合物电解质及制备方法,其特征在于:所述引发剂占电解质总质量的比例为0.1~5%。
10.根据权利要求6所述一种电化学储能聚合物电解质及制备方法,其特征在于:所述螯合剂占电解质总质量的比例为1~5%。
CN202010459869.8A 2020-05-27 2020-05-27 一种电化学储能聚合物电解质及制备方法 Pending CN113745648A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010459869.8A CN113745648A (zh) 2020-05-27 2020-05-27 一种电化学储能聚合物电解质及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010459869.8A CN113745648A (zh) 2020-05-27 2020-05-27 一种电化学储能聚合物电解质及制备方法

Publications (1)

Publication Number Publication Date
CN113745648A true CN113745648A (zh) 2021-12-03

Family

ID=78723626

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010459869.8A Pending CN113745648A (zh) 2020-05-27 2020-05-27 一种电化学储能聚合物电解质及制备方法

Country Status (1)

Country Link
CN (1) CN113745648A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400374A (zh) * 2021-12-21 2022-04-26 中国科学院苏州纳米技术与纳米仿生研究所 一种聚合物电解质及其制备方法和用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203949B1 (en) * 1997-08-22 2001-03-20 Yardney Technical Products, Inc. Solid electrolyte for an electrochemical cell composed of an inorganic metal oxide network encapsulating a liquid electrolyte
CN1934212A (zh) * 2004-04-19 2007-03-21 Lg化学株式会社 包括离子液体的胶凝聚合物电解质以及使用该电解质的电致变色器件
CN104466240A (zh) * 2013-09-22 2015-03-25 中国科学院大学 一种离子液体聚合物电解质及其制备方法
CN106654364A (zh) * 2016-10-20 2017-05-10 中国科学院大学 离子液体复合全固态聚合物电解质及其制备方法与应用
CN107681196A (zh) * 2017-09-22 2018-02-09 山东森鑫环保科技有限公司 无合成聚合物柔性固体电解质膜和其制备方法及其应用
CN109546207A (zh) * 2018-11-30 2019-03-29 西安交通大学 一种复合固态聚合物电解质膜及其制备方法和应用
CN110611120A (zh) * 2019-04-04 2019-12-24 李秀艳 单离子导体聚合物全固态电解质及包含其的锂二次电池
CN110707357A (zh) * 2019-10-23 2020-01-17 北京卫蓝新能源科技有限公司 一种核壳结构的凝胶聚合物电解质及其制备方法和应用

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6203949B1 (en) * 1997-08-22 2001-03-20 Yardney Technical Products, Inc. Solid electrolyte for an electrochemical cell composed of an inorganic metal oxide network encapsulating a liquid electrolyte
CN1934212A (zh) * 2004-04-19 2007-03-21 Lg化学株式会社 包括离子液体的胶凝聚合物电解质以及使用该电解质的电致变色器件
CN104466240A (zh) * 2013-09-22 2015-03-25 中国科学院大学 一种离子液体聚合物电解质及其制备方法
CN106654364A (zh) * 2016-10-20 2017-05-10 中国科学院大学 离子液体复合全固态聚合物电解质及其制备方法与应用
CN107681196A (zh) * 2017-09-22 2018-02-09 山东森鑫环保科技有限公司 无合成聚合物柔性固体电解质膜和其制备方法及其应用
CN109546207A (zh) * 2018-11-30 2019-03-29 西安交通大学 一种复合固态聚合物电解质膜及其制备方法和应用
CN110611120A (zh) * 2019-04-04 2019-12-24 李秀艳 单离子导体聚合物全固态电解质及包含其的锂二次电池
CN110707357A (zh) * 2019-10-23 2020-01-17 北京卫蓝新能源科技有限公司 一种核壳结构的凝胶聚合物电解质及其制备方法和应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400374A (zh) * 2021-12-21 2022-04-26 中国科学院苏州纳米技术与纳米仿生研究所 一种聚合物电解质及其制备方法和用途
CN114400374B (zh) * 2021-12-21 2023-08-18 中国科学院苏州纳米技术与纳米仿生研究所 一种聚合物电解质、全固态高电压锂金属电池及其制备方法

Similar Documents

Publication Publication Date Title
KR101588266B1 (ko) 겔 전해질을 갖는 전기화학 셀의 제조방법
CN109608592B (zh) 一种聚离子液体固态电解质的交联聚合制备的方法
CN109786820B (zh) 一种含硼的塑晶聚合物及其制备方法和应用
CN106058313B (zh) 聚合物电解质材料、其制备方法、聚合物电解质膜与全固态锂离子二次电池
CN111533851A (zh) 一种聚合物电解质的制备方法及其在全固态电池中的应用
Wu et al. Functional composite polymer electrolytes with imidazole modified SiO2 nanoparticles for high-voltage cathode lithium ion batteries
CN108963332A (zh) 一种复合固体电解质材料及制备方法和全固态电池
CN104466241B (zh) 一种可作为锂离子电池用新型固态电解质膜材料及其制备方法和应用
WO2021098685A1 (zh) 一种固态聚合物电解质、其制备方法及锂电池
CN112086619B (zh) 全固态锂电池正极片及其制备方法以及全固态锂电池
CN111786018B (zh) 一种高压聚合物电解质、高压聚合物锂金属电池及此电池的制备方法
CN116130766B (zh) 一种电解液和钠离子电池
CN108306046A (zh) 一种全固态复合聚合物电解质及其制备方法
Chagnes Lithium battery technologies: electrolytes
CN113745648A (zh) 一种电化学储能聚合物电解质及制备方法
CN111320753B (zh) 聚合物、聚合物电解质、聚合物电解质膜、非水电解液及锂离子电池
CN111755735B (zh) 一种多孔有机化合物电解质及其制备方法和应用
CN109585918A (zh) 一种聚合物电池及其制备方法
CN113206292B (zh) 一种聚合物基复合固态电解质及其制备方法与应用
CN111326797B (zh) 液态聚合物电解质、聚合物电解质膜及锂离子电池
TWI589052B (zh) 電解質隔離膜
EP3861582A1 (en) Improved rechargeable batteries and production thereof
Yang A Superionic Conductive Solid Polymer Electrolyte Based Solid Sodium Metal Batteries with Stable Cycling Performance at Room Temperature
WO2020119750A1 (zh) 聚合物、聚合物电解质、聚合物电解质膜、非水电解液及锂离子电池
CN116404244A (zh) 一种超稳定柔性全固态聚合物电解质及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination