CN113736462B - 一种氮氧化物荧光材料及其制备方法和应用 - Google Patents

一种氮氧化物荧光材料及其制备方法和应用 Download PDF

Info

Publication number
CN113736462B
CN113736462B CN202010458855.4A CN202010458855A CN113736462B CN 113736462 B CN113736462 B CN 113736462B CN 202010458855 A CN202010458855 A CN 202010458855A CN 113736462 B CN113736462 B CN 113736462B
Authority
CN
China
Prior art keywords
fluorescent material
powder
sio
nitrogen oxide
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010458855.4A
Other languages
English (en)
Other versions
CN113736462A (zh
Inventor
解荣军
李淑星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN202010458855.4A priority Critical patent/CN113736462B/zh
Publication of CN113736462A publication Critical patent/CN113736462A/zh
Application granted granted Critical
Publication of CN113736462B publication Critical patent/CN113736462B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7792Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K2/00Non-electric light sources using luminescence; Light sources using electrochemiluminescence
    • F21K2/06Non-electric light sources using luminescence; Light sources using electrochemiluminescence using chemiluminescence
    • F21K2/08Non-electric light sources using luminescence; Light sources using electrochemiluminescence using chemiluminescence activated by an electric field, i.e. electrochemiluminescence
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种氮氧化物荧光材料及其制备方法和应用,所述氮氧化物荧光材料的分子式为La1‑x‑yEuyCaxSiO2+xN1‑x,其中,0≤x<1,0<y≤0.1,所述氮氧化物荧光材料的基质中固溶激活剂Eu而被激活,从而具有发光特性。所述氮氧化物荧光材料是由La2O3粉体、CaCO3粉体、Si3N4粉体、SiO2粉体、Eu2O3和/或EuF3和/或EuCl2粉体混合后,在氮气‑氢气混合气氛或者氮气‑氢气‑氨气混合气氛下、于1300~1550℃温度范围保温烧结得到。所述氮氧化物荧光材料被紫外光激发后,可调控地发射出蓝光、绿光、黄光系列荧光,量子产率高,在照明领域具有较好的应用前景。

Description

一种氮氧化物荧光材料及其制备方法和应用
技术领域
本发明涉及荧光材料,尤其是一种氮氧化物荧光材料及其制备方法和应用。
背景技术
稀土Eu2+掺杂荧光材料的光学性能与荧光材料基质的晶体结构,尤其与稀土离子的局域配位结构,直接相关。通常,材料晶体结构的确认依赖于实验和计算两个方面。从实验层面上讲,可以通过解析X射线衍射数据确认材料的晶体结构。从理论计算层面上讲,可以基于密度泛函理论(DFT)计算构建材料的晶体结构。La-Si-O-N材料体系,包括LaSiO2N,La5Si3O12N,La4Si2O7N2,La2Si6O3N8等被作为典型荧光材料体系得到广泛的研究。然而,长久以来关于LaSiO2N的晶体结构的研究一直争议不断,目前文献中都将其晶体结构默认为无机晶体结构数据库(ICSD)中的六方晶系,空间群为P-6c2,参见非专利文献1(MorganP.E.D,et al“Journal of Materials Science”1977;12:2343-2344),然而,在该晶体结构中,La存在2种配位结构,LaO6和LaO6N6,即N原子存在明显富集现象,从能量最低角度,ICSD中六方的LaSiO2N的结构模型是不稳定的。LaSiO2N晶体结构的确定对于研究其稀土掺杂的光学性能十分重要。此外,在Eu掺杂LaSiO2N荧光材料中,由于Eu2+和La3+价态不匹配,通常会存在Eu2+和Eu3+共存的现象,Eu3+的存在导致发光材料性能不佳,参见非专利文献2(ChenJ,et al“ScientificReports”2016;6:31199)。
发明内容
本发明的目的是为了克服现有的La-Si-O-N材料体系中晶体结构存在不确定性、材料量子产率低的技术问题,提供一种氮氧化物荧光材料,其分子式为La1-x-yEuyCaxSiO2+ xN1-x(0≤x<1,0<y≤0.1),其中La1-x-yEuyCaxSiO2+xN1-x(0≤x≤0.1,0<y≤0.1)的空间群为C2/c,晶体结构与LaSiO2N相同;La1-x-yEuyCaxSiO2+xN1-x(0.1<x≤0.7,0<y≤0.1)的空间群为P63/m,晶体结构与La5Si3O12N相同;La1-x-yEuyCaxSiO2+xN1-x(0.7<x<1,0<y≤0.1)的空间群为C2/c,晶体结构与CaSiO3相同;通过在La1-x-yEuyCaxSiO2+xN1-x(0≤x<1,0<y≤0.1)基质中固溶激活剂Eu获得系列蓝光、绿光、黄光荧光材料。优选地,通过引入合适含量的Ca元素,可显著降低Eu3+的含量,大幅提高量子产率。
本发明还提供所述氮氧化物荧光材料的制备方法,该制备方法合成温度低,操作方便,安全性高。
最后,本发明还保护所述氮氧化物荧光材料在照明领域的应用,及其对应的发光装置。
具体方案如下:
一种氮氧化物荧光材料,所述氮氧化物荧光材料的分子式为La1-x-yEuyCaxSiO2+ xN1-x,其中,0≤x<1,0<y≤0.1,所述氮氧化物荧光材料的基质中固溶激活剂Eu而被激活,从而具有发光特性。
进一步的,当0≤x≤0.1时,所述氮氧化物荧光材料的空间群为C2/c,晶体结构与LaSiO2N相同;
任选的,当0.1<x≤0.7时,所述氮氧化物荧光材料的空间群为P63/m,晶体结构与La5Si3O12N相同;
任选的,当0.7<x<1时,所述氮氧化物荧光材料的的空间群为C2/c,晶体结构与CaSiO3相同。
进一步的,所述氮氧化物荧光材料是由La2O3粉体、CaCO3粉体、Si3N4粉体、SiO2粉体、Eu2O3和/或EuF3和/或EuCl2粉体按分子式中的化学计量比混合后烧结得到。
进一步的,所述氮氧化物荧光材料在250~500nm波长入射光激发下发出波长在400~700nm范围的波长具有峰值的荧光。
进一步的,当0.8≤x<1时,所述氮氧化物荧光材料在紫外光激发下发射出蓝色荧光;
任选的,当0.2≤x<0.8时,所述氮氧化物荧光材料在紫外光激发下发射出绿色荧光;
任选的,当0≤x<0.2时,所述氮氧化物荧光材料在紫外光激发下发射出黄色荧光。
进一步的,所述氮氧化物荧光材料的结晶以包含其它结晶或非结晶化合物的混合物的方式被生成,在混合物中所述氮氧化物荧光材料结晶的质量含量不少于40%。
本发明还保护所述氮氧化物荧光材料的制备方法,包括以下步骤:
(1)混料:按照所述分子式的化学计量比分别称取La2O3粉体、CaCO3粉体、Si3N4粉体、SiO2粉体、Eu2O3和/或EuF3和/或EuCl2粉体作为起始原料,充分混合均匀制得原料混合物;
(2)烧结:将所得的原料混合物在氮气-氢气混合气氛或者氮气-氢气-氨气的混合气氛下、于1300~1550℃温度范围保温烧结2~6小时获得所述氮氧化物荧光材料。
进一步的,步骤(1)中,所述各粉体的粒径为微米、亚微米或纳米级;
任选的,步骤(2)中,所述混合气氛为常压或者微正压。
任选的,步骤(2)包括2a:将所得的原料混合物在氮气-氢气混合气氛或者氮气-氢气-氨气的混合气氛下、于1300~1550℃温度范围保温烧结2~6小时;2b保温烧结结束后,继续在大于1000℃且小于烧结温度的条件下、在氢气气氛中保温1~10小时进行热处理,得到所述氮氧化物荧光材料。
本发明还保护所述氮氧化物荧光材料在照明领域中的应用,所述氮氧化物荧光材料在250~500nm波长入射光激发下,发出波长在400~700nm范围的波长具有峰值的荧光。
本发明还保护一种发光装置,包括激发光源,以及所述氮氧化物荧光材料,所述激发光源为紫外激发光源。
有益效果:
本发明制备了紫外光激发的系列氮氧化物荧光材料,分子通式为La1-x- yEuyCaxSiO2+xN1-x(0≤x<1,0<y≤0.1),其中La1-x-yEuyCaxSiO2+xN1-x(0≤x≤0.1,0<y≤0.1)的空间群为C2/c,晶体结构与LaSiO2N相同;La1-x-yEuyCaxSiO2+xN1-x(0.1<x≤0.7,0<y≤0.1)的空间群为P63/m,晶体结构与La5Si3O12N相同;La1-x-yEuyCaxSiO2+xN1-x(0.7<x<1,0<y≤0.1)的空间群为C2/c,晶体结构与CaSiO3相同。
进一步地,本发明确定了LaSiO2N的晶体结构为单斜而非六方,其空间群为C2/c,La1-x-yEuyCaxSiO2+xN1-x(0≤x≤0.1,0<y≤0.1)的晶体结构与之相同,空间群也为C2/c,这对研究其稀土掺杂的光学性能十分重要。
再则,为了减低LaSiO2N:Eu荧光材料中Eu3+对发光性能的不利影响,本发明通过组成优化大量尝试,控制Ca元素在材料中的含量,当0.1<x≤0.7,发射光谱仅有Eu2+的宽带发射,具有较好的荧光性能;优选地,当x=0.5时,量子产率显著提高,从13.9%(x=0)提高到54.7%。
最后,本发明提供的La1-x-yEuyCaxSiO2+xN1-x(0≤x≤0.1,0<y≤0.1)氮氧化物荧光材料的固相烧结制备方法,合成温度低,操作简单,易于批量化生产。
附图说明
为了更清楚地说明本发明的技术方案,下面将对附图作简单的介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本发明基于密度泛函理论(DFT)计算构建的LaSiO2N的晶体结构图;
图2为本发明实施例1,化学组成为LaSiO2N的样品的同步衍射及结构精修数据图;
图3为本发明实施例1,化学组成为LaSiO2N的样品的TEM及选取衍射数据图;
图4为本发明实施例1-11,化学组成分别为La0.995-xEu0.005CaxSiO2+xN1-x(x=0)(简写为La-N 100%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.1)(简写为Ca-O 10%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.2)(简写为Ca-O 20%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.3)(简写为Ca-O 30%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.4)(简写为Ca-O 40%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.5)(简写为Ca-O 50%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.6)(简写为Ca-O 60%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.7)(简写为Ca-O 70%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.8)(简写为Ca-O 80%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.9)(简写为Ca-O 90%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.995)(简写为Ca-O 100%)的系列样品的XRD衍射图谱;
图5为本发明实施例1-11,化学组成分别为La0.995-xEu0.005CaxSiO2+xN1-x(x=0)(简写为La-N 100%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.1)(简写为Ca-O 10%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.2)(简写为Ca-O 20%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.3)(简写为Ca-O 30%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.4)(简写为Ca-O 40%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.5)(简写为Ca-O 50%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.6)(简写为Ca-O 60%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.7)(简写为Ca-O 70%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.8)(简写为Ca-O 80%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.9)(简写为Ca-O 90%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.995)(简写为Ca-O 100%)的系列样品在紫外光激发下的发射光谱图;
图6为本发明实施例1-11,化学组成分别为La0.995-xEu0.005CaxSiO2+xN1-x(x=0)(简写为La-N 100%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.1)(简写为Ca-O 10%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.2)(简写为Ca-O 20%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.3)(简写为Ca-O 30%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.4)(简写为Ca-O 40%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.5)(简写为Ca-O 50%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.6)(简写为Ca-O 60%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.7)(简写为Ca-O 70%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.8)(简写为Ca-O 80%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.9)(简写为Ca-O 90%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.995)(简写为Ca-O 100%)的系列样品在紫外光激发下的量子产率图;
图7为本发明实施例6,化学组成为La0.995-xEu0.005CaxSiO2+xN1-x(x=0.5)(简写为Ca-O 50%)的样品的TEM及选取衍射数据图;
图8为本发明对比例提供的对比样品在紫外光激发下的量子产率图。
具体实施方式
下面给出本发明中使用的部分术语的定义,其他未述及的术语具有本领域所公知的定义和含义:
荧光材料:本发明中制备的荧光材料为氮氧化物,分子式为La0.995- xEu0.005CaxSiO2+xN1-x,其中,0≤x<1,所述氮氧化物荧光材料的基质中固溶激活剂Eu而被激活,从而具有发光特性。固溶激活剂Eu通过添加Eu2O3和/或EuF3和/或EuCl2粉体,与La2O3粉体、CaCO3粉体、Si3N4粉体、SiO2粉体混合烧结而实现。
所述氮氧化物荧光材料中,当x取值变化时,材料的晶体结构和荧光特性发生变化,这种变化使得材料可以被调控地实现多种功能,以适用于不同的运用场景。
具体的,当0≤x≤0.1时,所述氮氧化物荧光材料的空间群为C2/c,晶体结构与LaSiO2N相同;优选x=0.1,此时样品的荧光光谱中Eu3+的相对强度较低,对应Eu3+的相对强度较高;当0.1<x≤0.7时,所述氮氧化物荧光材料的空间群为P63/m,晶体结构与La5Si3O12N相同;优选x=0.4或者0.5,此时样品的量子效率较高;当0.7<x<1时,所述氮氧化物荧光材料的的空间群为C2/c,晶体结构与CaSiO3相同;优选x=1,此时样品的荧光光谱中Eu3+的相对强度较低,对应Eu3+的相对强度较高。
在荧光特性上,当0.8≤x<1时,所述氮氧化物荧光材料在紫外光激发下发射出蓝色荧光,优选x=0.9或者0.99;当0.2≤x<0.8时,所述氮氧化物荧光材料在紫外光激发下发射出绿色荧光,优选x=0.4或者0.5;当0≤x<0.2时,所述氮氧化物荧光材料在紫外光激发下发射出黄色荧光,优选x=0.1或者0.19。
本发明所述氮氧化物荧光材料的制备方法包括以下步骤:
(1)混料:按照所述分子式的化学计量比分别称取La2O3粉体、CaCO3粉体、Si3N4粉体、SiO2粉体、Eu2O3和/或EuF3和/或EuCl2粉体作为起始原料,充分混合均匀制得原料混合物;优选地,各粉体的粒径为微米、亚微米或纳米级;
(2)烧结:将所得的原料混合物在氮气-氢气混合气氛或者氮气-氢气-氨气的混合气氛下、于1300~1550℃温度范围保温烧结2~6小时获得所述氮氧化物荧光材料。优选地,混合气氛为常压或者微正压,例如压力为0.1-3MPa,优选为0.5-1.5MPa,更优选为0.8-1MPa。优选地,保温烧结温度1400-1500℃,更优选为1420-1480℃,例如1430℃,1450℃或者1460℃。
为了进一步提高材料中Eu2+的含量,可以在保温烧结结束后,继续在大于1000℃且小于烧结温度的条件下、在氢气气氛中保温1~10小时进行热处理,以提高材料的荧光性能。保温烧结完成后,或者热处理完成后,还可以通过粉碎、表面包覆、和分级处理中的至少一种方法对所得的材料进行粒度调整和表面修饰。
下面将更详细地描述本发明的优选实施方式。虽然以下描述了本发明的优选实施方式,然而应该理解,可以以各种形式实现本发明而不应被这里阐述的实施方式所限制。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。在下面的实施例中,如未明确说明,“%”均指重量百分比。
实施例1-11
本发明实施例1-11提供了11种Eu2+激活的La1-x-yEuyCaxSiO2+xN1-x(0≤x<1)氮氧化物荧光材料,从实施例1到实施例11,各氮氧化物荧光材料的化学式分别为:La0.995- xEu0.005CaxSiO2+xN1-x(x=0)(简写为La-N 100%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.1)(简写为Ca-O 10%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.2)(简写为Ca-O 20%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.3)(简写为Ca-O 30%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.4)(简写为Ca-O 40%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.5)(简写为Ca-O 50%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.6)(简写为Ca-O 60%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.7)(简写为Ca-O 70%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.8)(简写为Ca-O 80%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.9)(简写为Ca-O 90%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.995)(简写为Ca-O 100%)。
上述11种氮氧化物荧光材料的制备方法,包括以下步骤:
按化学计量比称取La2O3粉体、CaCO3粉体、Si3N4粉体、SiO2粉体、Eu2O3粉体作为起始原料,具体的原料质量见表1,之后充分混合均匀获得原料混合物,将所得的原料混合物在氮气-氢气混合气氛或者氮气-氢气-氨气混合气氛下加热到烧结温度保温烧结4小时,具体的烧结温度见表1,之后随炉冷却,从炉中取出样品,研磨,粉碎,进行后续相关测试。
表1起始原料质量和烧结温度表
Figure BDA0002510250220000091
Figure BDA0002510250220000101
图1为本发明基于密度泛函理论(DFT)计算构建的LaSiO2N的晶体结构;a为La-Si-O-N的相图;b为基于DFT构建的空间群为P6122(178)的结构模型;c为基于DFT构建的空间群为C2/c(15)的结构模型。DFT计算的结果表明:从理论角度,LaSiO2N存在两个的晶体结构模型,分别为P6122(178)和C2/c(15)。
图2示出了本发明实施例1,化学组成为LaSiO2N的样品的同步衍射及结构精修数据,结果表明,从实验层面上,LaSiO2N的空间群为C2/c(15),属单斜晶系,也即该晶系更加稳定。
图3示出了本发明实施例1,化学组成为LaSiO2N的样品的TEM及选取衍射数据,结果表明LaSiO2N的空间群为C2/c(15),属单斜晶系。
图4示出了本发明实施例1-11系列样品的XRD衍射图谱。结果表明:0≤x≤0.1的空间群为C2/c,晶体结构与LaSiO2N相同,属单斜晶系;0.1<x≤0.7的空间群为P63/m,晶体结构与La5Si3O12N相同,属六方晶系;0.7<x≤1的空间群为C2/c,属单斜晶系。
图5示出了本发明实施例1-11系列样品在紫外光激发下的发射光谱图。结果表明:0≤x≤0.1,随着Ca含量增加,Eu3+的发光强度明显降低,说明Eu3+含量降低;0.1<x≤0.7,发射光谱仅有Eu2+的宽带发射;0.7<x≤1,Eu3+的含量又增加。
图6示出了本发明实施例1-11系列样品在紫外光激发下的量子产率。结果表明:本发明所述材料可以将La0.995-xEu0.005CaxSiO2+xN1-x的效率从13.9%(x=0)提高到54.7%(x=0.5),体现了本发明的先进性。
图7示出了本发明实施例6,化学组成为La0.995-xEu0.005CaxSiO2+xN1-x(x=0.5)的样品的TEM及选取衍射数据,结果表明La0.995-xEu0.005CaxSiO2+xN1-x(x=0.5)的空间群为P63/m,属六方晶系。
对实施例1-11提供的荧光材料在紫外光激发下进行荧光检测,发射光谱峰值波长见表2。表2为中各荧光材料的化学组成分别为La0.995-xEu0.005CaxSiO2+xN1-x(x=0)(简写为La-N 100%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.1)(简写为Ca-O 10%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.2)(简写为Ca-O 20%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.3)(简写为Ca-O 30%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.4)(简写为Ca-O 40%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.5)(简写为Ca-O 50%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.6)(简写为Ca-O 60%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.7)(简写为Ca-O 70%),La0.995- xEu0.005CaxSiO2+xN1-x(x=0.8)(简写为Ca-O 80%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.9)(简写为Ca-O 90%),La0.995-xEu0.005CaxSiO2+xN1-x(x=0.995)(简写为Ca-O 100%)。
表2荧光材料的发射光谱峰值波长表
Figure BDA0002510250220000121
从表2可以看到,本发明实现了发射光谱可调的La1-x-yEuyCaxSiO2+xN1-x(0≤x≤0.1,0<y≤0.1)系列蓝光、绿光、黄光荧光材料。
工业应用性:
本发明确定了LaSiO2N的晶体结构为单斜而非六方,其空间群为C2/c,进一步的,为了减低LaSiO2N:Eu荧光材料中Eu3+对发光性能的不利影响,本发明通过组成优化大量尝试,获得量子产率显著提高、发射光谱可调的La1-x-yEuyCaxSiO2+xN1-x(0≤x≤0.1,0<y≤0.1)系列蓝光、绿光、黄光荧光材料。本发明的制备工艺简单,原料易得,成本低廉,极大地丰富了用于照明领域的氮氧化物荧光材料种类。可以预期,本发明的系列荧光材料及量子产率的提升方法能得到广泛地应用,极大促进荧光材料产业及其应用领域的发展。
对比例1-3
对比例1-3参照实施例2的制备方法进行,对比例1-3与实施例2所不同的是,原材料上不使用CaCO3,而是分别采用MgCO3、SrCO3、BaCO3替换CaCO3,相应的用量按照化学计量比计算,依次合成La0.995-xEu0.005MgxSiO2+xN1-x(x=0.1)、La0.995-xEu0.005SrxSiO2+xN1-x(x=0.1)、La0.995-xEu0.005BaxSiO2+xN1-x(x=0.1)三种对比样品。对比样品中按化学计量比计Mg、Sr、Ba皆为10%,与实施例2中La0.995-xEu0.005CaxSiO2+xN1-x(x=0.1)的Ca按化学计量比计为10%保持一致。
对所制备的对比样品进行量子产率分析,结果见图8,其中Mg 10%、Ca 10%、Sr10%、Ba 10%分别代表材料La0.995-xEu0.005MgxSiO2+xN1-x(x=0.1)、La0.995-xEu0.005CaxSiO2+ xN1-x(x=0.1)、La0.995-xEu0.005SrxSiO2+xN1-x(x=0.1)、La0.995-xEu0.005BaxSiO2+xN1-x(x=0.1)。
从图8可以看到,按化学计量比计算,与10%Ca取代10%La的效果相比,用同主族的Mg、Sr、Ba取代后样品的量子效率明显下降,可见从性能最优化的角度考虑,本发明的Ca取代具有明显优势和先进性。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (12)

1.一种氮氧化物荧光材料,其特征在于,所述氮氧化物荧光材料的分子式为La1-x- y Eu y Ca x SiO2+x N1-x ,其中,0.3≤x≤0.5,0<y≤0.1,所述氮氧化物荧光材料的基质中固溶激活剂Eu而被激活,从而具有发光特性。
2.根据权利要求1所述氮氧化物荧光材料,其特征在于,所述氮氧化物荧光材料的空间群为P63/m,晶体结构与La5Si3O12N相同。
3.根据权利要求1所述氮氧化物荧光材料,其特征在于,所述氮氧化物荧光材料是由La2O3粉体、CaCO3粉体、Si3N4粉体、SiO2粉体、Eu2O3和/或EuF3和/或EuCl2粉体按分子式中的化学计量比混合后烧结得到。
4.根据权利要求1所述氮氧化物荧光材料,其特征在于,所述氮氧化物荧光材料在250~500nm波长入射光激发下发出波长在400~700nm范围的波长具有峰值的荧光。
5.根据权利要求4所述氮氧化物荧光材料,其特征在于,所述氮氧化物荧光材料在紫外光激发下发射出绿色荧光。
6.根据权利要求1-5中任一项所述氮氧化物荧光材料,其特征在于,所述氮氧化物荧光材料的结晶以包含其它结晶或非结晶化合物的混合物的方式被生成,在混合物中所述氮氧化物荧光材料结晶的质量含量不少于40%。
7.一种权利要求1-6中任一项所述氮氧化物荧光材料的制备方法,其特征在于,包括以下步骤:
(1)混料:按照所述分子式的化学计量比分别称取La2O3粉体、CaCO3粉体、Si3N4粉体、SiO2粉体、Eu2O3和/或EuF3和/或EuCl2粉体作为起始原料,充分混合均匀制得原料混合物;
(2)烧结:将所得的原料混合物在氮气-氢气混合气氛或者氮气-氢气-氨气的混合气氛下、于1300~1550℃温度范围保温烧结2~6小时获得所述氮氧化物荧光材料。
8.根据权利要求7所述氮氧化物荧光材料的制备方法,其特征在于,步骤(1)中,所述各粉体的粒径为微米、亚微米或纳米级。
9.根据权利要求7所述氮氧化物荧光材料的制备方法,其特征在于,步骤(2)中,所述混合气氛为常压或者微正压。
10.根据权利要求7所述氮氧化物荧光材料的制备方法,其特征在于,步骤(2)包括2a:将所得的原料混合物在氮气-氢气混合气氛或者氮气-氢气-氨气的混合气氛下、于1300~1550℃温度范围保温烧结2~6小时;2b保温烧结结束后,继续在大于1000℃且小于烧结温度的条件下、在氢气气氛中保温1~10小时进行热处理,得到所述氮氧化物荧光材料。
11.一种权利要求1-6中任一项所述氮氧化物荧光材料在照明领域中的应用,其特征在于,所述氮氧化物荧光材料在250~500nm波长入射光激发下,发出波长在400~700nm范围的波长具有峰值的荧光。
12.一种发光装置,包括激发光源,以及权利要求1-6任一项所述氮氧化物荧光材料,其特征在于:所述激发光源为紫外激发光源。
CN202010458855.4A 2020-05-27 2020-05-27 一种氮氧化物荧光材料及其制备方法和应用 Active CN113736462B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010458855.4A CN113736462B (zh) 2020-05-27 2020-05-27 一种氮氧化物荧光材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010458855.4A CN113736462B (zh) 2020-05-27 2020-05-27 一种氮氧化物荧光材料及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113736462A CN113736462A (zh) 2021-12-03
CN113736462B true CN113736462B (zh) 2022-07-29

Family

ID=78723593

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010458855.4A Active CN113736462B (zh) 2020-05-27 2020-05-27 一种氮氧化物荧光材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113736462B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114590831B (zh) * 2022-03-12 2023-06-13 陕西师范大学 LaSi2N3O晶体及荧光粉和制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105062479A (zh) * 2015-08-15 2015-11-18 中国地质大学(北京) 一种黄橙光型钙硅石结构的氮氧化物荧光材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105062479A (zh) * 2015-08-15 2015-11-18 中国地质大学(北京) 一种黄橙光型钙硅石结构的氮氧化物荧光材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Design of a Yellow-Emitting Phosphor with Enhanced Red Emission via Valence State-control for Warm White LEDs Application;Jian Chen et al.;《Scientific Reports》;20160811;第6卷;第31199页 *
Optical Behavior of CaSiO3:Eu2+, Er3+, BaSiO3:Eu2+, Er3+ and SrSiO3:Eu2+, Er3+ Phosphors;SHAMBHAVI KATYAYAN et al.;《JOM》;20190603;第71卷(第8期);第2899-2905页 *

Also Published As

Publication number Publication date
CN113736462A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
Singh et al. Color tuning in thermally stable Sm 3+-activated CaWO 4 nanophosphors
KR101854114B1 (ko) 금속불화물 적색 형광체 및 이를 이용한 발광소자
JP4894048B2 (ja) 蛍光体とその製造方法
Stefani et al. Persistent luminescence of Eu2+ and Dy3+ doped barium aluminate (BaAl2O4: Eu2+, Dy3+) materials
Singh et al. Rapid synthesis and enhancement in down conversion emission properties of BaAl 2 O 4: Eu 2+, RE 3+(RE 3+= Y, Pr) nanophosphors
JP5970534B2 (ja) 酸窒化物蛍光体
JP2005112922A (ja) 酸窒化物蛍光体
KR20110011586A (ko) 산질화물계 형광체 분말, 질화물계 형광체 분말, 및 이들의 제조 방법
Wu et al. Synthesis and luminescence characteristics of nitride Ca 1.4 Al 2.8 Si 9.2 N 16: Ce 3+, Li+ for light-emitting devices and field emission displays
Singh et al. Green emitting Tb doped LiBaB9O15 phosphors
CN113736462B (zh) 一种氮氧化物荧光材料及其制备方法和应用
Yao et al. Concentration quenching of Eu 2+ in a novel blue–green emitting phosphor: Ba 2 ZnSi 2 O 7: Eu 2+
JP2008045080A (ja) 無機化合物の製造方法
Pan et al. Influence of Ba2+-doping on structural and luminescence properties of Sr2SiO4: Eu2+ phosphors
CN101914379B (zh) 一种制备氮氧化物荧光粉体的方法
Zou et al. Effect of Al/Ga substitution on photoluminescence and chromatic properties of Y 3 Al 5− x Ga x O 12: Ce 3+ phosphor
US8686626B2 (en) Oxynitride-based phosphor and light emitting device including the same
Moji et al. Color tuning and white light emission from sol-gel SiO2 nanoparticles doped with Sr2+
WO2012020704A1 (ja) 無機酸化物蛍光体及び白色蛍光体薄膜
Phaomei et al. Ce3+ sensitize RE3+ (RE= Dy, Tb, Eu, Sm) doped LaPO4 nanophosphor with white emission tunability
EP2655272A1 (en) Luminophore composition for uv-visible light conversion and light converter obtained therefrom
JP5002819B2 (ja) サイアロン蛍光体およびそれを用いた白色発光ダイオード
CN107987833B (zh) 一种氮化物发光材料及包含其的发光装置
KR20180061837A (ko) 산화물계 형광체
JP2010047742A (ja) スピネル型ZnGaAl系酸化物蛍光体及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant