CN113735999A - 一种具有高稳定性和柔韧性的多孔聚合物及其应用 - Google Patents

一种具有高稳定性和柔韧性的多孔聚合物及其应用 Download PDF

Info

Publication number
CN113735999A
CN113735999A CN202111033516.2A CN202111033516A CN113735999A CN 113735999 A CN113735999 A CN 113735999A CN 202111033516 A CN202111033516 A CN 202111033516A CN 113735999 A CN113735999 A CN 113735999A
Authority
CN
China
Prior art keywords
porous polymer
vinyl functionalized
vinyl
monomer
high stability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111033516.2A
Other languages
English (en)
Other versions
CN113735999B (zh
Inventor
戴志锋
苏正林
包媛斐
熊玉兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Longgang Research Institute Of Zhejiang University Of Technology Co ltd
Zhejiang Sci Tech University ZSTU
Original Assignee
Longgang Research Institute Of Zhejiang University Of Technology Co ltd
Zhejiang Sci Tech University ZSTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Longgang Research Institute Of Zhejiang University Of Technology Co ltd, Zhejiang Sci Tech University ZSTU filed Critical Longgang Research Institute Of Zhejiang University Of Technology Co ltd
Priority to CN202111033516.2A priority Critical patent/CN113735999B/zh
Publication of CN113735999A publication Critical patent/CN113735999A/zh
Application granted granted Critical
Publication of CN113735999B publication Critical patent/CN113735999B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F126/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F126/06Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F112/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F112/34Monomers containing two or more unsaturated aliphatic radicals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本发明属于环保技术领域,具体涉及一种具有稳定性和柔韧性的多孔聚合物,所述多孔聚合物为极性基团功能化多孔有机聚合物,且以乙烯基功能化单体为聚合单体,以AIBN为自由基引发剂,THF为溶剂经自由基聚合的方法制备而成。本发明解决了现有多孔固体吸附材料在酸性气体吸附领域的缺陷,以乙烯基功能化单体为自聚单体,制备极性基团功能化多孔有机聚合物,具有高比表面积、大孔容、分级孔隙率和优异的高稳定性。

Description

一种具有高稳定性和柔韧性的多孔聚合物及其应用
技术领域
本发明属于环保技术领域,具体涉及一种具有稳定性和柔韧性的多孔聚合物及其应用。
背景技术
SO2和H2S作为一类主要的酸性废气,由于其剧毒、腐蚀性强,造成了许多严重的环境问题和人类健康问题。SO2主要从化石燃料燃烧产生的烟气中释放,而H2S主要存在于天然气或沼气中。迄今为止,许多技术已经被开发并应用于工业脱硫过程。例如,传统的石灰石吸收法用于吸收SO2,传统的克罗斯法用于消除H2S。此外,采用叔胺水溶液的典型湿法洗涤技术也可用于捕获包括SO2和H2S等常见的酸性废气。然而,克劳斯法中不可逆、高能耗的吸收过程以及相对低的转化效率,使这些方法既不环保又不经济。在这种情况下,仍然需要开发消除酸性废气的新方法。
最近,具有良好的可回收性和稳定性的干吸附材料用于在环境条件下以高消除能力和选择性捕获SO2和H2S被认为是一种有效的方法。迄今为止,尽管有许多固体吸附剂,如沸石、多孔碳材料、金属氧化物、金属-有机框架(MOFs)、共价有机框架(COFs)用于SO2或H2S的消除,但缺点包括稳定性、可逆性差以及容量和选择性低,限制了它们的进一步应用。例如,
Figure BDA0003246112380000011
等报道了一种铜基金属有机骨架MFM-170在298K、1bar条件下对SO2的吸附能力,其容量达到前所未有的17.5mmol/g,这是目前环境条件下对SO2吸附性能最好的MOFs。然而,用于吸收更具腐蚀性的H2S气体的MOFs很少被报道,并且总是由于金属-硫键的形成而导致不可逆的框架结构变化
发明内容
针对现有技术中的问题,本发明提供一种具有高稳定性和柔韧性的多孔聚合物,解决了现有多孔固体吸附材料在酸性气体吸附领域的缺陷,以乙烯基功能化单体为自聚单体,制备极性基团功能化多孔有机聚合物,具有高比表面积、大孔容、分级孔隙率和优异的高稳定性。
为实现以上技术目的,本发明的技术方案是:
一种具有高稳定性和柔韧性的多孔聚合物,所述多孔聚合物为极性基团功能化多孔有机聚合物,且以乙烯基功能化单体为聚合单体,以AIBN为自由基引发剂,THF为溶剂经自由基聚合的方法制备而成。
所述多孔聚合物的制备方法,包括:将乙烯基功能化单体溶解在DMF中,然后加入偶氮二异丁腈(AIBN)在室温下搅拌,然后将混合物转移到高压釜中,并在373K下保持24小时,用乙醇除去溶剂DMF,并在真空下干燥,得到固体产物。
所述乙烯基功能化单体为乙烯基功能化吡啶、乙烯基功能化联吡啶、乙烯基功能化吡嗪、乙烯基功能化嘧啶、乙烯基功能化联苯中的一种或几种。
所述乙烯基功能化单体的制备方法,包括:在氮气环境下,将溴化单体、碳酸钾和乙烯基三氟硼酸钾在含催化剂的甲苯/THF/H2O混合液中90℃恒温反应24h,反应结束后,过滤沉淀并在真空下除去溶剂,粗产物通过柱色谱法进一步纯化,得到所需产物,且该乙烯基功能化单体为乙烯基功能化吡啶、乙烯基功能化联吡啶、乙烯基功能化吡嗪、乙烯基功能化嘧啶中的一种。
所述乙烯基功能化单体的制备方法,包括:在N2条件下,向三苯基膦的DMF溶液中加入4,4'-双(氯甲基)-1,1'-联苯;将所得混合体系在90℃下加热24小时,产生白色沉淀;过滤后以定量产率获得鏻盐,并用DMF和Et2O洗涤;在N2条件下于0℃向含有鏻盐的CH2Cl2溶液中滴加甲醛和NaOH;并且该反应混合体系在室温下搅拌过夜;加入饱和NH4Cl水溶液淬灭,水相用CH2Cl2萃取三次;合并的有机层用盐水洗涤,用Na2SO4干燥,过滤,减压蒸馏;最后通过硅胶快速柱色谱法纯化粗产物,得到产物,且该乙烯基功能化单体为乙烯基功能化联苯。
上述的多孔聚合物用于气体吸附领域。
进一步的,所述多孔聚合物用于烟气脱硫领域。
再进一步的,所述多孔聚合物用于吸附硫化物气体。
从以上描述可以看出,本发明具备以下优点:
1.本发明解决了现有多孔固体吸附材料在酸性气体吸附领域的缺陷,以乙烯基功能化单体为自聚单体,制备极性基团功能化多孔有机聚合物,具有高比表面积、大孔容、分级孔隙率和优异的高稳定性。
2.本发明提供的多孔聚合物具有极高的SO2和H2S吸附能力,可用于烟气脱硫领域,并且具有极高的吸附量,同时经试验表明聚合物在低浓度依然保持良好的吸附效果,重复性试验表明,多孔聚合物具有很高的稳定性和良好的可逆性。
附图说明
图1是实施例1的多孔聚合物的固态13C核磁共振谱图;
图2是实施例1的多孔聚合物的性能测试:(A)N2吸附等温线、(B)孔径分布、(C)扫描电镜和(D)透射电镜图像;
图3是实施例1的多孔聚合物在不同温度下收集的CO2吸附等温线和相应的使用Virial方法计算的POP-Py的Qst。
具体实施方式
结合图1-3,详细说明本发明的一个具体实施例,但不对本发明的权利要求做任何限定。
实施例1
一种具有高稳定性和柔韧性的多孔聚合物,以2,5-二乙烯基吡啶为乙烯基单体,AIBN为自由基引发剂,THF为溶剂,制备而成。
其中,2,5-二乙烯基吡啶的制备方法如下:
Figure BDA0003246112380000031
在N2条件下,向装有2,5-二溴吡啶(5.0g,21.1mmol)、K2CO3(17.5g,126.6mmol)和乙烯基三氟硼酸钾(7.07g,52.8mmol)的250ml烧瓶中加入含有Pd(PPh3)4(1.22g,1.05mmol)的110mL甲苯/THF/H2O(50:50:10)混合物。然后,将所得混合体系在90℃下搅拌24小时。反应结束时(通过薄层色谱法检测),过滤沉淀并在真空下除去溶剂,粗产物通过柱色谱法进一步纯化,得到所需产物。产率:65.6%。
吡啶功能化多孔有机聚合物的合成:将1g 2,5-二乙烯基吡啶(v-Py)溶解在10毫升DMF中,然后加入50mg偶氮二异丁腈(AIBN)在室温下搅拌3小时后,将混合物转移到高压釜中,并在373K下保持24小时。用乙醇除去溶剂DMF,并在真空下干燥,以接近定量的产率获得浅黄色固体产物。
实施例2
一种具有高稳定性和柔韧性的多孔聚合物,以2,5-二乙烯基吡嗪为乙烯基单体,AIBN为自由基引发剂,THF为溶剂,制备而成。
其中,2,5-二乙烯基吡嗪的制备方法如下:
Figure BDA0003246112380000041
在N2条件下,向装有2,5-二溴吡嗪(5.0g,21.0mmol)、K2CO3(17.4g,126.1mmol)和乙烯基三氟硼酸钾(8.45g,63.1mmol)的250ml烧瓶中加入含有Pd(PPh3)4(485.8mg,0.42mmol)的150mL甲苯/THF/H2O(1:1:0.2)混合物。然后,将所得混合体系加热至90℃反应24小时。反应结束时(通过薄层色谱法检测),过滤沉淀并在真空下除去溶剂,粗产物通过柱色谱法进一步纯化,得到所需产物。产率:1.82g(65.7%)。
吡嗪功能化多孔有机聚合物的合成:将1g 2,5-二乙烯基吡嗪溶解在10毫升DMF中,然后加入50mg偶氮二异丁腈(AIBN)在室温下搅拌3小时后,将混合物转移到高压釜中,并在373K下保持24小时。用乙醇除去溶剂DMF,并在真空下干燥,以接近定量的产率获得固体产物。
实施例3
一种具有高稳定性和柔韧性的多孔聚合物,以2,5-二乙烯基嘧啶为乙烯基单体,AIBN为自由基引发剂,THF为溶剂,制备而成。
其中,2,5-二乙烯基嘧啶的制备方法如下:
Figure BDA0003246112380000042
在N2条件下,向装有5-溴-2-碘嘧啶(5.0g,17.6mmol)、K2CO3(14.5g,105.3mmol)和乙烯基三氟硼酸钾(7.06g,52.7mmol)的250ml烧瓶中加入含有Pd(PPh3)4(406ml,0.352mmol)的110ml甲苯/THF/H2O(1:1:0.2)混合物。然后,将所得混合体系加热至90℃反应过夜。反应结束时(通过薄层色谱法检测),过滤沉淀并在真空下除去溶剂,粗产物通过柱色谱法进一步纯化,得到所需产物。产率:1.15g(49.6%)。
嘧啶功能化多孔有机聚合物的合成:将1g2,5-二乙烯基嘧啶溶解在10毫升DMF中,然后加入50mg偶氮二异丁腈(AIBN)在室温下搅拌3小时后,将混合物转移到高压釜中,并在373K下保持24小时。用乙醇除去溶剂DMF,并在真空下干燥,以接近定量的产率获得固体产物。
实施例4
一种具有高稳定性和柔韧性的多孔聚合物,以4,4'-二乙烯基-1,1'-联苯为乙烯基单体,AIBN为自由基引发剂,THF为溶剂,制备而成。
其中,4,4'-二乙烯基-1,1'-联苯的制备方法如下:
Figure BDA0003246112380000051
在N2条件下,向三苯基膦(3.0当量)的DMF溶液中加入4,4'-双(氯甲基)-1,1'-联苯(1.0当量)。将所得混合体系在90℃下加热24小时,产生白色沉淀。过滤后以定量产率获得鏻盐(9),并用DMF和Et2O洗涤。在N2条件下于0℃向含有鏻盐(20.4g)的CH2Cl2(100ml)溶液中滴加甲醛(33%,48ml)和NaOH(10%,80ml)。此后,反应混合体系在室温下搅拌过夜。加入饱和NH4Cl水溶液淬灭,水相用CH2Cl2萃取三次。合并的有机层用盐水洗涤,用Na2SO4干燥,过滤,减压蒸馏。通过硅胶快速柱色谱法纯化粗产物,得到产率为73%的产物。
联苯功能化多孔有机聚合物的合成:将1g4,4'-二乙烯基-1,1'-联苯溶解在10毫升DMF中,然后加入50mg偶氮二异丁腈(AIBN)在室温下搅拌3小时后,将混合物转移到高压釜中,并在373K下保持24小时。用乙醇除去溶剂DMF,并在真空下干燥,以接近定量的产率获得固体产物。
以实施例1制备的吡啶修饰多孔有机聚合物为例,记作POP-Py,其结构和化学组成通过13C固态核磁共振、傅里叶变换红外光谱和元素分析进行表征。
图1显示了POP-Py的13C固态核磁共振光谱图,我们可以看到化学位移约110ppm至120ppm处的峰消失,对应于POP-Py上乙烯基的断裂以及42.7ppm处峰的出现对应于烷基的形成,表明v-Py单体在溶剂热条件下成功聚合。吡啶框架对应的122ppm至163ppm化学位移分布的明显峰与v-Py光谱的峰非常一致,证实了自由基聚合反应后吡啶的化学结构完全保留。v-Py和POP-Py的FT-IR光谱,1700cm-1波数处的主峰对应于C=N键的振动,证实了POP-Py中吡啶结构的守保持。元素分析表明,POP-Py的N含量分别为9.41wt%,与理论计算结果一致,进一步证实了多孔有机聚合物的成功构建。
采用N2吸附分析、热重分析、透射电镜等手段表征了POPs的孔隙结构、热稳定性和表面形貌。
图2A为POP-Py的N2吸附等温线,为典型的I型和IV型曲线。相对压力(P/P0)在0.1以下时,等温线的陡增是由于微孔的填充,相对压力(P/P0)高于0.40时,存在明显的迟滞回线是由于存在介孔和大孔结构,这表明了POP-Py具有多级孔结构。采用非局域密度泛函理论计算探究POP-Py的孔径分布,发现其主孔径分布在1.4nm、2.8nm、6.7nm和8.5nm(图2B)。计算得到POP-Py的BET比表面积为1074m2/g,总孔隙体积为0.95cm3/g。POP-Py相对较高的比表面积、较大的孔隙体积和分级孔隙率有利于框架内气体的传递和吸收。图2C为该系列聚合物的热重分析结果,表明所有材料都具有优异的化学和物理稳定性,在N2氛围下聚合物的分解温度高达400℃。扫描电镜和透射电镜图像进一步显示了所得材料的非晶态表面和孔隙结构,如图2D所示。
通过对POP-Py在不同温度(273和298K)和1bar CO2下的CO2吸附实验,表征了它们对CO2的亲和力和捕获性能。
POP-Py在273K时对CO2的吸附量为1.90mmol/g(83.6mg/g),在298K时则降至1.08mmol/g(47.5mg/g)。由Virial方法计算的POP-Py的CO2吸附等温线(Qst)在零覆盖时约为28.7kJ/mol,也高于其他材料。
基于上述吸附实验,测试不同温度下POP-Py对纯SO2的吸附等温线。检测得出,在1bar SO2和298K条件下,POP-Py的SO2吸收能力为10.8mmol/g;当SO2压力在相同温度下增加到2bar时,吸收能力提高到16.3mmol/g。POP-Py对SO2的吸附能力明显优于其他已报道的沸石、活性炭、有机多孔聚合物和COFs。同时,POP-Py对于酸性更强的H2S气体也具有良好的吸附性能,其吸附量可以达到7.1mmol/g。这种超高的吸附能力归因于POPs的富氮骨架和层次结构。这一结果清楚地说明了多孔材料对SO2吸附过程中孔隙结构的促进作用。在吸附过程中,SO2首先被多孔材料的孔隙结构富集,然后POP-Py内部结构中的吡啶基团对SO2进行化学吸附,固定足够量的SO2。框架中吡啶基团的浓度较高,且吡啶与SO2的相互作用较强,因此吸附能力较高。在N2氛围和353K的温和条件下,POP-Py很容易回收再利用,表明了该多孔有机聚合物的稳定性。除了POP-Py之外,其他几例聚合物均在SO2和H2S气体吸附上表现出优异的吸附性能。
综上所述,本发明具有以下优点:
1.本发明解决了现有多孔固体吸附材料在酸性气体吸附领域的缺陷,以乙烯基功能化单体为自聚单体,制备极性基团功能化多孔有机聚合物,具有高比表面积、大孔容、分级孔隙率和优异的高稳定性。
2.本发明提供的多孔聚合物具有极高的SO2和H2S吸附能力,可用于烟气脱硫领域,并且具有极高的吸附量,同时经试验表明聚合物在低浓度依然保持良好的吸附效果,重复性试验表明,多孔聚合物具有很高的稳定性和良好的可逆性。
可以理解的是,以上关于本发明的具体描述,仅用于说明本发明而并非受限于本发明实施例所描述的技术方案。本领域的普通技术人员应当理解,仍然可以对本发明进行修改或等同替换,以达到相同的技术效果;只要满足使用需要,都在本发明的保护范围之内。

Claims (8)

1.一种具有高稳定性和柔韧性的多孔聚合物,其特征在于:所述多孔聚合物为极性基团功能化多孔有机聚合物,且以乙烯基功能化单体为聚合单体,以AIBN为自由基引发剂,THF为溶剂经自由基聚合的方法制备而成。
2.根据权利要求1所述的具有高稳定性和柔韧性的多孔聚合物,其特征在于:所述多孔聚合物的制备方法,包括:将乙烯基功能化单体溶解在DMF中,然后加入偶氮二异丁腈(AIBN)在室温下搅拌,然后将混合物转移到高压釜中,并在373K下保持24小时,用乙醇除去溶剂DMF,并在真空下干燥,得到固体产物。
3.根据权利要求1所述的具有高稳定性和柔韧性的多孔聚合物,其特征在于:所述乙烯基功能化单体为乙烯基功能化吡啶、乙烯基功能化联吡啶、乙烯基功能化吡嗪、乙烯基功能化嘧啶、乙烯基功能化联苯中的一种或几种。
4.根据权利要求3所述的具有高稳定性和柔韧性的多孔聚合物,其特征在于:所述乙烯基功能化单体的制备方法,包括:在氮气环境下,将溴化单体、碳酸钾和乙烯基三氟硼酸钾在含催化剂的甲苯/THF/H2O混合液中90℃恒温反应24h,反应结束后,过滤沉淀并在真空下除去溶剂,粗产物通过柱色谱法进一步纯化,得到所需产物,且该乙烯基功能化单体为乙烯基功能化吡啶、乙烯基功能化联吡啶、乙烯基功能化吡嗪、乙烯基功能化嘧啶中的一种。
5.根据权利要求3所述的具有高稳定性和柔韧性的多孔聚合物,其特征在于:所述乙烯基功能化单体的制备方法,包括:在N2条件下,向三苯基膦的DMF溶液中加入4,4'-双(氯甲基)-1,1'-联苯;将所得混合体系在90℃下加热24小时,产生白色沉淀;过滤后以定量产率获得鏻盐,并用DMF和Et2O洗涤;在N2条件下于0℃向含有鏻盐的CH2Cl2溶液中滴加甲醛和NaOH;并且该反应混合体系在室温下搅拌过夜;加入饱和NH4Cl水溶液淬灭,水相用CH2Cl2萃取三次;合并的有机层用盐水洗涤,用Na2SO4干燥,过滤,减压蒸馏;最后通过硅胶快速柱色谱法纯化粗产物,得到产物,且该乙烯基功能化单体为乙烯基功能化联苯。
6.如权利要求1-5任一一项所述的多孔聚合物用于气体吸附领域。
7.根据权利要求6所述的具有高稳定性和柔韧性的多孔聚合物,其特征在于:所述多孔聚合物用于烟气脱硫领域。
8.根据权利要求7所述的具有高稳定性和柔韧性的多孔聚合物,其特征在于:所述多孔聚合物用于吸附硫化物气体。
CN202111033516.2A 2021-09-03 2021-09-03 一种具有高稳定性和柔韧性的多孔聚合物及其应用 Expired - Fee Related CN113735999B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111033516.2A CN113735999B (zh) 2021-09-03 2021-09-03 一种具有高稳定性和柔韧性的多孔聚合物及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111033516.2A CN113735999B (zh) 2021-09-03 2021-09-03 一种具有高稳定性和柔韧性的多孔聚合物及其应用

Publications (2)

Publication Number Publication Date
CN113735999A true CN113735999A (zh) 2021-12-03
CN113735999B CN113735999B (zh) 2023-02-21

Family

ID=78735623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111033516.2A Expired - Fee Related CN113735999B (zh) 2021-09-03 2021-09-03 一种具有高稳定性和柔韧性的多孔聚合物及其应用

Country Status (1)

Country Link
CN (1) CN113735999B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456294A (zh) * 2022-01-20 2022-05-10 合肥工业大学 一种有机多孔材料的制备方法及其在制备超高分子量聚合物方面的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193698A (zh) * 2005-05-02 2008-06-04 凡利安股份有限公司 用于固相萃取的极性官能化聚合物改性的多孔基质
RU2013100440A (ru) * 2013-01-09 2014-07-20 Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук (ИМХ РАН) Фотополимеризующаяся композиция для одностадийного получения полимерного нанопористого материала с гидрофобной поверхностью пор, нанопористый полимерный материал с селективными сорбирующими свойствами, способ его получения, способ одностадийного формирования на его основе водоотделяющих фильтрующих элементов и способ очистки органических жидкостей от воды
CN107847847A (zh) * 2015-04-17 2018-03-27 陶氏环球技术有限责任公司 用于从气流选择性去除硫化氢的交联大孔聚合物

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101193698A (zh) * 2005-05-02 2008-06-04 凡利安股份有限公司 用于固相萃取的极性官能化聚合物改性的多孔基质
RU2013100440A (ru) * 2013-01-09 2014-07-20 Федеральное государственное бюджетное учреждение науки Институт металлоорганической химии им. Г.А. Разуваева Российской академии наук (ИМХ РАН) Фотополимеризующаяся композиция для одностадийного получения полимерного нанопористого материала с гидрофобной поверхностью пор, нанопористый полимерный материал с селективными сорбирующими свойствами, способ его получения, способ одностадийного формирования на его основе водоотделяющих фильтрующих элементов и способ очистки органических жидкостей от воды
CN107847847A (zh) * 2015-04-17 2018-03-27 陶氏环球技术有限责任公司 用于从气流选择性去除硫化氢的交联大孔聚合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAJCHRZAK M ET AL: "Synthesis of new styrylarenes via Suzuki-Miyaura coupling catalysed by highly active, well-defined palladium catalysts", 《DALTON TRANSACTIONS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114456294A (zh) * 2022-01-20 2022-05-10 合肥工业大学 一种有机多孔材料的制备方法及其在制备超高分子量聚合物方面的应用

Also Published As

Publication number Publication date
CN113735999B (zh) 2023-02-21

Similar Documents

Publication Publication Date Title
US9932454B2 (en) Porous polymer material
Molavi et al. Enhancing CO2/N2 adsorption selectivity via post-synthetic modification of NH2-UiO-66 (Zr)
US11845058B2 (en) Cooperative chemical adsorption of acid gases in functionalized metal-organic frameworks
Li et al. Naphthalene-based microporous polyimides: adsorption behavior of CO2 and toxic organic vapors and their separation from other gases
Wang et al. Metal–organic frameworks with reduced hydrophilicity for postcombustion CO2 capture from wet flue gas
Sarmah et al. A comparison between CO2 capturing capacities of fly ash based composites of MEA/DMA and DEA/DMA
CA2945783A1 (en) Cooperative chemical adsorption of acid gases in functionalized metal-organic frameworks
CN113735999B (zh) 一种具有高稳定性和柔韧性的多孔聚合物及其应用
WO2016028434A1 (en) Porous organic polymers for binding heavy metals
CN114395138A (zh) 一种高比表面积且水稳定的微孔铝基金属有机框架材料的制备方法
CN113083257A (zh) 多重互锁功能有机聚合物材料的制备方法及应用
Kang et al. Engineered Removal of Trace NH3 by Porous Organic Polymers Modified via Sequential Post‐Sulfonation and Post‐Alkylation
Abdulhamid et al. Molecular engineering of intrinsically microporous polybenzimidazole for energy-efficient gas separation
KR102286472B1 (ko) 기능화된 금속-유기 구조체, 이의 제조방법 및 이를 이용하는 이산화탄소의 선택적 분리방법
Lei et al. Removal of furfural in wastewater by Al-MIL-53 prepared in various solvents
CN113136023B (zh) 含羟甲基多孔芳香骨架的制备方法及其功能化材料和应用
CN106380604B (zh) 一种聚环膦腈多孔材料的制备方法及其用途
Akbarzadeh et al. Efficient thiazole-based polyimines as selective and reversible chemical absorbents for CO2 capture and separation: Synthesis, characterization and application
WO2013184162A1 (en) Porous polymer network materials
CN110734404B (zh) 一种聚乙二醇链连接的双阳离子离子液体、制备方法及so2气体的捕集方法
CN114573750A (zh) 碱性功能化多孔聚离子液体材料及其制备方法和应用
CN114805762B (zh) 一种含有偶氮苯的多孔有机聚合物及其制备方法和应用
Ben et al. Porous aromatic frameworks for carbon dioxide capture
CN112851593B (zh) 氨基桥连六羧酸配体和金属有机框架材料及其制备方法和应用
Tessema Preparation and Evaluation Techniques of Porous Materials and Mixed Matrix Membranes for Targeted CO2 Separation Applications

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20230221