CN113740667B - 一种融合自编码器和卷积神经网络的电网故障诊断方法 - Google Patents

一种融合自编码器和卷积神经网络的电网故障诊断方法 Download PDF

Info

Publication number
CN113740667B
CN113740667B CN202111004270.6A CN202111004270A CN113740667B CN 113740667 B CN113740667 B CN 113740667B CN 202111004270 A CN202111004270 A CN 202111004270A CN 113740667 B CN113740667 B CN 113740667B
Authority
CN
China
Prior art keywords
fault
equipment
layer
model
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111004270.6A
Other languages
English (en)
Other versions
CN113740667A (zh
Inventor
张旭
郑钰川
郭子兴
刘伯文
丁睿婷
王怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
North China Electric Power University
Original Assignee
North China Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by North China Electric Power University filed Critical North China Electric Power University
Priority to CN202111004270.6A priority Critical patent/CN113740667B/zh
Publication of CN113740667A publication Critical patent/CN113740667A/zh
Application granted granted Critical
Publication of CN113740667B publication Critical patent/CN113740667B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Locating Faults (AREA)

Abstract

本发明提供一种基于PMU(Phasor Measurement Unit)的融合自编码器和卷积神经网络的电网故障诊断方法。所述方法包括:采集电气设备PMU数据,构建基于自编码器(AE)的可疑故障设备定位模型;建立基于卷积神经网络(CNN)的故障设备精准定位模型;绘制PMU数据的雷达图,构建基于CNN的故障类型判定模型;结合故障设备定位与故障类型判定结果实现电网故障的诊断。在PMU数据的基础上,引入人工智能算法来提升电网故障定位的效率与故障定性的准确性,实现端到端的自动化,大幅度节约了人力成本。

Description

一种融合自编码器和卷积神经网络的电网故障诊断方法
技术领域
本发明属于PMU数据故障诊断领域,具体为一种基于PMU的融合自编码器和卷积神经网络的电网故障诊断方法,适用于通过自编码器和卷积神经网络模型对电网设备进行故障诊断。
背景技术
目前电力系统同步测量装置PMU被广泛的运用于进行同步相量的测量和输出以及动态记录。电力系统中PMU从GPS中同步采集次秒级的模拟电压、电流信号,得到电压和电流信号的幅值和相角,并将其传送到调度中心的数据集中器,在调度中心可以得到整个电网的同步相量,以供实时监测、保护和控制等使用,广泛应用于电力系统广域测量系统的各个环节。
近年来,电网规模越来越大,运行结构日趋复杂,地区电网间的联系紧密。能快速实现电网故障设备定位和故障类型判定的电网故障诊断方法,有利于检修和事故后电网的快速恢复,是确保电网安全稳定运行的基础。传统的基于PMU数据的电网故障方法无法实现端到端的自动化故障定位和故障类型诊断,这已无法满足现如今电网高速发展的需求。
发明内容
为了解决上述问题,本发明提供一种基于PMU的融合自编码器和卷积神经网络的电网故障诊断方法。该方法将采集到的电气设备的 PMU数据通过基于AE的可疑故障设备定位模型进行初步定位,再经过基于CNN的故障设备精准定位模型对故障设备进行精准定位,最终基于PMU雷达图和CNN语义特征提取能力实现对故障类型的判定。
具体采用如下方案:
一种基于PMU的融合自编码器和卷积神经网络的电网故障诊断方法,所述方法包括:
S1、采集电气设备PMU数据,构建基于自编码器AE的可疑故障设备定位模型;
S2、建立基于卷积神经网络CNN的故障设备精准定位模型;
S3、绘制PMU数据的雷达图,构建基于CNN的故障复杂度判定模型和基于CNN的短路故障类型分类模型;
S4、结合故障设备定位与故障类型判定结果实现电网故障的诊断。
优选地,所述基于自编码器AE的可疑故障设备定位模型包括输入层、隐藏层和输出层;其中输入层x1~x5为神经网络自主学习到的PMU 数据在电网正常状况下的数据特征;隐藏层为输入层提取到的数据特征x1~x5经过神经网络的学习后的浓缩特征h1~h3;输出层
Figure BDA0003236570550000021
为模型的重构特征。
优选地,自编码器通过最小化重构误差,即原始输入特征和重构特征之间的差异对模型进行训练,若输入特征x1~x5与重构特征
Figure BDA0003236570550000022
之间的误差大于阈值,则说明该样本不符合正常设备的数据特征,从而被判定为可疑故障设备的数据样本。
优选地,所述误差即为输入特征x1~x5与重构特征
Figure BDA0003236570550000031
之间的差值,所述阈值为可以判别可疑故障设备与正常设备之间特征差值的最小值。
优选地,所述步骤S1包括:
利用电气设备正常运行状态下的PMU数据训练AE可疑设备定位模型,将测试样本输入训练好的定位模型,若测试样本为非故障样本,则模型输出为空,否则模型输出可疑故障设备集D,所述可疑故障设备集表达式为:
D={d1,d2,…,dn}
其中d1~dn为可疑故障设备,n为可疑故障设备数量。
优选地,所述步骤S2中:
基于CNN的定位模型包括输入层、隐含层和输出层,隐含层包括卷积层、池化层、全连接层。
优选地,其中隐含层中的卷积层表达式:
Figure BDA0003236570550000032
式中:y为M×N阶的输出矩阵,ymn为其第m行、第n列的元素; m=0,1,…,M-1;n=1,2,…,N-1;w为J×I阶的卷积核,wij为其第i行、第j列的元素;xm+i,n+j为输入矩阵x中第m+i行、第n+j列的元素;b为偏置变量;f为激活函数;
池化层采样方程:
Figure BDA0003236570550000033
式中:S1和S2分别为池化区域行和列的维数;C为(M/S1)×(N/S2) 阶的输出矩阵,Cab为其第a行、第b列的元素;a=0,1,…,M/S1—1; n=0,1,…,N/S2—1;yas1+i,bs2+j为输出矩阵y的第aS1+i行、第bS2+j 列的元素;
单层全连接层表达式:
Figure BDA0003236570550000041
式中:e=[e1,e2,…,ei,…,en]为n维输入变量;
k=[k1,k2,…,ki,…,kn]为连接权值;g为偏置;o为输出;
输出层采用softmax函数层来进行分类,softmax表达式:
Figure BDA0003236570550000042
式中:z为神经元的输出值,zj为第j个神经元的输出值,K为总类别,e为自然底数。
优选地,所述步骤S2包括:
以贴上故障和非故障标签的可疑故障设备的数据样本作为故障设备精准定位模型的输入,以分类结果即故障或非故障为故障设备精准定位模型的输出;输入的数据样本经过卷积层和最大池化层自动提取故障数据特征,通过全连接层自动输出分类结果,实现可疑故障设备的精准定位。
优选地,所述步骤S3包括:
绘制PMU数据的雷达图,构建基于CNN的故障复杂度判定模型;将故障情况下的电气设备的PMU数据雷达图输入故障复杂度判定模型,使其自主学习PMU数据雷达图中的电网故障特征,模型输出为简单故障或复杂故障两种情况的分类结果。
优选地,所述步骤S3包括:
绘制PMU数据的雷达图,构建基于CNN的故障类型判定模型;选取故障设备的A、B、C三相电压、三相电流的幅值和相角以及电频率、有功和无功功率和绘制各设备的PMU数据雷达图,利用CNN提取该类数据的图形语义,判定最终故障类型。
优选地,所述步骤S3包括:
将测试样本输入故障复杂度判定模型,若输入样本被判定为复杂故障,则确定故障复杂度为复杂,反之则判定为简单故障;同时将雷达图输入到故障类型判定模型中,进一步判定输入的故障样本为三相短路故障、两相短路故障、两相短路接地故障或单相短路接地故障。
优选地,所述步骤S4包括:
结合故障设备定位与故障类型判定结果,实现电网故障的诊断。
为了能够有效的利用PMU数据,提升故障定位的效率和故障分类的准确性,本发明的方法将采集到的电气设备的PMU数据通过自编码器AE可疑故障设备定位模型进行初步定位,再将可疑故障设备集通过卷积神经网络CNN模型对初步定位信息进行精准定位,最终基于PMU 雷达图和CNN语义特征提取能力实现对故障设备的定位和故障类型的判定。在PMU数据的基础上,融合自编码器和卷积神经网络智能方法来提升电网故障定位的效率与故障定性的准确性,实现端到端的自动化,大幅度节约了人力成本。
附图说明
此处所说明的附图用来提供对本发明实施例的进一步理解,构成本申请的一部分,并不构成对本发明实施例的限定;
图1为根据本发明一个优选实施例中所述基于PMU的融合自编码器和卷积神经网络的电网故障诊断方法流程框图;
图2为根据本发明一个优选实施例中基于AE的可疑故障设备定位模型图;
图3为根据本发明一个优选实施例中基于CNN的故障设备精准定位模型结构图;
图4(a)和(b)分别为根据本发明一个优选实施例中简单和复杂故障的样本示例;
图5(a)为根据本发明一个优选实施例中单相接地短路故障的样本示例;
图5(b)为根据本发明一个优选实施例中两相接地短路故障的样本示例;
图5(c)为根据本发明一个优选实施例中两相短路故障的样本示例;
图5(d)为根据本发明一个优选实施例中三相短路故障的样本示例;
图6为根据本发明一个优选实施例中基于CNN的故障复杂度判定模型结构图;
图7为根据本发明一个优选实施例中基于CNN的短路故障类型分类模型结构图;
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
本发明提供了一种基于PMU的融合自编码器和卷积神经网络的电网故障诊断方法,该方法将采集到的电气设备的PMU数据通过基于 AE的可疑故障设备定位模型进行初步定位,再经过基于CNN的故障设备精准定位模型对初步定位信息进行优化,最终通过基于CNN的故障复杂度判定模型和基于CNN的短路故障类型分类模型,利用PMU 雷达图和CNN语义特征提取能力,对电网故障进行诊断。
参阅图1,所述方法具体包括如下步骤:
S1、采集电气设备PMU数据,构建基于自编码器AE的可疑故障设备定位模型;
具体的,参阅图2,基于AE的可疑故障设备定位模型以所有设备输出的PMU数据样本为输入。
图中,x1~x5为神经网络自主学习到的PMU数据在电网正常状况下的数据特征;h1~h3为自编码器的隐藏层,即输入层提取到的数据特征x1~x5经过神经网络的学习后,浓缩为更精炼、数量更少的特征h1~h3
Figure BDA0003236570550000071
为模型的重构特征。
自编码器通过最小化重构误差,即原始输入特征和重构特征之间的差异对模型进行训练。图中的误差即为输入特征x1~x5与重构特征
Figure BDA0003236570550000072
之间的差值,此处的阈值为多次实验后总结归纳得到的可以判别可疑故障设备与正常设备之间特征差值的最小值。若输入特征x1~x5与重构特征
Figure BDA0003236570550000081
之间的误差大于阈值,则说明该样本不符合正常设备的数据特征,从而被判定为可疑故障设备的数据样本。
此模型将正常无故障发生时的大量PMU数据输入AE模型,以训练AE自主学习正常数据样本的特征。将测试样本输入AE模型,模型能够基于训练结果,自主学习测试样本中的数据特征以判定那些设备为正常设备,从而判定故障设备,模型输出为故障设备名称。
该模型能够在训练过程中挖掘目标样本的深层特征,在对数据进行降维的同时自动地获取数据的深层特征表达,提升特征信息的区分度,从而提高目标样本分类的识别率。
在实施例中输入电气设备正常运行状态下的PMU数据训练AE可疑设备定位模型,将测试样本输入训练好的定位模型,若测试样本为非故障样本,则模型输出为空,若测试样本为故障样本,则模型输出为可疑故障设备集D。所述可疑设备集D表达式为:
D={d1,d2,…,dn},其中d1~dn为可疑故障设备,n为可疑故障设备数量。
S2、建立基于CNN的故障设备精准定位模型;
具体的,参阅图3,CNN网络分为输入层、隐含层和输出层。隐含层包括卷积层、池化层、全连接层。
其中隐含层中的卷积层表达式:
Figure BDA0003236570550000082
式中:y为M×N阶的输出矩阵,ymn为其第m行、第n列的元素; m=0,1,…,M-1;n=1,2,…,N-1;w为J×I阶的卷积核,wij为其第i行、第j列的元素;xm+i,n+j为输入矩阵x中第m+i行、第n+j列的元素;b为偏置变量;f为激活函数。
池化层采样方程:
Figure BDA0003236570550000091
式中:S1和S2分别为池化区域行和列的维数;C为(M/S1)×(N/S2) 阶的输出矩阵,Cab为其第a行、第b列的元素;a=0,1,…,M/S1—1; n=0,1,…,N/S2—1;yaS1+i,bS2+j为输出矩阵y的第aS1+i行、第bS2+j 列的元素。
单层全连接层表达式:
Figure BDA0003236570550000092
式中:e=[e1,e2,…,ei,…,en]为n维输入变量;
k=[k1,k2,…,ki,…,kn]为连接权值;g为偏置;o为输出。
输出层采用softmax函数层来进行分类,softmax表达式:
Figure BDA0003236570550000093
式中:z为神经元的输出值,zj为第j个神经元的输出值,K为总类别,e为自然底数。
以贴上故障和非故障标签的可疑故障设备的数据样本作为定位模型的输入,以分类结果即故障或非故障为定位模型的输出;输入的数据样本经过卷积层和最大池化层自动提取故障数据特征,通过全连接层自动输出分类结果,实现端到端的可疑故障设备的精准定位。
S3、绘制PMU数据雷达图,构建基于CNN的故障复杂度判定模型和基于CNN的短路故障类型分类模型。
图4(a)和(b)分别为根据本发明一个优选实施例中简单和复杂故障的样本示例;图5(a)-(d)分别为根据本发明一个优选实施例中单相接地短路故障、两相接地短路故障、两相短路故障、三相短路故障的样本示例;
具体的,选取故障设备的A、B、C三相电压、三相电流的幅值和相角以及电频率、有功和无功功率,绘制各设备的PMU数据雷达图,构建基于CNN的故障复杂度判定模型和基于CNN的短路故障类型分类模型,参阅图6、7。
基于CNN的故障复杂度判定模型以故障情况下的电气设备的 PMU数据雷达图作为模型输入,以判定结果即简单故障或复杂故障为输出。输入的PMU数据雷达图样本经过卷积层和最大池化层自动提取能体现故障复杂度的数据特征,通过全连接层自动输出分类结果,实现端到端的故障复杂度判定。
此模型将故障情况下的电气设备的PMU数据雷达图输入CNN模型,使其自主学习PMU数据雷达图中的电网故障特征,模型输出为简单故障或复杂故障两种情况的分类结果。作为训练故障复杂度判定分类模型,其模型结构参阅图6。将测试样本输入基于CNN的故障复杂度判定模型,若输入样本被判定为复杂故障,则确定故障复杂度为复杂,反之则为简单故障。
基于CNN的短路故障类型分类模型以故障情况下的电气设备的PMU数据雷达图作为模型输入,以分类结果即单相接地短路故障、两相接地短路故障、两相短路故障、三相短路故障为输出。输入的PMU 数据雷达图样本经过卷积层和最大池化层自动提取能体现短路故障类型的数据特征,通过全连接层自动输出分类结果,实现端到端的短路故障类型分类。
将故障情况下的电气设备的PMU数据绘制成雷达图,利用CNN 提取PMU数据的图形语义,判定故障类型。PMU数据的图形语义就是将PMU数据绘制成雷达图后,离散的PMU数据在雷达图上展现为连续的线条,弱化了PMU数据具体数值的大小,突出了能体现电网故障类型的PMU数据的变化趋势和变化幅度。
将样本输入到基于CNN的短路故障类型分类模型,利用CNN提取PMU数据的图形语义,进一步判定短路故障类型。此模型将故障情况下的电气设备的PMU数据雷达图输入CNN模型,使其自主学习 PMU数据雷达图中的短路故障特征,模型输出为三相短路故障、两相短路故障、两相短路接地故障或单相短路接地故障四种情况的分类结果。具体的基于CNN的短路故障类型分类模型参阅图7。
S4、结合故障设备定位与故障类型判定结果实现电网故障的诊断;具体的,在实施例中结合基于AE的可疑故障设备结果,初步明确大致故障影响面,然后经过基于CNN的故障设备精确定位模型对故障设备进行进一步优化与明确,在确定故障设备之后,根据该设备PMU数据雷达图判断结果,实现电网故障的诊断。
本发明提出的一种基于PMU的融合自编码器和卷积神经网络的电网故障诊断方法,首先利用电气设备正常运行状态下的PMU数据来训练AE可疑设备定位模型,将测试样本输入训练好的定位模型。若测试样本为非故障样本,则模型输出为空,若测试样本为故障样本,则模型输出为可疑故障设备集;
再用贴上故障和非故障标签的可疑故障设备的数据样本来训练基于CNN的故障设备精准定位模型,输入可疑设备定位结果数据对故障设备进行精准定位;
然后选取故障设备的A、B、C三相电压、三相电流的幅值和相角以及电频率、有功和无功功率和,绘制各设备的PMU数据雷达图,利用CNN提取该类数据的图形语义,将测试样本输入基于CNN的故障类型判定模型,若输入样本被判定为复杂故障,则确定故障复杂度为复杂,反之则为简单故障;同时将故障设备的PMU数据雷达图样本输入基于CNN的短路故障类型分类模型中,进一步判定输入的故障样本为三相短路故障、两相短路故障、两相短路接地故障或单相短路接地故障;最后利用可疑故障设备定位结果,初步结果明确大致故障影响面,然后经过基于CNN的故障设备精确定位模型对故障定界范围进行进一步优化与明确,在确定故障设备之后,选取故障设备的A、B、C 三相电压、三相电流的幅值和相角以及电频率、有功和无功功率,绘制该设备的PMU数据雷达图,将该设备PMU数据雷达图输入基于 CNN的故障复杂度判定模型和基于CNN的短路故障类型分类模型,实现电网故障的诊断。
本发明提出的一种基于PMU的融合自编码器和卷积神经网络的电网故障诊断方法,在PMU数据的基础上,引入人工智能算法来提升电网故障定位的效率与故障定性的准确性,实现端到端的自动化,大幅度节约了人力成本。
以上仅为本发明的较佳实施例,但并不限制本发明的专利范围,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本发明说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本发明专利保护范围之内。

Claims (7)

1.一种基于PMU的融合自编码器和卷积神经网络的电网故障诊断方法,其特征在于,所述方法包括:
S1、采集电气设备PMU数据,构建基于自编码器AE的可疑故障设备定位模型;自编码器通过最小化重构误差,即原始输入特征和重构特征之间的差异对模型进行训练,若输入特征x1~x5与重构特征
Figure FDA0003636573350000011
之间的误差大于阈值,则该样本不符合正常设备的数据特征,从而被判定为可疑故障设备的数据样本;
S2、建立基于卷积神经网络CNN的故障设备精准定位模型;基于CNN的定位模型包括输入层、隐含层和输出层,隐含层包括卷积层、池化层、全连接层;以贴上故障和非故障标签的可疑故障设备的数据样本作为故障设备精准定位模型的输入,以分类结果即故障或非故障为故障设备精准定位模型的输出;输入的数据样本经过卷积层和最大池化层自动提取故障数据特征,通过全连接层自动输出分类结果,实现可疑故障设备的精准定位;
S3、绘制PMU数据的雷达图,构建基于CNN的故障复杂度判定模型;将故障情况下的电气设备的PMU数据雷达图输入故障复杂度判定模型,使其自主学习PMU数据雷达图中的电网故障特征,模型输出为简单故障或复杂故障两种情况的分类结果;
绘制PMU数据的雷达图,构建基于CNN的故障类型判定模型;选取故障设备的A、B、C三相电压、三相电流的幅值和相角以及电频率、有功和无功功率和绘制各设备的PMU数据雷达图,利用CNN提取PMU数据的图形语义,判定最终故障类型;
S4、结合故障设备精准定位模型输出的故障设备定位与故障类型判定结果实现电网故障的诊断。
2.根据权利要求1所述的方法,其特征在于,所述步骤S1中,
所述基于自编码器AE的可疑故障设备定位模型包括输入层、隐藏层和输出层;其中输入层x1~x5为神经网络自主学习到的PMU数据在电网正常状况下的数据特征;隐藏层为输入层提取到的数据特征x1~x5经过神经网络的学习后的浓缩特征h1~h3;输出层
Figure FDA0003636573350000021
为模型的重构特征。
3.根据权利要求2所述的方法,其特征在于,所述步骤S1中,所述误差即为输入特征x1~x5与重构特征
Figure FDA0003636573350000022
之间的差值,所述阈值为可以判别可疑故障设备与正常设备之间特征差值的最小值。
4.根据权利要求3所述的方法,其特征在于,所述步骤S1包括:
利用电气设备正常运行状态下的PMU数据训练AE可疑设备定位模型,将测试样本输入训练好的定位模型,若测试样本为非故障样本,则模型输出为空,否则模型输出可疑故障设备集D,所述可疑故障设备集表达式为:
D={d1,d2,L,dn}
其中d1~dn为可疑故障设备,n为可疑故障设备数量。
5.根据权利要求4所述的方法,其特征在于,所述步骤S2中,
其中隐含层中的卷积层表达式:
Figure FDA0003636573350000031
式中:y为M×N阶的输出矩阵,ymn为其第m行、第n列的元素;m=0,1,…,M-1;n=1,2,…,N-1;w为J×I阶的卷积核,wij为其第i行、第j列的元素;xm+i,n+j为输入矩阵x中第m+i行、第n+j列的元素;b为偏置变量;f为激活函数;
池化层采样方程:
Figure FDA0003636573350000032
式中:S1和S2分别为池化区域行和列的维数;C为(M/S1)×(N/S2)阶的输出矩阵,Cab为其第a行、第b列的元素;a=0,1,...,M/S1—1;n=0,1,...,N/S2—1;yaS1+,bS2+j为输出矩阵y的第aS1+i行、第bS2+j列的元素;
单层全连接层表达式:
Figure FDA0003636573350000033
式中:e=[e1,e2,...,ei,...,en]为n维输入变量;
k=[k1,k2,...,ki,...,kn]为连接权值;g为偏置;o为输出;
输出层采用softmax函数层来进行分类,softmax表达式:
Figure FDA0003636573350000034
式中:z为神经元的输出值,zj为第j个神经元的输出值,K为总类别,e为自然底数。
6.根据权利要求5所述的方法,其特征在于,所述步骤S3包括:
将测试样本输入故障复杂度判定模型,若输入样本被判定为复杂故障,则确定故障复杂度为复杂,反之则判定为简单故障;同时将雷达图输入到故障类型判定模型中,进一步判定输入的故障样本为三相短路故障、两相短路故障、两相短路接地故障或单相短路接地故障。
7.根据权利要求6所述的方法,其特征在于,所述步骤S4包括:结合故障设备定位与故障类型判定结果,实现电网故障的诊断。
CN202111004270.6A 2021-08-30 2021-08-30 一种融合自编码器和卷积神经网络的电网故障诊断方法 Active CN113740667B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111004270.6A CN113740667B (zh) 2021-08-30 2021-08-30 一种融合自编码器和卷积神经网络的电网故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111004270.6A CN113740667B (zh) 2021-08-30 2021-08-30 一种融合自编码器和卷积神经网络的电网故障诊断方法

Publications (2)

Publication Number Publication Date
CN113740667A CN113740667A (zh) 2021-12-03
CN113740667B true CN113740667B (zh) 2022-06-14

Family

ID=78733770

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111004270.6A Active CN113740667B (zh) 2021-08-30 2021-08-30 一种融合自编码器和卷积神经网络的电网故障诊断方法

Country Status (1)

Country Link
CN (1) CN113740667B (zh)

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525795A (en) * 1982-07-16 1985-06-25 At&T Bell Laboratories Digital signal generator
WO1998044428A1 (en) * 1997-04-01 1998-10-08 Porta Systems Corporation System and method for telecommunications system fault diagnostics
CN101196872A (zh) * 2007-11-19 2008-06-11 清华大学 基于压力和声波信息融合的泄漏检测定位方法
CN107657250A (zh) * 2017-10-30 2018-02-02 四川理工学院 轴承故障检测及定位方法及检测定位模型实现系统和方法
CN108107324A (zh) * 2017-12-22 2018-06-01 北京映翰通网络技术股份有限公司 一种基于深度卷积神经网络的配电网故障定位方法
CN108959732A (zh) * 2018-06-15 2018-12-07 西安科技大学 一种基于卷积神经网络的输电线路故障类型识别方法
CN109033702A (zh) * 2018-08-23 2018-12-18 国网内蒙古东部电力有限公司电力科学研究院 一种基于卷积神经网络cnn的电力系统暂态电压稳定评估方法
CN109033930A (zh) * 2018-05-07 2018-12-18 北京化工大学 一种基于故障机理和统计模型在线学习的机械设备故障诊断方法
DE102017211121A1 (de) * 2017-06-30 2019-01-03 Siemens Aktiengesellschaft Brandschutzschalter und Verfahren
CN109614981A (zh) * 2018-10-17 2019-04-12 东北大学 基于斯皮尔曼等级相关的卷积神经网络的电力系统智能故障检测方法及系统
CN110334764A (zh) * 2019-07-04 2019-10-15 西安电子科技大学 基于集成深度自编码器的旋转机械智能故障诊断方法
KR102036788B1 (ko) * 2018-09-06 2019-10-25 연세대학교 산학협력단 동기위상기 측정신호에 기초한 실시간 전력계통 고장위치 추정 시스템 및 방법
CN110470951A (zh) * 2019-08-18 2019-11-19 天津大学 基于PMU信息和Petri网的有源配电网故障诊断方法
CN110850236A (zh) * 2019-11-28 2020-02-28 国网福建省电力有限公司厦门供电公司 一种基于参数估计的配电网故障定位方法
CN111242225A (zh) * 2020-01-16 2020-06-05 南京邮电大学 一种基于卷积神经网络的故障检测与诊断方法
CN111366814A (zh) * 2020-03-31 2020-07-03 上海电力大学 基于多源数据及多维故障编码空间的电网故障诊断方法
CN111426904A (zh) * 2019-10-23 2020-07-17 合肥申芯电子技术有限责任公司 一种基于深度自编码器的变电站接地网故障诊断方法
CN111626416A (zh) * 2020-04-24 2020-09-04 黑龙江瑞兴科技股份有限公司 基于深度卷积神经网络的轨道电路故障自动诊断方法
CN111650469A (zh) * 2020-05-14 2020-09-11 南方电网科学研究院有限责任公司 一种基于d-pmu装置的配电网故障精确定位方法
CN112285482A (zh) * 2020-07-30 2021-01-29 中国电力科学研究院有限公司 一种有源配电网故障确定方法和系统
CN112330165A (zh) * 2020-11-11 2021-02-05 中国电力科学研究院有限公司 基于特征分离型神经网络的电网暂态稳定评估方法及系统
CN112462198A (zh) * 2020-11-17 2021-03-09 国网四川省电力公司电力科学研究院 一种基于自编码器的电网故障线路判定方法及系统
CN113030644A (zh) * 2021-03-09 2021-06-25 东北电力大学 多数据源信息融合的配电网故障定位方法
CN113159077A (zh) * 2021-05-24 2021-07-23 南京工程学院 一种基于混合卷积神经网络的三相逆变器故障识别方法
CN113203566A (zh) * 2021-04-06 2021-08-03 上海吞山智能科技有限公司 一种基于一维数据增强和cnn的电机轴承故障诊断方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8606422B2 (en) * 2010-11-17 2013-12-10 Electric Power Research Institute, Inc. Application of phasor measurement units (PMU) for controlled system separation
US20150301101A1 (en) * 2014-04-22 2015-10-22 King Fahd University Of Petroleum And Minerals Adaptive pmu-based fault location method for series-compensated lines
US20160116522A1 (en) * 2014-10-27 2016-04-28 King Fahd University Of Petroleum And Minerals Fully adaptive fault location method

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4525795A (en) * 1982-07-16 1985-06-25 At&T Bell Laboratories Digital signal generator
WO1998044428A1 (en) * 1997-04-01 1998-10-08 Porta Systems Corporation System and method for telecommunications system fault diagnostics
CN101196872A (zh) * 2007-11-19 2008-06-11 清华大学 基于压力和声波信息融合的泄漏检测定位方法
DE102017211121A1 (de) * 2017-06-30 2019-01-03 Siemens Aktiengesellschaft Brandschutzschalter und Verfahren
CN107657250A (zh) * 2017-10-30 2018-02-02 四川理工学院 轴承故障检测及定位方法及检测定位模型实现系统和方法
CN108107324A (zh) * 2017-12-22 2018-06-01 北京映翰通网络技术股份有限公司 一种基于深度卷积神经网络的配电网故障定位方法
CN109033930A (zh) * 2018-05-07 2018-12-18 北京化工大学 一种基于故障机理和统计模型在线学习的机械设备故障诊断方法
CN108959732A (zh) * 2018-06-15 2018-12-07 西安科技大学 一种基于卷积神经网络的输电线路故障类型识别方法
CN109033702A (zh) * 2018-08-23 2018-12-18 国网内蒙古东部电力有限公司电力科学研究院 一种基于卷积神经网络cnn的电力系统暂态电压稳定评估方法
KR102036788B1 (ko) * 2018-09-06 2019-10-25 연세대학교 산학협력단 동기위상기 측정신호에 기초한 실시간 전력계통 고장위치 추정 시스템 및 방법
CN109614981A (zh) * 2018-10-17 2019-04-12 东北大学 基于斯皮尔曼等级相关的卷积神经网络的电力系统智能故障检测方法及系统
CN110334764A (zh) * 2019-07-04 2019-10-15 西安电子科技大学 基于集成深度自编码器的旋转机械智能故障诊断方法
CN110470951A (zh) * 2019-08-18 2019-11-19 天津大学 基于PMU信息和Petri网的有源配电网故障诊断方法
CN111426904A (zh) * 2019-10-23 2020-07-17 合肥申芯电子技术有限责任公司 一种基于深度自编码器的变电站接地网故障诊断方法
CN110850236A (zh) * 2019-11-28 2020-02-28 国网福建省电力有限公司厦门供电公司 一种基于参数估计的配电网故障定位方法
CN111242225A (zh) * 2020-01-16 2020-06-05 南京邮电大学 一种基于卷积神经网络的故障检测与诊断方法
CN111366814A (zh) * 2020-03-31 2020-07-03 上海电力大学 基于多源数据及多维故障编码空间的电网故障诊断方法
CN111626416A (zh) * 2020-04-24 2020-09-04 黑龙江瑞兴科技股份有限公司 基于深度卷积神经网络的轨道电路故障自动诊断方法
CN111650469A (zh) * 2020-05-14 2020-09-11 南方电网科学研究院有限责任公司 一种基于d-pmu装置的配电网故障精确定位方法
CN112285482A (zh) * 2020-07-30 2021-01-29 中国电力科学研究院有限公司 一种有源配电网故障确定方法和系统
CN112330165A (zh) * 2020-11-11 2021-02-05 中国电力科学研究院有限公司 基于特征分离型神经网络的电网暂态稳定评估方法及系统
CN112462198A (zh) * 2020-11-17 2021-03-09 国网四川省电力公司电力科学研究院 一种基于自编码器的电网故障线路判定方法及系统
CN113030644A (zh) * 2021-03-09 2021-06-25 东北电力大学 多数据源信息融合的配电网故障定位方法
CN113203566A (zh) * 2021-04-06 2021-08-03 上海吞山智能科技有限公司 一种基于一维数据增强和cnn的电机轴承故障诊断方法
CN113159077A (zh) * 2021-05-24 2021-07-23 南京工程学院 一种基于混合卷积神经网络的三相逆变器故障识别方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
A Local Weighted Multi-Instance Multilabel Network for Fault Diagnosis of Rolling Bearings Using Encoder Signal;Jie Li等;《IEEE Transactions on Instrumentation and Measurement》;20200410;第69卷(第10期);全文 *
Research on Power Grid Fault Diagnosis Method Based on PMU Data and Convolutional Neural Network;Xuanwen Ding等;《2020 IEEE 4th Conference on Energy Internet and Energy System Integration (EI2)》;20210215;全文 *
基于卷积神经网络的暂态电压稳定评估及风险量化;陈达等;《电力系统自动化》;20210308;第45卷(第14期);全文 *

Also Published As

Publication number Publication date
CN113740667A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN110082640B (zh) 一种基于长短时记忆网络的配网单相接地故障辨识方法
Lin et al. A fault classification method by RBF neural network with OLS learning procedure
CN110829417B (zh) 基于lstm双结构模型的电力系统暂态稳定预测方法
CN102063109B (zh) 一种基于神经网络的地铁列车故障诊断装置及其方法
CN109635928A (zh) 一种基于深度学习模型融合的电压暂降原因识别方法
CN107271925A (zh) 基于深度卷积网络的模块化五电平换流器故障定位方法
CN104155574A (zh) 基于自适应神经模糊推理系统的配电网故障分类方法
CN104617574A (zh) 一种电力系统负荷区域暂态电压稳定的评估方法
CN104599193A (zh) 一种基于规则库的配电网单相接地故障定位方法
CN108562821A (zh) 一种基于Softmax确定配电网单相接地故障选线的方法及系统
CN108154223A (zh) 基于网络拓扑及长时序信息的配电网工况录波分类方法
CN103633938A (zh) 一种光伏阵列故障定位的方法
CN107247215B (zh) 基于多点同步测量数据的配网故障粒子群定位算法
CN202063165U (zh) 一种基于神经网络的地铁列车故障诊断装置
Zhang et al. Power grid fault diagnosis using polar PMU data plots
Maruf et al. Locating faults in distribution systems in the presence of distributed generation using machine learning techniques
CN111383273A (zh) 一种基于改进结构推理网络的高铁接触网零部件定位方法
CN113740667B (zh) 一种融合自编码器和卷积神经网络的电网故障诊断方法
CN116990625B (zh) 一种配电变压器智能快检装置的功能切换系统及方法
CN111965442A (zh) 一种数字孪生环境下的能源互联网故障诊断方法及装置
CN117764547A (zh) 一种光伏组串故障诊断方法及系统
CN113406437B (zh) 一种基于辅助分类生成对抗网络的输电线路故障检测方法
CN113064023B (zh) 一种同塔多回输电线路故障识别方法与系统
CN114113909A (zh) 一种配电网单相接地故障选线方法及系统
CN107340454A (zh) 一种基于RuLSIF变点探测技术的电力系统故障定位分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant