CN113694904B - 一种吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用 - Google Patents

一种吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用 Download PDF

Info

Publication number
CN113694904B
CN113694904B CN202111033185.2A CN202111033185A CN113694904B CN 113694904 B CN113694904 B CN 113694904B CN 202111033185 A CN202111033185 A CN 202111033185A CN 113694904 B CN113694904 B CN 113694904B
Authority
CN
China
Prior art keywords
sponge
dopamine
adsorption
halloysite nanotube
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111033185.2A
Other languages
English (en)
Other versions
CN113694904A (zh
Inventor
徐小龙
聂楷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Science and Technology of China USTC
Original Assignee
University of Science and Technology of China USTC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Science and Technology of China USTC filed Critical University of Science and Technology of China USTC
Priority to CN202111033185.2A priority Critical patent/CN113694904B/zh
Publication of CN113694904A publication Critical patent/CN113694904A/zh
Application granted granted Critical
Publication of CN113694904B publication Critical patent/CN113694904B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/265Synthetic macromolecular compounds modified or post-treated polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/12Naturally occurring clays or bleaching earth
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/405Impregnation with polymerisable compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用,该吸附海绵的制备方法为:首先将聚氨酯海绵吸附多巴胺并聚合,形成聚多巴胺功能化的海绵;然后将埃洛石纳米管用3‑氨丙基三乙氧基硅烷进行修饰,使其表面带有氨基基团,得到氨基化的埃洛石纳米管;最后将聚多巴胺功能化的海绵与氨基化的埃洛石纳米管置于缓冲溶液中,利用迈克尔加成/席夫碱化学反应使氨基化的埃洛石纳米管连接到聚多巴胺功能化的海绵上,即获得吸附海绵。本发明的制备方法操作简单、可重复性高、成本低,且所得新型吸附海绵的吸附能力相对于原始海绵具有明显提高,同时也避免了传统粉末吸附剂回收困难等问题。

Description

一种吸附海绵及其在工业染料与重金属离子污水吸附处理中 的应用
技术领域
本发明涉及水污染处理技术领域,具体涉及是一种新型吸附海绵、其制备方法及其在工业染料与重金属离子污水吸附处理中的应用。
背景技术
纺织品、印刷品、塑料制品等行业的工业污水通常有毒且对环境有害。目前,工业行业的污水通常的处理方法包括沉淀法、凝固法、膜分离法、光降解法、离子交换法和吸附法。因吸附法操作简便、可大规模生产成本低等优点,成为主要的污水处理方法。因此制备可在不造成环境污染的情况下高效、低成本的处理染料污水及重金属离子污水的染料废水吸附材料备受关注。包括沸石、高岭石、锯末、粉煤灰等常见吸附剂,对正负离子均具有很高的吸附能力,被广泛研究和应用于水处理中。
埃洛石纳米管作为一种经济可行的粘土矿物,由于其中空的管状结构、高比表面积和独特的表面性质,具有作为纳米吸附剂、聚合物复合材料填料和装载活性剂容器的潜力。埃洛石纳米管具有多层壁,外表面是带有负电荷的Si-OH、内表面是带正电荷的Al-OH,这种独特的二价形态,具有空间分离的正负表面,使得埃洛石成为正负污染物的良好吸附剂。改性后的埃洛石可以通过化学反应在其表面进行进一步修饰,更易通过化学反应与其他材料相连。埃洛石的改性通常使用硅烷偶联剂、表面活性剂、金属配合物和聚电解质。但现有埃洛石纳米管粉末吸附剂易堵塞管道、回收困难。
聚氨酯海绵作为常见的家居装饰品等原始材料,年产量巨大,同时如何有效的处理废弃海绵也是一项巨大挑战。海绵具有多孔结构,也具有吸附剂的特性,同时海绵本身也具有吸水性,可以更有效的接触过滤有害物质。但是海绵本身的吸附能力及效率有限,如何将有效的传统吸附粉末与海绵通过化学连接作为一种新型复合吸附材料尚未见报道。
发明内容
为了克服传统粉末吸附剂易堵塞管道、回收困难以及海绵本身吸效率低、吸附能力弱的问题,本发明提供一种通过化学反应将埃洛石与聚氨酯海绵连接制备新型吸附海绵材料的方法,旨在使该材料可用于高效吸附污水中的有机染料及重金属离子。
本发明为实现目的,采用如下技术方案:
本发明首先公开了一种新型吸附海绵的制备方法,其特点在于:首先将聚氨酯海绵吸附多巴胺并聚合,形成聚多巴胺功能化的海绵;然后将埃洛石纳米管用3-氨丙基三乙氧基硅烷进行修饰,使其表面带有氨基基团,得到氨基化的埃洛石纳米管;最后将聚多巴胺功能化的海绵与氨基化的埃洛石纳米管置于缓冲溶液中,利用迈克尔加成/席夫碱化学反应使氨基化的埃洛石纳米管连接到聚多巴胺功能化的海绵上,即获得吸附海绵。具体包括如下步骤:
(1)将聚氨酯海绵浸入多巴胺的缓冲溶液分散液中,通过挤压使聚氨酯海绵中的气泡排出,从而使聚氨酯海绵充分吸附多巴胺;然后在室温下搅拌使多巴胺发生聚合反应;反应结束后,过滤、洗涤、干燥,得到聚多巴胺功能化的海绵;
(2)将埃洛石纳米管粉末分散在甲苯溶液中,加入3-氨丙基三乙氧基硅烷并超声分散均匀,然后加入三乙胺作为催化剂,油浴下搅拌回流反应;反应结束后,过滤、洗涤、干燥,得到氨基化的埃洛石纳米管;
(3)将步骤(1)所得的聚多巴胺功能化的海绵与步骤(2)所得的氨基化的埃洛石纳米管置于缓冲溶液中,搅拌回流反应;反应结束后,过滤、洗涤、干燥,即获得吸附海绵。
本发明采用常见的有机反应迈克尔加成/席夫碱反应将聚多巴胺功能化的海绵与氨基化的埃洛石连接:首先受贻贝灵感的启发,将聚氨酯海绵浸入多巴胺溶液中进行表面多巴胺的涂覆,反应后海绵表面会形成一层带有大量羟基及氨基的聚多巴胺薄膜;然后埃洛石纳米管通过常见的硅烷偶联剂进行反应,使其外表面带有氨基;最后在pH 8.5的缓冲溶液条件下通过化学反应连接。
进一步地,步骤(1)中,所述聚氨酯海绵首先依次用丙酮、乙醇和去离子水超声清洗,然后烘干。
进一步地,步骤(1)中,所述多巴胺的缓冲溶液分散液是通过将多巴胺粉末加入pH8.5的Tris-HCl缓冲溶液中超声分散得到,其中多巴胺的浓度为0.5~2g/L。
进一步地,步骤(1)中,所述搅拌反应的搅拌速度为500rpm、搅拌时间为12~24h。
进一步地,步骤(2)中,埃洛石纳米管粉末首先用细胞破碎机200~700W下超声破碎20~60min。
进一步地,步骤(2)中:埃洛石纳米管粉末、甲苯溶液、3-氨丙基三乙氧基硅烷、三乙胺的用量比为1~3g:100mL:0.5~2mL:0.2~0.5mL;所述回流反应的温度为80℃、搅拌速度为500rpm、反应时间为12~24h。
进一步地,步骤(3)中:聚多巴胺功能化的海绵、氨基化的埃洛石纳米管与缓冲溶液的用量比为0.2~0.4g:0.2~0.4g:100mL;所述缓冲溶液为pH 8.5的Tris-HCl缓冲溶液;所述回流反应的温度为80℃、搅拌速度为300rpm、反应时间为15~30h;所述洗涤是以0.1MHCl进行洗涤,以去除氢键作用吸附的埃洛石纳米管,物理吸附键不牢固容易脱去。
本发明还公开了所述的新型吸附海绵在工业染料与重金属离子污水吸附处理中的应用。所述染料可为阴离子染料刚果红和甲基橙中的至少一种,所述重金属离子可为六价铬离子。应用的方式可为:将新型吸附海绵直接加入到工业染料与重金属离子污水中进行吸附。
与现有技术相比,本发明的有益效果体现在:
1、本发明制备新型吸附海绵的方法条件温和、操作简单、可重复性高、不会对环境产生二次污染,且所涉及的聚氨酯海绵及埃洛石纳米管原材料广泛、成本低廉。
2、本发明所制备的新型吸附海绵作为一种新的有机-无机复合材料,融合了有机物与无机物的特性,与普通海绵相比具有强大高效的吸附能力,且埃洛石纳米管通过化学反应连接到海绵上不易脱落到环境中,因此与传统吸附粉末相比兼具吸附能力的同时易回收。
附图说明
图1为本发明所用原始聚氨酯海绵的SEM图;
图2为本发明实施例1中聚多巴胺功能化的海绵的SEM图;
图3为本发明实施例1所制备的新型吸附海绵的SEM图。
具体实施方式
下面结合实施例和附图对本发明作进一步的详细阐述,但本发明的实施方式不限于此。
实施例1
本实施例按如下步骤制备吸附海绵:
(1)将聚氨酯海绵(其SEM图如图1所示)剪成1cm×1cm的小块,先依次用丙酮与乙醇超声清洗30min,再用去离子水彻底冲洗,然后置于40℃烘箱中干燥,备用。
(2)称取1.2g多巴胺溶于600mL pH 8.5的Tris-HCl缓冲溶液中,超声分散均匀,获得多巴胺的缓冲溶液分散液。
将聚氨酯海绵浸入多巴胺的缓冲溶液分散液中,通过挤压使聚氨酯海绵中的气泡排出,从而使聚氨酯海绵充分吸附多巴胺;然后在室温下500rpm搅拌24h,使多巴胺发生聚合反应;反应结束后,过滤、用去离子水洗涤、40℃烘箱干燥,得到聚多巴胺功能化的海绵,其SEM图如图2所示。
(3)称取1g埃洛石纳米管(细胞破碎机500W破碎60min)于100mL甲苯中,超声分散10min,加入2mL 3-氨丙基三乙氧基硅烷作为反应剂,超声分散均匀后,再加入0.5mL三乙胺作为催化剂,500rpm搅拌下,80℃真空回流反应24h;反应结束后,过滤、用乙腈酒精交替洗三次、60℃下真空干燥6h,得到氨基化的埃洛石纳米管。
(4)称取0.4g氨基化的埃洛石纳米管,加入到100mL pH 8.5的Tris-HCl缓冲溶液中,超声分散10min,加入0.3g聚多巴胺功能化的海绵,将海绵内部的气泡挤出,300rpm搅拌下,80℃回流反应24h;反应结束后,过滤、用0.1M HCl彻底洗涤、40℃烘干,即获得吸附海绵,其SEM图如图3所示。
为测定本实施例所得吸附海绵对重金属离子和染料的吸附性能,在50mL圆底离心管中分别加入浓度为10-4M的刚果红溶液(CR,模拟染料废水)与10-5M的重铬酸钾溶液(K2Cr2O7,模拟重金属离子废水)15mL,并调节溶液pH,然后在每份溶液中加入0.04g新型吸附海绵(PU-PDA@HNT-A),或加入0.04g未处理的聚氨酯海绵(PU)作为对比,水平振荡1h后测量吸光度的变化,比较有害物质去除率大小。结果如表1所示。
表1本实施例所制备的新型吸附海绵与未修饰海绵对CR与K2Cr2O7的吸附去除率
Figure GDA0003817064000000041
由表1可以看出,相比未修饰海绵,本实施例制备的新型吸附海绵的吸附去除率明显提升。
实施例2
本实施例按如下步骤制备吸附海绵:
(1)将聚氨酯海绵海绵剪成1cm×1cm的小块,先依次用丙酮与乙醇超声清洗30min,再用去离子水彻底冲洗,然后置于40℃烘箱中干燥,备用。
(2)称取0.3g多巴胺溶于600mL pH 8.5的Tris-HCl缓冲溶液中,超声分散均匀,获得多巴胺的缓冲溶液分散液。
将聚氨酯海绵浸入多巴胺的缓冲溶液分散液中,通过挤压使聚氨酯海绵中的气泡排出,从而使聚氨酯海绵充分吸附多巴胺;然后在室温下500rpm搅拌12h,使多巴胺发生聚合反应;反应结束后,过滤、用去离子水洗涤、40℃烘箱干燥,得到聚多巴胺功能化的海绵。
(3)称取1g埃洛石纳米管(细胞破碎机300W破碎20min)于100mL甲苯中,超声分散10min,加入0.5mL 3-氨丙基三乙氧基硅烷作为反应剂,超声分散均匀后,再加入0.2mL三乙胺作为催化剂,500rpm搅拌下,80℃真空回流反应12h;反应结束后,过滤、用乙腈酒精交替洗三次、60℃下真空干燥6h,得到氨基化的埃洛石纳米管。
(4)称取0.2g氨基化的埃洛石纳米管,加入到100mL pH 8.5的Tris-HCl缓冲溶液中,超声分散10min,加入0.3g聚多巴胺功能化的海绵,将海绵内部的气泡挤出,300rpm搅拌下,80℃回流反应24h;反应结束后,过滤、用0.1M HCl彻底洗涤、40℃烘干,即获得吸附海绵。
经测试,本实施例所得吸附海绵对染料与重金属离子具有强大高效的吸附能力。
实施例3
本实施例按如下步骤制备吸附海绵:
(1)将聚氨酯海绵海绵剪成1cm×1cm的小块,先依次用丙酮与乙醇超声清洗30min,再用去离子水彻底冲洗,然后置于40℃烘箱中干燥,备用。
(2)称取0.6g多巴胺溶于600mL pH 8.5的Tris-HCl缓冲溶液中,超声分散均匀,获得多巴胺的缓冲溶液分散液。
将聚氨酯海绵浸入多巴胺的缓冲溶液分散液中,通过挤压使聚氨酯海绵中的气泡排出,从而使聚氨酯海绵充分吸附多巴胺;然后在室温下500rpm搅拌18h,使多巴胺发生聚合反应;反应结束后,过滤、用去离子水洗涤、40℃烘箱干燥,得到聚多巴胺功能化的海绵。
(3)称取1g埃洛石纳米管(细胞破碎机400W破碎35min)于100mL甲苯中,超声分散10min,加入1mL 3-氨丙基三乙氧基硅烷作为反应剂,超声分散均匀后,再加入0.2mL三乙胺作为催化剂,500rpm搅拌下,80℃真空回流反应18h;反应结束后,过滤、用乙腈酒精交替洗三次、60℃下真空干燥6h,得到氨基化的埃洛石纳米管。
(4)称取0.3g氨基化的埃洛石纳米管,加入到100mL pH 8.5的Tris-HCl缓冲溶液中,超声分散10min,加入0.3g聚多巴胺功能化的海绵,将海绵内部的气泡挤出,300rpm搅拌下,80℃回流反应24h;反应结束后,过滤、用0.1M HCl彻底洗涤、40℃烘干,即获得吸附海绵。
经测试,本实施例所得吸附海绵对染料与重金属离子具有强大高效的吸附能力。
以上仅为本发明的示例性实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种吸附海绵的制备方法,其特征在于:首先将聚氨酯海绵吸附多巴胺并聚合,形成聚多巴胺功能化的海绵;然后将埃洛石纳米管用3-氨丙基三乙氧基硅烷进行修饰,使其表面带有氨基基团,得到氨基化的埃洛石纳米管;最后将聚多巴胺功能化的海绵与氨基化的埃洛石纳米管置于pH 8.5的缓冲溶液中,利用迈克尔加成/席夫碱化学反应使氨基化的埃洛石纳米管连接到聚多巴胺功能化的海绵上,即获得吸附海绵。
2.根据权利要求1所述的制备方法,其特征在于,包括如下步骤:
(1)将聚氨酯海绵浸入多巴胺的缓冲溶液分散液中,通过挤压使聚氨酯海绵中的气泡排出,从而使聚氨酯海绵充分吸附多巴胺;然后在室温下搅拌使多巴胺发生聚合反应;反应结束后,过滤、洗涤、干燥,得到聚多巴胺功能化的海绵;
(2)将埃洛石纳米管粉末分散在甲苯溶液中,加入3-氨丙基三乙氧基硅烷并超声分散均匀,然后加入三乙胺作为催化剂,油浴下搅拌回流反应;反应结束后,过滤、洗涤、干燥,得到氨基化的埃洛石纳米管;
(3)将步骤(1)所得的聚多巴胺功能化的海绵与步骤(2)所得的氨基化的埃洛石纳米管置于缓冲溶液中,搅拌回流反应;反应结束后,过滤、洗涤、干燥,即获得吸附海绵。
3.根据权利要求2所述的制备方法,其特征在于:步骤(1)中,所述聚氨酯海绵首先依次用丙酮、乙醇和去离子水清洗,然后烘干。
4.根据权利要求2所述的制备方法,其特征在于:步骤(1)中,所述多巴胺的缓冲溶液分散液是通过将多巴胺粉末加入pH 8.5的Tris-HCl缓冲溶液中超声分散得到,其中多巴胺的浓度为0.5~2g/L。
5.根据权利要求2所述的制备方法,其特征在于:步骤(1)中,所述搅拌反应的搅拌速度为500rpm、搅拌时间为12~24h。
6.根据权利要求2所述的制备方法,其特征在于:步骤(2)中,埃洛石纳米管粉末首先用细胞破碎机200~700W下超声破碎20~60min。
7.根据权利要求2所述的制备方法,其特征在于,步骤(2)中:埃洛石纳米管粉末、甲苯溶液、3-氨丙基三乙氧基硅烷、三乙胺的用量比为1~3g:100mL:0.5~2mL:0.2~0.5mL;所述回流反应的温度为80℃、搅拌速度为500rpm、反应时间为12~24h。
8.根据权利要求2所述的制备方法,其特征在于,步骤(3)中:聚多巴胺功能化的海绵、氨基化的埃洛石纳米管与缓冲溶液的用量比为0.2~0.4g:0.2~0.4g:100mL;所述缓冲溶液为pH 8.5的Tris-HCl缓冲溶液;所述回流反应的温度为80℃、搅拌速度为300rpm、反应时间为15~30h;所述洗涤是以0.1M HCl进行洗涤,以去除氢键作用吸附的埃洛石纳米管。
9.一种权利要求1~8中任意一项所述制备方法所制备的吸附海绵。
10.一种权利要求9所述吸附海绵在工业染料与重金属离子污水吸附处理中的应用。
CN202111033185.2A 2021-09-03 2021-09-03 一种吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用 Active CN113694904B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111033185.2A CN113694904B (zh) 2021-09-03 2021-09-03 一种吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111033185.2A CN113694904B (zh) 2021-09-03 2021-09-03 一种吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用

Publications (2)

Publication Number Publication Date
CN113694904A CN113694904A (zh) 2021-11-26
CN113694904B true CN113694904B (zh) 2022-10-28

Family

ID=78659489

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111033185.2A Active CN113694904B (zh) 2021-09-03 2021-09-03 一种吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用

Country Status (1)

Country Link
CN (1) CN113694904B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115554999B (zh) * 2022-09-27 2024-03-19 南京大学 胺化聚氨酯海绵吸附剂的合成方法与应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108421536B (zh) * 2018-03-08 2019-10-18 东华理工大学 一种埃洛石纳米管/聚吡咯复合吸附剂的制备方法及应用

Also Published As

Publication number Publication date
CN113694904A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
Cao et al. Modification of chitin with high adsorption capacity for methylene blue removal
Gao et al. Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions
Wang et al. High aspect ratio carboxylated cellulose nanofibers cross-linked to robust aerogels for superabsorption–flocculants: paving way from nanoscale to macroscale
Sun et al. Hydrophobicity-adjustable mof constructs superhydrophobic mof-rgo aerogel for efficient oil–water separation
Jiang et al. Application of biodegradable cellulose-based biomass materials in wastewater treatment
Liu et al. Fast and robust lead (II) removal from water by bioinspired amyloid lysozyme fibrils conjugated with polyethyleneimine (PEI)
Noreen et al. Treatment of textile wastewater containing acid dye using novel polymeric graphene oxide nanocomposites (GO/PAN, GO/PPy, GO/PSty)
Li et al. A versatile bio-based material for efficiently removing toxic dyes, heavy metal ions and emulsified oil droplets from water simultaneously
Chen et al. A multifunctional superhydrophobic melamine sponge decorated with Fe3O4/Ag nanocomposites for high efficient oil-water separation and antibacterial application
Xing et al. MOFs self-assembled molecularly imprinted membranes with photoinduced regeneration ability for long-lasting selective separation
Bai et al. Kaolin/CaAlg hydrogel thin membrane with controlled thickness, high mechanical strength, and good repetitive adsorption performance for dyes
CN110115982B (zh) 一种磁性环糊精基螯合脱色吸附材料及其制备方法
Liu et al. Radiation synthesis and performance of novel cellulose-based microsphere adsorbents for efficient removal of boron (III)
CN109096534B (zh) 石墨烯/氯化聚丙烯改性的三聚氰胺泡沫吸油材料及其制备方法
CN105797596B (zh) 一种用于水净化的过滤膜的制备方法
Yan et al. A magnetically recyclable magnetic graphite oxide composite functionalized with polydopamine and β-cyclodextrin for cationic dyes wastewater remediation: Investigation on adsorption performance, reusability and adsorption mechanism
CN113694904B (zh) 一种吸附海绵及其在工业染料与重金属离子污水吸附处理中的应用
Xu et al. Uniform magnetic chitosan microspheres with radially oriented channels by electrostatic droplets method for efficient removal of Acid Blue
Nan et al. Preparation of superhydrophilic adsorbents with 3DOM structure by water-soluble colloidal crystal templates for boron removal from natural seawater
Vo et al. Modification of the interfacial glass fiber surface through graphene oxide-chitosan interactions for excellent dye removal as an adsorptive membrane
Lin et al. Mussel-inspired fabrication of pH-responsive pomelo peels as “smart” bio-based adsorbents for controllable removal of both cationic and anionic dyes
Wu et al. Dual-imprinted mixed matrix membranes for selective recognition and separation: A synergetic imprinting strategy based on complex initiation system
Shi et al. In situ cross-linked polymerization toward poly (ether sulfone)/poly (sodium acrylate) hybrid particles for the removal of environmental toxins
CN105457505A (zh) 吸附重金属离子型抗污染杂化平板分离膜及其制备方法
Ansari et al. Metal-Organic-Frameworks (MOFs) for industrial wastewater treatment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant