CN113694211B - 电荷反转型超分子聚肽前药纳米粒子及其制备方法和应用 - Google Patents

电荷反转型超分子聚肽前药纳米粒子及其制备方法和应用 Download PDF

Info

Publication number
CN113694211B
CN113694211B CN202110829969.XA CN202110829969A CN113694211B CN 113694211 B CN113694211 B CN 113694211B CN 202110829969 A CN202110829969 A CN 202110829969A CN 113694211 B CN113694211 B CN 113694211B
Authority
CN
China
Prior art keywords
charge
poly
lysine
polypeptide
reversal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110829969.XA
Other languages
English (en)
Other versions
CN113694211A (zh
Inventor
丁月
王陈威
马宇轩
朱吕明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nantong University
Original Assignee
Nantong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantong University filed Critical Nantong University
Priority to CN202110829969.XA priority Critical patent/CN113694211B/zh
Publication of CN113694211A publication Critical patent/CN113694211A/zh
Application granted granted Critical
Publication of CN113694211B publication Critical patent/CN113694211B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种电荷反转型超分子聚肽前药纳米粒子及其制备方法和在制备肿瘤治疗药品中的应用,属于生物医药技术领域。该电荷反转型超分子聚肽前药纳米粒子由柱[5]芳烃‑聚(L‑赖氨酸)和吡啶‑聚(L‑赖氨酸)负载二氢卟吩制成。本发明的纳米粒子进入肿瘤细胞后,在660 nm近红外光照射下,负载的二氢卟吩能够释放活性氧,从而杀死肿瘤细胞,实现光动力治疗;同时改活性氧能够使链接阿霉素的铜缩硫醇链接键断裂,从而释放出游离的化疗药物阿霉素,杀死肿瘤细胞,进行化疗。

Description

电荷反转型超分子聚肽前药纳米粒子及其制备方法和应用
技术领域
本发明属于生物医药技术领域,具体涉及一种电荷反转型超分子聚肽前药纳米粒子及其制备方法和在制备肿瘤治疗药品中的应用。
背景技术
目前,聚肽的合成方法主要是通过一级胺或碱性引发剂引发单体α-氨基酸-N-羧基酸酐(NCA)的开环聚合法(ROP),其功能化则是利用具有功能基团的氨基酸单体(如半胱氨酸、天冬氨酸、谷氨酸等),对聚肽的侧链进行功能化修饰。在药物输送方面的应用,科研工作者主要是合成两亲性聚肽共聚物,利用其自组装形成囊泡、胶束、纳米管和纳米线等纳米载体来负载一种或多种药物。然而,传统的两亲性聚肽是通过共价键链接亲疏水链段,其合成过程复杂且分子量也难以精确调控,从而影响其组装体的形貌和尺寸,而这又对纳米药物的抗肿瘤效果有着十分重要的影响。为了充分发挥刺激响应性聚肽纳米药物输送体系的潜力,急需一种高效简洁的方法来制备多功能两亲性聚肽。因此,通过在聚肽中引入大环化合物,如环糊精、杯芳烃、葫芦脲、柱芳烃等,利用主客体识别作用进一步构建两亲性超分子聚肽,不仅简化了合成步骤,缩短了制备过程和成本,还使得组装体的尺寸和形貌更易于预测和调控,有利于实现纳米药物在肿瘤部位的富集和肿瘤细胞内药物的可控释放。该合成策略同时也具有易于功能化和结构多样性的优点,为设计多功能聚肽纳米药物输送体系提供了良好的技术途径。
此外,传统的聚肽纳米药物输送体系大多是将化疗药物包封在纳米载体内部,利用EPR效应将药物输送到肿瘤部位。该方法虽然在一定程度上改善了抗肿瘤的效果,但存在载药率低、药物过早泄露、稳定性差等问题。为此,将小分子药物通过刺激响应性化学键链接在聚肽侧链或末端上,制备出聚肽-药物缀合物(简称聚肽前药),不仅提高了载药效率,增强了药物的溶解性和稳定性,降低了药物的系统毒性,而且链接的化学键在内部或外部刺激源的作用下,可以响应性地释放出药物,实现对药物的控制释放,提高治疗效果。因此,将刺激响应性、聚肽前药和纳米药物输送体系相结合,设计制备刺激响应性的聚肽前药体系,对癌症治疗领域具有重要的研究意义以及实用价值。
文献pH-Responsive Chimaeric Pepsomes Based on Asymmetric Poly(ethylene glycol)-b-Poly(L-leucine)-b-Poly(L-glutamic acid)Triblock Copolymerfor Efficient Loading and Active Intracellular Delivery of DoxorubicinHydrochloride(Peipei Chen et al.Biomacromolecules2015,16,1322-1330)报道了一种三嵌段聚肽纳米药物的制备、其性能的研究及其在肿瘤治疗中的应用。但是,上述体系中负载抗癌药物阿霉素的三嵌段聚肽纳米药物的制备复杂,仅仅只有化疗的抗肿瘤手段,并且结构单一,阿霉素通过物理包覆负载,存在药物早泄的情况,不能实现对耐药肿瘤的有效治疗,在临床中很难转化和应用。
发明内容
针对上述现有技术的不足,本发明提供了一种电荷反转型超分子聚肽前药纳米粒子的制备与抗肿瘤应用,以解决原有技术中载药效率低、纳米药物不稳定和药物泄露的问题,以及化疗与光动力治疗的联合治疗等问题。
为了实现上述发明目的,本发明采用以下技术方案:
一种电荷反转型超分子聚肽前药纳米粒子,由柱[5]芳烃-聚(L-赖氨酸)和吡啶-聚(L-赖氨酸)负载二氢卟吩制成,所述柱[5]芳烃-聚(L-赖氨酸)如式Ⅰ所示,所述吡啶-聚(L-赖氨酸)如式Ⅱ所示;
上述电荷反转型超分子聚肽前药纳米粒子的制备方法为:将柱[5]芳烃-聚(L-赖氨酸)、吡啶-聚(L-赖氨酸)和二氢卟吩溶于N,N-二甲基甲酰胺中,再滴加水,搅拌后,经透析即可得到电荷反转型超分子聚肽前药纳米粒子。
进一步地,N,N-二甲基甲酰胺中,柱[5]芳烃-聚(L-赖氨酸)的浓度为1.0mg/mL,吡啶-聚(L-赖氨酸)的浓度为3.5mg/mL,二氢卟吩的浓度为1.0mg/mL。
进一步地,N,N-二甲基甲酰胺与水的体积比为1.5:10。
进一步地,搅拌条件为20-30℃、12h。
上述电荷反转型超分子聚肽前药纳米粒子在制备肿瘤治疗药品中的应用。
进一步地,所述肿瘤为宫颈癌。
如图1所示,本发明采用柱[5]芳烃-聚(L-赖氨酸)和吡啶-聚(L-赖氨酸)负载二氢卟吩制成电荷反转型超分子聚肽前药纳米粒子。在血液循环过程中,由于正常生理环境的pH为7.4,该粒子携带负电荷,能减少血液中特异性蛋白的吸附,从而保持很好的稳定性。然后通过EPR效应富集在肿瘤组织,由于肿瘤组织的pH为弱酸性6.5,该纳米粒子发生pH响应性电荷反转,由负电荷转变成正电荷,而肿瘤细胞膜是负电荷,因此,带正电荷的纳米粒子能够增强与肿瘤细胞膜的相互作用,从而提高肿瘤细胞对纳米药物的摄取。在进入肿瘤细胞后,在660nm近红外光照射下,负载的二氢卟吩能够释放活性氧,从而杀死肿瘤细胞,实现光动力治疗;同时改活性氧能够使链接阿霉素的铜缩硫醇链接键断裂,从而释放出游离的化疗药物阿霉素,杀死肿瘤细胞,进行化疗。
与现有技术相比,本发明的有益效果如下:
(1)高效合成了一种用于电荷反转型超分子聚肽前药纳米粒子。
(2)该电荷反转型超分子聚肽前药纳米粒子在正常生理环境中,携带负电荷,能减少特异性蛋白的吸附,具有很好的稳定性。
(3)该电荷反转型超分子聚肽前药纳米粒子在肿瘤微环境的弱酸性环境中,携带的负电荷转变为正电荷,与携带负电荷的肿瘤细胞膜相互作用增强,能提高肿瘤细胞对该纳米粒子的摄取。
(4)该电荷反转型超分子聚肽前药纳米粒子,在近红外光照条件下(光强0.1W/cm2、波长660nm、光照时间10min),负载的光敏剂二氢卟吩能释放出活性氧,杀死肿瘤细胞,实现光动力治疗。
(5)该电荷反转型超分子聚肽前药纳米粒子,在将近红外光照释放活性氧同时,在活性氧刺激下能够响应性释放出抗癌药物阿霉素,杀死肿瘤细胞,实现化疗。
(5)该化疗-光动力治疗一体化治疗技术操作简单,仅需要一次静脉注射和一次光照,便可实现肿瘤的有效治疗,具有重要的临床应用前景。
(6)本发明为制备用于电荷反转型超分子聚肽前药纳米粒子提供了一种简单而有效的途径,为获得具有pH响应性电荷反转功能、化疗-光动力治疗一体化治疗的超分子聚肽前药纳米粒子提供了很好的实验平台。
附图说明
图1为本发明电荷反转型超分子聚肽前药纳米粒子的结构示意图。
图2为柱[5]芳烃-聚(L-赖氨酸)的核磁谱图。
图3为吡啶-聚(L-赖氨酸)的核磁谱图。
图4为电荷反转型超分子聚肽前药纳米粒子的动态光散射图谱。
图5为电荷反转型超分子聚肽前药纳米粒子的电镜图。
图6为电荷反转型超分子聚肽前药纳米粒子对宫颈癌细胞的细胞活性测试结果。
图7和图8为电荷反转型超分子聚肽前药纳米粒子对HeLa肿瘤生长的影响结果。
具体实施方式
实施例1
一、柱[5]芳烃-聚(L-赖氨酸)的制备
步骤一:参考已有文献得到单氨基柱[5]芳烃和ε-苄氧羰基-L-赖氨酸酸酐,在手套箱中,取单氨基柱[5]芳烃(0.033mmol,31.76mg),溶2mL无水的N,N-二甲基甲酰胺中,再加入ε-苄氧羰基-L-赖氨酸酸酐(0.68mmol,200mg),室温反应48h后,将反应液沉降在16mL无水乙醚中,再离心,反复3次,真空干燥24h得到白色固体124.2mg。产率82.3~84.3%。
步骤二:取步骤一得到的白色固体(0.0224mmol,100mg)溶解在10mL冰醋酸/三氟乙酸(体积比为1:1)的混合溶剂中,于0℃下加入1.1mL氢溴酸/冰醋酸(33wt%)混合溶液,继续反应1.5h。反应结束后,将反应液沉降在80mL无水乙醚中,再离心,反复3次,最后置于真空烘箱中干燥,得到淡黄色固体粉末70.37mg,产率是85.1~87.2%。
步骤三:取步骤二得到的淡黄色固体(0.017mmol,50mg)溶于水中,并用1M氢氧化钠水溶液调节pH值为8.5,于室温下搅拌1h,加入(0.4496mmol,56.7mg)2,3-二甲基马来酸酐,再用1M氢氧化钠水溶液调节pH值,保持pH值在8~9之间,反应12h后将反应液冻干,再用1mL N,N-二甲基甲酰胺溶解,再于无水乙醚中沉降,反复3次,最后将所得产物置于真空烘箱中干燥,得到淡黄色固体粉末柱[5]芳烃-聚(L-赖氨酸)69.1mg,产率是81.4~84.3%。
柱[5]芳烃-聚(L-赖氨酸)核磁图谱如图2所示,详细峰位置归属:1H NMR(400MHz,DMSO-d6,TMS),δ(ppm)=6.79-6.62(d,10H,OPh),4.20-4.01(s,2H,OCH2OCH2NH),3.95-3.76(m,18H,(OCH2CH3)9),3.70-2.89(m,56H,(CH2Ph)5,NHCH2CH2NH,(NHCH2CH2CH2CH2CH)14),1.97-1.81(s,84H,CH3CCCH3),1.79-1.60(m,28H,(NHCH2CH2CH2),1.49-1.08(m,91H,OCH2CH3,NHCH2CH2CH2CH2)。
二、吡啶-聚(L-赖氨酸)的制备,合成路线如下式所示:
步骤一:参考已有文献得到1-(4-氨基丁基)吡啶六氟磷酸盐和ε-苄氧羰基-L-赖氨酸酸酐,在手套箱中,取1-(4-氨基丁基)吡啶六氟磷酸盐(0.01358mmol,4.02mg),溶1mL无水的N,N-二甲基甲酰胺中,再加入ε-苄氧羰基-L-赖氨酸酸酐(0.34mmol,100mg),室温反应48h后,将反应液沉降在8mL无水乙醚中,再离心,反复3次,真空干燥24h得到白色固体75.3mg。产率83.5~87.2%。
步骤二:取步骤一得到的白色固体(0.01725mmol,100mg)溶解在10mL冰醋酸/三氟乙酸(体积比为1:1)的混合溶剂中,于0℃下加入1.1mL氢溴酸/冰醋酸(33wt%)混合溶液,继续反应1.5h。反应结束后,将反应液沉降在80mL无水乙醚中,再离心,反复3次,最后置于真空烘箱中干燥,得到淡黄色固体粉末46.3mg,产率是87.6~90.6%。
步骤三:取3,3'-(丙烷-2,2-二基双(硫烷二基))二丙醇(0.071mmol,18mg)、N-羟基琥珀酰亚胺(0.214mmol,24.6mg)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(0.213mmol,40.8mg)溶解在5mL无水N,N-二甲基甲酰胺中,于氮气氛围中搅拌2h。然后,将1mL含有阿霉素盐酸盐(0.066mmol,38.5mg)的无水N,N-二甲基甲酰胺溶液加入其中。反应24h后,取步骤二得到的淡黄色固体(0.0035mmol,10mg)溶解在1mL无水N,N-二甲基甲酰胺中,将该溶液加入前述的反应液中,继续反应24h。反应结束后,将反应液置于分子量1000的透析袋中,用500mL去离子水透析1天,中间每8小时换一次去离子水,透析结束后,经冷冻干燥得到淡黄色固体粉末59.2mg,产率是80.1~83.3%。
吡啶-聚(L-赖氨酸)核磁图谱如图3所示,详细峰位置归属:1H NMR(400MHz,DMSO-d6,TMS),δ(ppm)=7.93-7.77(m,5H,Py),7.68-7.53(m,60H,OPh),5.49-5.35(m,40H,(HOPhOH)20),5.25-5.21(m,4H,CH2NH2),4.95-4.79(m,42H,CH2CHOCH,PyCH2),4.76-4.70(m,40H,CH2OH),4.59-4.55(d,40H,CH2COH),4.19-4.08(m,24H,CH2NH(COCHNH)22),4.01-3.96(m,60H,NHCHCHCHOCH2),3.94-3.87(s,60H,OCH3),3.02-2.89(m,48H,CH(CH2)3CH2),2.83-2.76(m,80H,CH2SCSCH2),2.71-2.63(m,80H,(CH2CH2S)2C),2.37-2.29(m,40H,OCHCH2C),2.26-2.07(m,42H,CH2CHCHOH,PyCH2CH2),1.91-1.77(m,2H,PyCH2CH2CH2),1.52-1.35(m,240H,CH(CH2)3CH2,C(CH3)2),1.12-1.05(d,60H,CHCH3)。
三、电荷反转型超分子聚肽前药纳米粒子的制备
取1.5mg柱[5]芳烃-聚(L-赖氨酸)、5.5mg吡啶-聚(L-赖氨酸)和1.0mg二氢卟吩溶解于1.5mL N,N-二甲基甲酰胺中,搅拌12h后,向其中滴加10mL去离子水,在搅拌12h。结束后,将溶液置于分子量3500的透析袋中,用500mL去离子水透析2天,中间每8小时换一次去离子水,透析结束后,冷冻干燥后得到电荷反转型超分子聚肽前药纳米粒子,收率为78.5%~83.8%。
电荷反转型超分子聚肽前药纳米粒子的动态光散射图谱如图4所示,其数均粒径为202.7±37.8nm,PDI为0.25±0.03。
电荷反转型超分子聚肽前药纳米粒子的电镜扫描图如图5所示。
下面对电荷反转型超分子聚肽前药纳米粒子的抗肿瘤效果进行验证。
1、电荷反转型超分子聚肽前药纳米粒子对宫颈癌细胞的影响
将实施例3中制备得到的电荷反转型超分子聚肽前药纳米粒子(SPP-DOX/Ce6)、阿霉素(DOX)分别用细胞培养液配制成阿霉素浓度分别为0.125、0.25、0.5、1、2、4μg/mL,然后分别与HeLa细胞(宫颈癌腺癌)培养48h。此外,对于电荷反转型超分子聚肽前药纳米粒子需要另设一组,培养4h后,再用近红外激光对其进行光照10min(660nm,0.1W/cm2),继续培养48h。采用MTT方法进行细胞活性测试,结果如图6所示。
图6中,下横坐标DOX指代的是阿霉素的浓度,上横坐标Ce6指代的是二氢卟吩的浓度。图中,pH 7.4和pH 6.8是指电荷反转型超分子聚肽前药纳米粒子分别在pH 7.4和pH6.8条件下的实验组,pH 7.4+NIR和pH 6.8+NIR是指电荷反转型超分子聚肽前药纳米粒子分别在pH 7.4和pH 6.8条件下与癌细胞培养4h后,再用近红外激光对其进行光照的实验组,DOX是指单使用阿霉素的实验组,Ce6+NIR是指单使用二氢卟吩并进行近红外激光照射的实验组。
在没有近红外光照条件下,电荷反转型超分子聚肽前药纳米粒子基本没有毒性;而在近红外光照条件下,电荷反转型超分子聚肽前药纳米粒子表现出相比于阿霉素和二氢卟吩光照组而言极高的细胞毒性,并且在pH 6.8的弱酸性肿瘤微环境中,表现出更强的抗癌能力。说明该电荷反转型超分子聚肽前药纳米粒子在增强肿瘤细胞内摄方面具有明显的效果,并且在pH 6.8的弱酸性环境中,对肿瘤细胞表现出更好的抗肿瘤效果。
2、电荷反转型超分子聚肽前药纳米粒子对HeLa肿瘤生长的影响实验
将接种了HeLa荷瘤的小鼠分别分为七组:生理盐水、阿霉素(5mg/kg)、二氢卟吩(0.5mg/kg)+NIR、电荷反转型超分子聚肽前药纳米粒子(2mg/mL)、电荷反转型超分子聚肽前药纳米粒子+NIR(2mg/mL)。第0天和第4天各注射一次,且注射12h后对生理盐水+NIR和电荷反转型聚肽复合纳米药物+NIR进行光照10min(660nm,0.1W/cm2),同时每隔1天对小鼠进行称重并对肿瘤体积进行测量,结果如图7和8所示。
图7和8中,横坐标表示小鼠接受实验的天数,图7中纵坐标表示小鼠的体重,图8中纵坐标表示小鼠肿瘤体积。图中,PBS是指注射生理盐水对照组,DOX是指注射阿霉素实验组,Ce6+NIR是指二氢卟吩12h后,再用近红外激光对其进行光照的实验组,SPP-DOX/Ce6是指注射电荷反转型超分子聚肽前药纳米粒子的实验组,SPP-DOX/Ce6+NIR是指注射电荷反转型超分子聚肽前药纳米粒子12h后,再用近红外激光对其进行光照的实验组。
对于HeLa肿瘤,游离的阿霉素对于该耐药肿瘤没有抑制的作用,而对于SPP-DOX/Ce6+NIR组,所有小鼠肿瘤明显得到抑制,且对小鼠体重几乎没有影响。

Claims (6)

1.一种电荷反转型超分子聚肽前药纳米粒子,其特征在于:由柱[5]芳烃-聚(L-赖氨酸)和吡啶-聚(L-赖氨酸)负载二氢卟吩制成,所述柱[5]芳烃-聚(L-赖氨酸)如式Ⅰ所示,所述吡啶-聚(L-赖氨酸)如式Ⅱ所示;
2.权利要求1所述的电荷反转型超分子聚肽前药纳米粒子的制备方法,其特征在于:将柱[5]芳烃-聚(L-赖氨酸)、吡啶-聚(L-赖氨酸)和二氢卟吩溶于N,N-二甲基甲酰胺中,再滴加水,搅拌后,经透析即可得到电荷反转型超分子聚肽前药纳米粒子。
3.根据权利要求2所述的制备方法,其特征在于:N,N-二甲基甲酰胺中,柱[5]芳烃-聚(L-赖氨酸)的浓度为1.0mg/mL,吡啶-聚(L-赖氨酸)的浓度为3.5mg/mL,二氢卟吩的浓度为1.0mg/mL。
4.根据权利要求2所述的制备方法,其特征在于:N,N-二甲基甲酰胺与水的体积比为1.5:10。
5.根据权利要求2所述的制备方法,其特征在于:搅拌条件为20-30℃、12h。
6.权利要求1所述的电荷反转型超分子聚肽前药纳米粒子在制备宫颈癌治疗药品中的应用。
CN202110829969.XA 2021-07-22 2021-07-22 电荷反转型超分子聚肽前药纳米粒子及其制备方法和应用 Active CN113694211B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110829969.XA CN113694211B (zh) 2021-07-22 2021-07-22 电荷反转型超分子聚肽前药纳米粒子及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110829969.XA CN113694211B (zh) 2021-07-22 2021-07-22 电荷反转型超分子聚肽前药纳米粒子及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113694211A CN113694211A (zh) 2021-11-26
CN113694211B true CN113694211B (zh) 2024-04-09

Family

ID=78650262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110829969.XA Active CN113694211B (zh) 2021-07-22 2021-07-22 电荷反转型超分子聚肽前药纳米粒子及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113694211B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114712499B (zh) * 2022-03-18 2023-08-01 南通大学 一种负载no的超分子聚肽纳米药物及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111603568A (zh) * 2020-05-29 2020-09-01 南通大学 电荷反转型聚肽复合纳米药物及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI572369B (zh) * 2015-06-22 2017-03-01 國立清華大學 酸鹼應答型奈米微粒的製備並應用於製備促進抗癌藥物於腫瘤的傳輸與深層滲透之藥物的用途

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111603568A (zh) * 2020-05-29 2020-09-01 南通大学 电荷反转型聚肽复合纳米药物及其制备方法和应用

Also Published As

Publication number Publication date
CN113694211A (zh) 2021-11-26

Similar Documents

Publication Publication Date Title
CN111330014B (zh) 一种酸响应交联型聚合物前药及其制备方法和应用
WO2019127297A1 (zh) 四价铂化合物-双环双键两亲性聚合物前药、其纳米胶束及制备方法和应用
Su et al. Polymeric complex micelles based on the double-hydrazone linkage and dual drug-loading strategy for pH-sensitive docetaxel delivery
CN113694023B (zh) 一种氧化响应型纳米胶束及其制法与应用
CN114829447A (zh) 刷前药及其用途
CN111135299A (zh) 光敏剂-低氧激活前药一体化前药自组装纳米粒的构建
CN114748639B (zh) 一种光敏剂-羟烷基淀粉-多肽偶联的两亲性大分子化合物、纳米载药系统及其制备方法
CN113694211B (zh) 电荷反转型超分子聚肽前药纳米粒子及其制备方法和应用
CN111603568A (zh) 电荷反转型聚肽复合纳米药物及其制备方法和应用
CN112618514B (zh) 氨硼烷/中空介孔聚多巴胺/聚乙二醇纳米复合粒子及其制备与应用
Zhong et al. A light and hypoxia-activated nanodrug for cascade photodynamic-chemo cancer therapy
CN109846857B (zh) 一种活性天然超分子光敏剂的制备方法及其应用
CN113648401B (zh) 一种蛋白酶体抑制增敏光动力治疗的杂化纳米组装体及其制备与应用
CN110790922A (zh) 一种聚卟啉类化合物的制备方法及应用
CN114533894A (zh) 一种具有线粒体靶向功能的自组装多肽药物及其制备方法和应用
CN112535660B (zh) 一种三级靶向的pH敏感型纳米载药胶束及其制备方法和用途
CN113135875B (zh) 光敏剂驱动的二聚体前药共组装纳米粒及其制备方法和应用
CN104758244A (zh) 一种纳米凝胶、其制备方法和抗肿瘤纳米凝胶载药体系及其制备方法
CN115105606A (zh) 透明质酸-芒果苷-甲氨蝶呤抗肿瘤偶联药物及其制备方法
CN113679836A (zh) 一种靶向zif-8-聚多巴胺前药纳米粒子及其制备方法和应用
CN113633784A (zh) 一种热休克蛋白抑制增敏光热治疗的杂化纳米组装体及其制备与应用
CN113773488A (zh) 一种水溶性聚卟啉类无载体纳米药物的制备方法
CN114377144B (zh) pH/活性氧双重响应性超分子聚肽前药纳米粒子
CN114712499B (zh) 一种负载no的超分子聚肽纳米药物及其制备方法和应用
CN115475254B (zh) 一种用于增强光动治疗的自增敏型纳米组装体及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant