CN113731191B - 一种纳米纤维素络合物复合聚酰胺膜及其制备方法 - Google Patents

一种纳米纤维素络合物复合聚酰胺膜及其制备方法 Download PDF

Info

Publication number
CN113731191B
CN113731191B CN202110819270.5A CN202110819270A CN113731191B CN 113731191 B CN113731191 B CN 113731191B CN 202110819270 A CN202110819270 A CN 202110819270A CN 113731191 B CN113731191 B CN 113731191B
Authority
CN
China
Prior art keywords
membrane
complex
aqueous solution
nano
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110819270.5A
Other languages
English (en)
Other versions
CN113731191A (zh
Inventor
王章慧
夏道伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Science and Technology ZUST
Original Assignee
Zhejiang University of Science and Technology ZUST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Science and Technology ZUST filed Critical Zhejiang University of Science and Technology ZUST
Priority to CN202110819270.5A priority Critical patent/CN113731191B/zh
Publication of CN113731191A publication Critical patent/CN113731191A/zh
Application granted granted Critical
Publication of CN113731191B publication Critical patent/CN113731191B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/125In situ manufacturing by polymerisation, polycondensation, cross-linking or chemical reaction
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • D06M15/05Cellulose or derivatives thereof
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/59Polyamides; Polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/08Polysaccharides
    • B01D71/12Cellulose derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/16Synthetic fibres, other than mineral fibres
    • D06M2101/30Synthetic polymers consisting of macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

本发明属于膜分离技术领域,涉及一种纳米纤维素络合物复合聚酰胺膜及其制备方法。本发明具有多孔结构的纳米纤维素络合物利用内部的超亲水纳米通道实现兼具高通量、高分离精度聚酰胺复合膜的制备,且超亲水特征赋予复合膜优异的抗污性,其对于高性能分离膜的构筑具有重要的科学指导意义和实际应用价值。

Description

一种纳米纤维素络合物复合聚酰胺膜及其制备方法
技术领域
本发明属于膜分离技术领域,涉及一种纳米纤维素络合物复合聚酰胺膜及其制备方法。
背景技术
随着工农业的迅速发展,水污染问题日益加剧,世卫组织称全球已有三成人(21亿)缺乏安全饮用水,每年有340多万人死于与水源有关的疾病。作为一种高效、环保、节能的分离技术,膜分离法可在分子水平上实现物质的选择性渗透分离,广泛应用于生物医药、电池隔膜、食品加工、气体分离、水处理、化工等领域。聚酰胺(PA)膜是分离膜的一个重要分支,由多元胺和多元酰氯单体在水与有机溶剂界面发生缩聚反应得到。由于界面聚合法具有操作简单、快速高效、自抑制性等优点,制备得到的PA膜已成为商品化纳滤膜和反渗透膜的主流产品。然而,PA膜存在着渗透性与选择性相互制约、易污染的共性难题,是制约分离效率的瓶颈。因此,亟需开发高性能的复合PA膜以推进其进一步发展和推广应用。
随着纳米技术的快速发展,将纳米材料原位引入到PA基质内构建薄层纳米复合(TFN)膜逐渐引起了广大学者的研究兴趣。该方法不仅可实现膜本体结构和表面结构的同步调控,而且只需在水相/有机相中原位加入纳米材料,是一种适于工业化应用的简便方法。现已有大量关于无机纳米材料(如SiO2、CNT、GO、Mxene等)TFN膜的报道,研究发现无机纳米材料的引入在不同程度上提高了复合膜的渗透通量(Water Res.,2020,173:115557;Adv.Mater.Interfaces,2021,8:2001671)。但无机纳米材料的分散性和与有机PA基体间的相容性较差,易产生界面缺陷,从而限制了复合膜的渗透选择性。
发明内容
本发明的目的是针对现有技术存在的上述问题,提出了一种高水渗透通量和分离精度的纳米纤维素络合物复合聚酰胺膜及其制备方法。
本发明的目的可通过下列技术方案来实现:一种纳米纤维素络合物复合聚酰胺膜,所述复合聚酰胺膜为通过含纳米纤维素络合物/胺类单体的水溶液和含多元酰氯单体的有机溶液在超滤膜表面进行界面聚合反应得到。
本发明还提供了一种纳米纤维素络合物复合聚酰胺膜的制备方法,所述方法包括如下步骤:
S1、将荷正电或负电的纳米纤维素水溶液滴加至与之相反电荷的纳米纤维素水溶液中,经离心、洗涤后得到纳米纤维素络合物水分散液;
S2、将超滤膜浸入到含纳米纤维素络合物和胺类单体的水相溶液中,排除膜表面过量水溶液,将多元酰氯有机溶液倒在膜表面静置,然后除去膜表面过量有机溶液,将膜热处理,经去离子水洗涤后得到纳米纤维素络合物复合聚酰胺膜。
本发明利用在水溶液中荷正电和荷负电纳米纤维素间静电作用力形成纳米纤维素络合物,在超滤膜表面进行含纳米纤维素络合物/胺类单体的水溶液和含多元酰氯单体的有机溶液间的界面聚合反应,得到纳米纤维素络合物复合聚酰胺膜。由于纳米纤维素络合物具有超亲水和多级孔特征,可提供超亲水纳米通道和超亲水表面,从而显著提升水渗透通量、分离精度和抗污性,实现聚酰胺膜的高性能化。
在上述的一种纳米纤维素络合物复合聚酰胺膜中,步骤S1荷正电纳米纤维素为季铵纤维素纳米纤维。
在上述的一种纳米纤维素络合物复合聚酰胺膜中,步骤S1荷负电纳米纤维素为TEMPO-纤维素纳米纤维、磷酸纤维素纳米纤维、羧甲基纤维素纳米纤维、磺酸纤维素纳米纤维、纤维素纳米晶中的任意一种。
在上述的一种纳米纤维素络合物复合聚酰胺膜中,步骤S1荷正电或负点的纳米纤维素水溶液浓度为0.01-0.5%,pH为2-12。
作为优选,步骤S1荷电型纳米纤维素的电荷量为0.1-4.0mmol/g。
作为优选,超滤膜为聚砜、聚醚砜、聚丙烯腈、聚偏氟乙烯超滤膜中的任意一种。
在上述的一种纳米纤维素络合物复合聚酰胺膜中,步骤S2水相溶液中纳米纤维素络合物的浓度为0.01-3%。
在上述的一种纳米纤维素络合物复合聚酰胺膜中,步骤S2水相溶液中胺类单体浓度为0.1-5%。
作为优选,胺类单体为哌嗪、间苯二胺、聚乙烯亚胺中的任意一种。
在上述的一种纳米纤维素络合物复合聚酰胺膜中,多元酰氯有机溶液的浓度为0.01-3%。
在上述的一种纳米纤维素络合物复合聚酰胺膜中,多元酰氯为均苯三甲酰氯、对苯二甲酰氯中的任意一种。
作为优选,多元酰氯有机溶液的溶剂为正己烷、环己烷、庚烷中的任意一种。
作为优选,将超滤膜浸入到纳米纤维素络合物和胺类单体的水相溶液中时间为1-10min,后排除膜表面过量水溶液,将多元酰氯有机溶液倒在膜表面静置时间为1-10分钟。
作为优选,步骤S2热处理温度为50-80℃,时间为5-20min。
作为优选,纳米纤维素络合物复合聚酰胺膜孔径为0.5-20nm、水接触角为2-40°、水渗透通量为35-100L/m2 h,无机盐截留率为5-100%。
与现有技术相比,本发明具有以下有益效果:
1.本发明通过多孔结构的纳米纤维素络合物利用内部的超亲水纳米通道实现兼具高通量、高分离精度聚酰胺复合膜的制备,且超亲水特征赋予复合膜优异的抗污性,其对于高性能分离膜的构筑具有重要的科学指导意义和实际应用价值。
2.本发明制备纳米纤维素络合物复合聚酰胺膜的工艺简单高效、快速便捷,是一种适于工业化应用的简便方法,可广泛应用于水处理、化工、制药和食品等分离领域。
具体实施方式
以下是本发明的具体实施例,对本发明的技术方案作进一步的描述,但本发明并不限于这些实施例。
实施例1:
将10ml、浓度为0.01%、pH为7.0的季铵纤维素纳米纤维(电荷量1.0mmol/g)水溶液以5滴/秒的速度滴加至搅拌状态下的10ml、浓度为0.01%、pH为7.0的TEMPO-纤维素纳米纤维(电荷量1.0mmol/g)水溶液中,通过离心、洗涤除去未络合的纳米纤维素,得到纳米纤维素络合物水溶液。
将聚砜超滤膜浸入到25mL的纳米纤维素络合物和哌嗪单体的水相溶液中1分钟,其中水相溶液中纳米纤维素络合物的浓度为0.1%,哌嗪单体的浓度为0.3%,然后排除膜表面过量水溶液,将25mL、浓度为0.05%的均苯三甲酰氯正己烷溶液倒在膜表面静置1分钟,随后除去膜表面过量有机溶液,将膜置于60℃烘箱中热处理10分钟,经去离子水洗涤后,得到纳米纤维素络合物复合聚酰胺膜。
实施例2:
将10ml浓度为0.01%、pH为7.0的季铵纤维素纳米纤维(电荷量1.0mmol/g)水溶液以5滴/秒的速度滴加至搅拌状态下的10ml浓度为0.01%、pH为7.0的TEMPO-纤维素纳米纤维(电荷量1.0mmol/g)水溶液中,通过离心、洗涤除去未络合的纳米纤维素,得到纳米纤维素络合物水溶液。
将聚砜超滤膜浸入到25mL的纳米纤维素络合物和哌嗪单体的水相溶液中1分钟,其中水相溶液中纳米纤维素络合物的浓度为0.01%、哌嗪单体的浓度为0.2%,然后排除膜表面过量水溶液,将25mL浓度为0.05%的均苯三甲酰氯正己烷溶液倒在膜表面静置1分钟,随后除去膜表面过量有机溶液,将膜置于60℃烘箱中热处理100分钟,经去离子水洗涤后,得到纳米纤维素络合物复合聚酰胺膜。
实施例3:
将10ml、浓度为0.01%、pH为7.0的季铵纤维素纳米纤维(电荷量1.0mmol/g)水溶液以5滴/秒的速度滴加至搅拌状态下的10ml、浓度为0.01%、pH为7.0的TEMPO-纤维素纳米纤维(电荷量1.0mmol/g)水溶液中,通过离心、洗涤除去未络合的纳米纤维素,得到纳米纤维素络合物水溶液。
将聚砜超滤膜浸入到25mL的纳米纤维素络合物和哌嗪单体的水相溶液中1分钟,其中水相溶液中纳米纤维素络合物的浓度为3%,哌嗪单体的浓度为3%,然后排除膜表面过量水溶液,将25mL、浓度为0.05%的均苯三甲酰氯正己烷溶液倒在膜表面静置1分钟,随后除去膜表面过量有机溶液,将膜置于60℃烘箱中热处理10分钟,经去离子水洗涤后,得到纳米纤维素络合物复合聚酰胺膜。
对比例1:
与实施例1的区别,仅在于,对比例1未经制备纳米纤维素络合物,直接以哌嗪为水相单体,经过和均苯三甲酰氯正己烷溶液间的界面聚合制备聚酰胺膜。
对比例2:
与实施例1的区别,仅在于,对比例2未经制备纳米纤维素络合物,直接以季铵纤维素纳米纤维和哌嗪为水相单体,经过和均苯三甲酰氯正己烷溶液间的界面聚合制备季铵纤维素纳米纤维复合聚酰胺膜
对比例3:
与实施例1的区别,仅在于,对比例3未经制备纳米纤维素络合物,直接以TEMPO-纤维素纳米纤维和哌嗪为水相单体,经过和均苯三甲酰氯正己烷溶液间的界面聚合制备TEMPO-纤维素纳米纤维复合聚酰胺膜。
表1:实施例1-4、对比例1-3制备的纳米纤维素络合物复合聚酰胺膜物理性能检测结果
实施例 膜孔径(nm) 水接触角(°)
实施例1 0.66 25
实施例2 0.50 40
实施例3 1.02 15
对比例1 0.45 65
对比例2 0.40 40
对比例3 0.55 37
通量测试:裁取标准大小膜片(面积为A:m2),固定于超滤杯中,在0.4MPa下用去离子水预压30min,然后在相同压力下收集t(h)时间内的去离子水,测量其体积V(L),计算水通量J(L/m2h)。
无机盐分离:将膜片固定在超滤杯中,在0.4MPa下用一定浓度cf(mg/L)的无机盐(硫酸钠、氯化钠)水溶液预压30min,然后在相同压力下收集10mL过滤液,用电导率仪测量其浓度cp(mg/L),计算无机盐截留率R(%)。
抗污性:将膜片固定在超滤杯中,在0.4MPa下用去离子水预压30min,继续运行2h后,记录膜的水渗透通量J0(L/m2 h),然后以一定浓度的污染物(BSA、LYZ、HA、NaAlg)水溶液为进料液,在0.4MPa下运行6h,每隔1h记录一次渗透通量,将污染膜的最低通量记为Js(L/m2h)。将2h的水溶液测试和6h的污染物测试作为一个循环,在2.5个循环后,再次记录膜的渗透通量Jr(L/m2 h)。抗污能力可用膜的通量降低率(FDR)、通量恢复率(FRR)表示:
表2:实施例1-2、对比例1-3制备的聚酰胺膜性能检测结果
从上述结果可以看出,实施例1、对比例1-3制备的聚酰胺膜四种方法均可制得聚酰胺膜,但其水渗透通量、无机盐截留率和抗污性能有明显的差别,原因在于聚酰胺膜的物化结构不同造成的。
对比例1中未经制备纳米纤维素络合物,直接以哌嗪为水相单体,所得聚酰胺膜由致密的聚酰胺链组成,表现出低的水渗透通量和抗污性能;
对比例2中未经制备纳米纤维素络合物,直接以季铵纤维素纳米纤维和哌嗪为水相单体,由于季铵纤维素纳米纤维会和均苯三甲酰氯水解产生的羧基间形成静电相互作用力,所得季铵纤维素纳米纤维复合聚酰胺膜的结构变得更为致密且容易产生缺陷,使得水渗透通量和截留率均降低,但超亲水季铵纤维素纳米纤维的引入提高了膜表面亲水性,从而使复合聚酰胺膜的抗污性提升;
对比例3中未经制备纳米纤维素络合物,直接以TEMPO-纤维素纳米纤维和哌嗪为水相单体,亲水性TEMPO-纤维素纳米纤维的引入有利于形成低传质阻力界面通道,且增强复合膜的表面荷负电性,因此所得TEMPO-纤维素纳米纤维复合聚酰胺膜的纯水渗透通量、无机盐截留率均、抗污性均有所升高,但仍显著低于实施例1。
综上所述,本发明亲水性纳米纤维素络合物内部的多孔结构可为水分子的透过提供低传质阻力的超亲水纳米通道,从而显著提高复合聚酰胺膜的水渗透通量、无机盐截留率和抗污能力。
本处实施例对本发明要求保护的技术范围中点值未穷尽之处以及在实施例技术方案中对单个或者多个技术特征的同等替换所形成的新的技术方案,同样都在本发明要求保护的范围内;同时本发明方案所有列举或者未列举的实施例中,在同一实施例中的各个参数仅仅表示其技术方案的一个实例(即一种可行性方案),而各个参数之间并不存在严格的配合与限定关系,其中各参数在不违背公理以及本发明述求时可以相互替换,特别声明的除外。
本发明方案所公开的技术手段不仅限于上述技术手段所公开的技术手段,还包括由以上技术特征任意组合所组成的技术方案。以上所述是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本发明的保护范围。
本文中所描述的具体实施例仅仅是对本发明精神作举例说明。本发明所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,但并不会偏离本发明的精神或者超越所附权利要求书所定义的范围。

Claims (1)

1.一种纳米纤维素络合物复合聚酰胺膜,其特征在于,所述复合聚酰胺膜为通过含纳米纤维素络合物/胺类单体的水溶液和含多元酰氯单体的有机溶液在超滤膜表面进行界面聚合反应得到;
所述复合聚酰胺膜制备方法包括如下步骤:
S1、将季铵纤维素纳米纤维水溶液滴加至TEMPO-纤维素纳米纤维水溶液中,经离心、洗涤后得到纳米纤维素络合物水分散液;
S2、将超滤膜浸入到含纳米纤维素络合物和哌嗪单体的水相溶液中,排除膜表面过量水溶液,将均苯三甲酰氯正己烷溶液倒在膜表面静置,然后除去膜表面过量有机溶液,将膜热处理,经去离子水洗涤后得到纳米纤维素络合物复合聚酰胺膜;
步骤S1季铵纤维素纳米纤维水溶液浓度为0.01%,pH为7;
步骤S2水相溶液中纳米纤维素络合物的浓度为0.01%;
步骤S2水相溶液中哌嗪单体浓度为0.3%;
均苯三甲酰氯正己烷溶液的浓度为0.05%;
纳米纤维素络合物复合聚酰胺膜膜孔径为0.66nm、水接触角为25°、水渗透通量为50.2L/m2 h,硫酸钠截留率为99.2%,氯化钠截留率为15.8%,FDR为10.5%。
CN202110819270.5A 2021-07-20 2021-07-20 一种纳米纤维素络合物复合聚酰胺膜及其制备方法 Active CN113731191B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110819270.5A CN113731191B (zh) 2021-07-20 2021-07-20 一种纳米纤维素络合物复合聚酰胺膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110819270.5A CN113731191B (zh) 2021-07-20 2021-07-20 一种纳米纤维素络合物复合聚酰胺膜及其制备方法

Publications (2)

Publication Number Publication Date
CN113731191A CN113731191A (zh) 2021-12-03
CN113731191B true CN113731191B (zh) 2024-06-25

Family

ID=78728778

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110819270.5A Active CN113731191B (zh) 2021-07-20 2021-07-20 一种纳米纤维素络合物复合聚酰胺膜及其制备方法

Country Status (1)

Country Link
CN (1) CN113731191B (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028120A (zh) * 2014-05-16 2014-09-10 浙江大学 羧甲基纤维素钠复合物填充聚酰胺纳滤膜的制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100725924B1 (ko) * 2006-10-30 2007-06-11 전북대학교산학협력단 고분자 박막이 적층된 나노섬유 필라멘트 및 그의 제조방법
WO2017205458A1 (en) * 2016-05-24 2017-11-30 Vanderbilt University Nanofiber-based bipolar membranes, fabricating methods and applications of same
WO2013023006A2 (en) * 2011-08-08 2013-02-14 California Institute Of Technology Filtration membranes, and related nano and/or micro fibers, composites, methods and systems
CN104992853B (zh) * 2015-07-27 2017-06-23 南京林业大学 制备超级电容器柔性可弯曲薄膜电极的方法
CN106739363A (zh) * 2016-05-05 2017-05-31 林小锋 一种多层复合结构的薄膜复合膜及其制备方法
CN106040014B (zh) * 2016-06-29 2019-05-14 浙江大学 一种纳米晶纤维素复合的抗氧化纳滤膜及其制备方法
CN106436316A (zh) * 2016-09-23 2017-02-22 安徽丰磊制冷工程有限公司 一种高耐磨的静电纺/驻极体复合纤维膜过滤材料及其制备方法
CN111229053B (zh) * 2020-02-17 2022-03-08 中国科学院苏州纳米技术与纳米仿生研究所 一种高通量纳滤膜、其制备方法及应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104028120A (zh) * 2014-05-16 2014-09-10 浙江大学 羧甲基纤维素钠复合物填充聚酰胺纳滤膜的制备方法

Also Published As

Publication number Publication date
CN113731191A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
CN111229053B (zh) 一种高通量纳滤膜、其制备方法及应用
CN109126463B (zh) 一种含微孔中间层高通量纳滤膜的制备方法
Liu et al. A review: the effect of the microporous support during interfacial polymerization on the morphology and performances of a thin film composite membrane for liquid purification
Safarpour et al. Polyvinyl chloride-based membranes: A review on fabrication techniques, applications and future perspectives
Fan et al. Preparation and characterization of polyaniline/polysulfone nanocomposite ultrafiltration membrane
Chen et al. Antibacterial polyvinyl alcohol nanofiltration membrane incorporated with Cu (OH) 2 nanowires for dye/salt wastewater treatment
CN107158980A (zh) 基于气/液界面反应的薄层复合膜及其制备方法和应用
CN112275140B (zh) 具有图案表面的聚酰胺纳滤膜及制备方法
CN104174299B (zh) 基于超薄支撑层的高通量正渗透膜及其制备方法
CN110665377B (zh) 一种高通量抗污染反渗透膜及其制备方法
CN109603563B (zh) 一种锌配位有机纳米粒子杂化聚酰胺膜的制备方法
CN107349787B (zh) 一种添加氨基化石墨烯量子点的正渗透膜制备方法、所制备的正渗透膜以及该膜的应用
Wang et al. Preparation and properties of polyamide/titania composite nanofiltration membrane by interfacial polymerization
CN104028120B (zh) 羧甲基纤维素钠复合物填充聚酰胺纳滤膜的制备方法
CN106925121B (zh) 一种Mg2+和Li+分离三通道内皮层荷正电纳滤膜及其制备方法
JP6786519B2 (ja) 接線流濾過モードで作動するナノファイバー限外濾過膜を用いた、試料中の目的の生物学的物質を精製する方法
CN110201544B (zh) 一种高通量高选择性纳滤膜及其制备方法
CN110801738B (zh) 一种高分散二氧化钛掺杂聚酰胺纳滤膜的制备方法
CN112316752B (zh) 一种磺胺类小分子表面改性聚酰胺复合膜及其制备方法
CN103316599A (zh) 一种甜菜碱胶体纳米粒子改性壳聚糖纳滤膜的制备方法
CN113731190B (zh) 一种纳米纤维素层层自组装膜及其制备方法
Ji et al. Recent developments in polymeric nano-based separation membranes
Wan et al. Seven-bore hollow fiber membrane (HFM) for ultrafiltration (UF)
Deng et al. Carbon quantum dots (CQDs) and polyethyleneimine (PEI) layer-by-layer (LBL) self-assembly PEK-C-based membranes with high forward osmosis performance
Ma et al. Novel dopamine-modified cellulose acetate ultrafiltration membranes with improved separation and antifouling performances

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant