CN113745309A - 一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管 - Google Patents

一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管 Download PDF

Info

Publication number
CN113745309A
CN113745309A CN202010462964.3A CN202010462964A CN113745309A CN 113745309 A CN113745309 A CN 113745309A CN 202010462964 A CN202010462964 A CN 202010462964A CN 113745309 A CN113745309 A CN 113745309A
Authority
CN
China
Prior art keywords
region
type
silicon carbide
drift region
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010462964.3A
Other languages
English (en)
Inventor
戴茂州
高巍
廖运健
顾航
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Rongsi Semiconductor Co ltd
Original Assignee
Chengdu Rongsi Semiconductor Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Rongsi Semiconductor Co ltd filed Critical Chengdu Rongsi Semiconductor Co ltd
Priority to CN202010462964.3A priority Critical patent/CN113745309A/zh
Publication of CN113745309A publication Critical patent/CN113745309A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明提出了一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管,其包括:具有第一导电类型的碳化硅衬底;具有与该第一导电类型相反电性的第二导电类型的漂移区,设置于衬底上;具有第二导电类型的漏极设置于漂移区表面上的一侧、第一导电类型第一阱区设置于漂移区表面的另一侧;具有第一导电类型的接触区以及与其相邻且隔开的第二导电类型的源极,设置于第一阱区;多个第一导电类型掺杂区形成于该漂移区表面上,作为第二导电类型的多区域场限环;栅极氧化层设置于第一阱区上并部分重叠位于第一阱区内的源极以及漂移区;场氧化层设置于漂移区表面上;多个接触电极分别与漏极、源极、以及栅极接触。

Description

一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管
技术领域
本发明涉及一种碳化硅场效应晶体管,特别是一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管。
背景技术
高压集成电路(HVIC)通常组合一个或多个高压晶体管和同一芯片上的低压电路。这些电路常用的高压组件是横向MOSFET,通常称为横向双扩散MOS晶体管或LDMOS。于LDMOS器件中,传统方式所制作的漂移区是厚的外延层,除了有绝缘的问题之外也不符合经济效益,而离子注入提供的经济有效的解决方案能更好地控制漂移区电荷,其中漂移区电荷会影响击穿电压。对于给定的击穿电压(breakdown voltage),漂移区电阻主导整体HV-LDMOS器件的导通电阻。因此,重要的是增加漂移区中的掺杂浓度以降低导通电阻。此外,更高的漂移区域浓度可以改善LDMOS的安全操作区域。然而,漂移区电荷(掺杂浓度×厚度)受RESURF条件的限制。因此,需要提出新型器件结构以增进漂移区域掺杂特性。
传统上Si功率电子器件中以高压横向双扩散MOSFET(LDMOSFET)为应用大宗,因其良好的半导体制程兼容性,容易通过内部连线将分布在表面的源极、栅极以及漏极与低压逻辑电路做集成,被广泛应用在高压功率集成电路中。功率半导体于应用上需要具有高源-漏击穿电压(source-to-drain breakdown voltage)、低沟道电阻(低导通电阻)、以及低储存栅极电荷(stored gate charge)。上述高源-漏击穿电压与低导通电阻之间存在一取舍关系,优化这一个取舍关系是LDMOSFET器件的设计上一大挑战。
由于LDMOSFET器件已经广泛应用于功率电子领域,例如功率切换开关、马达驱动、以及汽车电子等。传统Si功率电子器件在极端环境下的耐受性有其发展瓶颈。
碳化硅(SiC)功率半导体组件具有宽禁带、有潜力实现阻断电压(BV;Blockingvoltage)在600V以上到数千伏特之间的低损耗、高速单极性开关组件以及二极管,且能够应用在高温或辐射等极端环境下。SiC之所以能够在高温环境下应用,其主因是SiC具备宽禁带。SiC相较于Si的另一特点为较高的临界击穿电场(critical field)。SiC为唯一可以由热氧化形成氧化层的化合物半导体,因此SiC-LDMOSFET的发展备受期待。但是SiCLDMOSFET只能在一定程度上降低导通电阻,对于功率集成电路对高压LDMOSFET器件如何提高击穿电压仍然是必须克服的课题之一。为此,本发明提出一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管,可以有效提高器件的击穿电压。
发明内容
本发明提出了一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管,其包括:具有第一导电类型的碳化硅衬底;具有与第一导电类型相反电性的第二导电类型的漂移区,设置于碳化硅衬底上;具有第二导电类型的漏极设置于漂移区表面上的一侧;具有第一导电类型第一阱区设置于漂移区表面上的另一侧;具有第一导电类型的接触区以及一与其相邻且隔开的具有第二导电类型的源极,设置于第一阱区;多个第一导电类型掺杂区形成于该漂移区表面上位于该漏极与该第一阱区之间,作为第二导电类型的多个埋层(场限环);栅极氧化层设置于第一阱区上并部分重叠位于第一阱区内的该源极以及漂移区;场氧化层设置于漂移区表面上未被栅极氧化层所覆盖的部分,并覆盖部分漏极的表面;多个接触电极分别与漏极、源极、以及栅极接触。
根据本发明的一个观点,所述第一导电类型为P型,第二导电类型为N型。
根据本发明的一个观点,所述具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管,所述多个埋层具有线性变化的掺杂分布形成于该横向双扩散碳化硅场效应晶体管的该漂移区,所述掺杂量从靠近该横向双扩散碳化硅场效应晶体管源极侧的高浓度变化到漏极侧低浓度。
根据本发明的一个观点,所述具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管,所述具有线性变化的掺杂分布的多个埋层是通过具有一系列开口的掩膜版进行N型离子注入,所述一系列开口的尺寸从该横向双扩散碳化硅场效应晶体管的源极侧到漏极侧呈线性增大。
附图说明
图1是传统横向双扩散碳化硅场效应晶体管剖面结构示意图;
图2是本发明所提出的具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管剖面结构示意图;
图3-图6(B)为本发明所提出具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管的制作步骤剖面结构示意图。
主要器件符号说明
101 SiC衬底 103 SiC漂移区 105 半导体漏极 107 半导体本体区
109 半导体源极 107a 半导体本体接触区 105a 漏极金属
109a 源极金属 111 栅极氧化层 111a 栅极
113 场氧化层 201 SiC衬底 203 SiC漂移区(N型漂移区)
205 漏极 205a 漏极金属 207 P型阱区 207a P型掺杂区(P型接触区)
209 N型掺杂区(源极) 221 多个埋层 221a-221d 多个N型掺杂区
211a 栅极 215 场氧化层 240 源极接触窗口
242 漏极接触窗口 300 金属
具体实施方式
现在将更详细地描述本发明的一些较佳实施例。然而,应该认识到,提供本发明的较佳实施例是为了说明而不是限制本发明。另外,除了明确描述的那些实施例之外,本发明还可以在广泛的其他实施例中实施,除非在所附权利要求中指定,否则本发明的范围不受明确限制。
实施例一
图1显示传统SiC-LDMOSFET器件示意图,其包括SiC衬底101、SiC漂移区103、半导体漏极105、半导体本体区107,其中半导体本体区107具有半导体源极109和半导体本体接触区107a,漏极金属105a、源极金属109a、栅极氧化层111、栅极111a、以及场氧化层113所组成。但是如同背景技术段落所述SiC LDMOSFET只能在一定程度上降低导通电阻,对于功率集成电路对高压LDMOSFET器件如何提高击穿电压仍然是必须克服的课题之一。
为此,本发明提出一种具有多个区域埋层的SiC-LDMOS器件结构,如图2所示,于第二导电类型(N-型)SiC漂移区203中具有多个由第二导电类型掺杂区所形成的多个埋层221,其结构剖面示意图如图2所示。所述横向双扩散碳化硅场效应晶体管(SiC-LDMOSFET)包括一个P型SiC衬底201,举一较佳实施例,该衬底可以是4H-SiC衬底,一个轻掺杂的N型半导体材料作为漂移区203形成于衬底201上、在N型漂移区203表面上的一侧形成一N型掺杂漏极205、在N型漂移区203表面上的另一侧形成P型阱区207,该P型阱区207表面形成相邻的N型掺杂区209以及P型掺杂区207a,N型掺杂区209作为源极、P型掺杂区207a作为接触区,位于N型漂移区203表面上的N型掺杂漏极205与P型阱区207之间形成多个N型掺杂区221a-221d作为多个埋层221,举一较佳实施例,多个N型掺杂区221a-221d具有线性变化的掺杂分布形成于横向器件的漂移区203,所述掺杂量从靠近源极209侧的高浓度变化到漏极205侧低浓度,它是通过具有一系列开口的掩膜版(请参考图4)进行N+离子注入,所述一系列开口的尺寸从源极209侧到漏极205侧呈线性增大,狭缝宽度和间距可以通过数值方法得到优化值;P型阱区207与和部分N型漂移区203的表面上形成栅极氧化层211、栅极氧化层211上形成栅极211a,场氧化层215形成于N型漂移区203未被栅极氧化层211覆盖的区域,器件表面与N型漏极205接触的是漏极金属205a,与所述P型阱区207表面形成相邻的N型以及P型掺杂区(209、207a)接触的是源极金属209a。
所述位于N型漂移区203表面的多个N型掺杂区221a-221d所形成多个埋层221其作用为改变电场分布,进而提升器件的击穿电压。此外,又因为多个埋层221与漂移区203同为N型掺杂不会如传统的P型埋层会增加沟道电阻而导致器件性能劣化的缺点。
图3-图6(B)显示根据本发明所提出具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管的制作步骤。以N沟道SiC-LDMOS为例,由图3所示,提供一P型SiC衬底201作为衬底,其掺杂浓度为1e19cm-3~5e20cm-3,接着于SiC衬底201上以外延方式形成一轻掺杂N型漂移区203,N型漂移区的掺杂浓度为5e14cm-3~5e16cm-3;然后利用离子注入和热扩散方式形成P型阱区207,其掺杂浓度为5e15cm-3~5e18cm-3。接着如图4,通过具有一系列开口的掩膜版230进行N+离子注入注入掺杂剂,所述一系列开口(230a、230b、230c、230d)的尺寸从源极侧到漏极侧(参考图2)呈线性增大,形成N+掺杂的多个埋层(场限环)221于漂移区203表面,以一较佳实施例而言,N型多个埋层221中个别N+掺杂区(221a、221b、221c、或221d)的掺杂浓度范围为1e16cm-3至1e19cm-3。接着如图5,于漂移区203以及P型阱区207形成场氧化层215并定义出有源区、接着于有源区上成长栅极氧化层211以及淀积多晶硅于栅极氧化层211上,以图案化工艺以及刻蚀方式形成栅极211a。接着如图6(A),于场氧化层215上以图案化工艺定义出源极接触窗口240、以及漏极接触窗口242,然后通过掺杂和热扩散形成N+源极209以及P+源极接触区207a于P型阱区207内、并于漂移区203上远离P型阱区207侧形成N+漏极205,P型阱区207内的N型源极209掺杂浓度范围为1e19cm-3至5e20cm-3,P型接触区207a掺杂浓度范围为1e19cm-3至5e20cm-3。接着如图6(B),于源极接触窗口240、漏极接触窗口242、以与栅极211a淀积金属300形成源极、漏极以与栅极接触。最终形成如图2所示的SiC-LDMOS器件。
本发明提出一种具有埋层的新型横向双扩散碳化硅场效应晶体管,其具有与传统横向双扩散碳化硅场效应晶体管器件相比具有提高击穿电压且同时不会增加器件沟道电阻,可以有效增进器件的操作效能。如本领域技术人员可以理解的,本发明的前述较佳实施例是用以说明本发明而非限制本发明。其中已经结合较佳实施例描述了本发明,将对本领域技术人员提出修改。因此,本发明不限于该实施例所描述的技术内容,而是本发明旨在覆盖包括在所附权利要求的精神和范围内的各种修改和类似布置,其范围应该被赋予最宽的解释,由此涵盖所有这些修改和类似的结构。其上虽然已经说明和描述了本发明的优选实施例,但应该理解,可以在不脱离本发明的精神和范围的情况下做出各种改变。

Claims (9)

1.一种具有渐变浓度掺杂层的横向双扩散碳化硅场效晶体管,其特征在于,其包括:具有第一导电类型的碳化硅衬底;具有与该第一导电类型相反电性的第二导电类型的漂移区,设置于该碳化硅衬底上;具有第二导电类型的漏极设置于该漂移区表面上的一侧;具有第一导电类型第一阱区设置于该漂移区表面上的另一侧;具有第一导电类型的接触区以及相邻且隔开的具有第二导电类型的源极,设置于该第一阱区;多个第一导电类型掺杂区形成于该漂移区表面上位于该漏极与该第一阱区之间,作为第二导电类型的场限环;栅极氧化层设置于该第一阱区上并部分重叠位于该第一阱区内的该源极以及该漂移区;场氧化层设置于该漂移区表面上未被该栅极氧化层所覆盖的部分,并覆盖部分漏极的表面;多个接触电极分别与该漏极、该源极、以及该栅极接触。
2.根据权利要求1所述具有渐变浓度掺杂层的横向双扩散碳化硅场效晶体管,其特征在于,所述第一导电类型为P型,第二导电类型为N型。
3.根据权利要求2所述具有渐变浓度掺杂层的横向双扩散碳化硅场效晶体管,其特征在于,多个所述场限环具有线性变化的掺杂分布形成于该横向双扩散碳化硅场效晶体管的该漂移区,所述掺杂浓度从靠近该横向双扩散碳化硅场效晶体管源极侧的高浓度变化到漏极侧低浓度。
4.根据权利要求3所述具有渐变浓度掺杂层的横向双扩散碳化硅场效晶体管,其特征在于,所述具有线性变化的掺杂分布的多个场限环是通过具有一系列开口的掩膜版进行N型离子布置,所述一系列开口的尺寸从该横向双扩散碳化硅场效晶体管的源极侧到漏极侧呈线性增大。
5.根据权利要求2所述具有渐变浓度掺杂层的横向双扩散碳化硅场效晶体管,其特征在于,所述P型阱区的掺杂浓度在5e15cm-3至5e18cm-3之间。
6.根据权利要求2所述具有渐变浓度掺杂层的横向双扩散碳化硅场效晶体管,其特征在于,所述N型漂移区的掺杂浓度在5e14cm-3至5e16cm-3之间。
7.根据权利要求2所述具有渐变浓度掺杂层的横向双扩散碳化硅场效晶体管,其特征在于,所述N型漏极接触区的掺杂浓度在1e19cm-3至5e20cm-3之间。
8.根据权利要求2所述具有渐变浓度掺杂层的横向双扩散碳化硅场效晶体管,其特征在于,所述N型源极的掺杂浓度在1e19cm-3至5e20cm-3之间。
9.根据权利要求2所述具有渐变浓度掺杂层的横向双扩散碳化硅场效晶体管,其特征在于,所述P型接触区的掺杂浓度在1e19cm-3至5e20cm-3之间。
CN202010462964.3A 2020-05-27 2020-05-27 一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管 Pending CN113745309A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010462964.3A CN113745309A (zh) 2020-05-27 2020-05-27 一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010462964.3A CN113745309A (zh) 2020-05-27 2020-05-27 一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管

Publications (1)

Publication Number Publication Date
CN113745309A true CN113745309A (zh) 2021-12-03

Family

ID=78723834

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010462964.3A Pending CN113745309A (zh) 2020-05-27 2020-05-27 一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管

Country Status (1)

Country Link
CN (1) CN113745309A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024012437A1 (zh) * 2022-07-12 2024-01-18 无锡华润上华科技有限公司 横向绝缘栅双极晶体管及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280457A (zh) * 2013-05-14 2013-09-04 电子科技大学 一种超低比导通电阻的横向高压功率器件及制造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103280457A (zh) * 2013-05-14 2013-09-04 电子科技大学 一种超低比导通电阻的横向高压功率器件及制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024012437A1 (zh) * 2022-07-12 2024-01-18 无锡华润上华科技有限公司 横向绝缘栅双极晶体管及其制备方法

Similar Documents

Publication Publication Date Title
KR0167273B1 (ko) 고전압 모스전계효과트렌지스터의 구조 및 그 제조방법
US8237195B2 (en) Power MOSFET having a strained channel in a semiconductor heterostructure on metal substrate
US6380566B1 (en) Semiconductor device having FET structure with high breakdown voltage
US8492771B2 (en) Heterojunction semiconductor device and method
US20120168856A1 (en) Trench-type semiconductor power devices
US20080093641A1 (en) Method of manufacturing a multi-path lateral high-voltage field effect transistor
US20090014719A1 (en) Semiconductor device with large blocking voltage
KR20100064263A (ko) 반도체 소자 및 이의 제조 방법
KR100317458B1 (ko) 선형 전류-전압특성을 가진 반도체 소자
US8674436B2 (en) Lateral double diffusion metal-oxide semiconductor device and method for manufacturing the same
Moens et al. XtreMOS: The first integrated power transistor breaking the silicon limit
US7829898B2 (en) Power semiconductor device having raised channel and manufacturing method thereof
US20030025154A1 (en) LDMOS high voltage structure compatible with VLSI CMOS processes
KR20100027056A (ko) 반도체 장치 및 그의 제조 방법
CN113659009B (zh) 体内异性掺杂的功率半导体器件及其制造方法
Cheng et al. A novel 1200-V LDMOSFET with floating buried layer in substrate
CN106972047B (zh) 一种ldmos器件
CN108885999B (zh) 半导体装置及其制造方法
EP1703566A1 (en) MOS device having at least two channel regions
CN112993021B (zh) 横向双扩散金属氧化物半导体场效应管
CN113745309A (zh) 一种具有渐变浓度掺杂层的横向双扩散碳化硅场效应晶体管
CN212182334U (zh) 一种新型横向双扩散碳化硅场效应晶体管
US8362554B2 (en) MOSFET semiconductor device with backgate layer and reduced on-resistance
EP1089345A2 (en) Lateral power field-effect transistor
CN111293163B (zh) 横向扩散金属氧化物半导体场效应晶体管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination