CN113773488A - 一种水溶性聚卟啉类无载体纳米药物的制备方法 - Google Patents

一种水溶性聚卟啉类无载体纳米药物的制备方法 Download PDF

Info

Publication number
CN113773488A
CN113773488A CN202111037625.1A CN202111037625A CN113773488A CN 113773488 A CN113773488 A CN 113773488A CN 202111037625 A CN202111037625 A CN 202111037625A CN 113773488 A CN113773488 A CN 113773488A
Authority
CN
China
Prior art keywords
water
polyporphyrin
carrier
soluble
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111037625.1A
Other languages
English (en)
Inventor
郑楠
宋汪泽
杜梦
郑玉斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian University of Technology
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202111037625.1A priority Critical patent/CN113773488A/zh
Publication of CN113773488A publication Critical patent/CN113773488A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33396Polymers modified by chemical after-treatment with organic compounds containing nitrogen having oxygen in addition to nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0028Disruption, e.g. by heat or ultrasounds, sonophysical or sonochemical activation, e.g. thermosensitive or heat-sensitive liposomes, disruption of calculi with a medicinal preparation and ultrasounds
    • A61K41/0033Sonodynamic cancer therapy with sonochemically active agents or sonosensitizers, having their cytotoxic effects enhanced through application of ultrasounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • A61K41/0071PDT with porphyrins having exactly 20 ring atoms, i.e. based on the non-expanded tetrapyrrolic ring system, e.g. bacteriochlorin, chlorin-e6, or phthalocyanines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/22Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains four or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/48Polymers modified by chemical after-treatment

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Oncology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明属于高分子材料,生物医药材料及光动力、声动力治疗技术领域,提供了一种水溶性聚卟啉类无载体纳米药物的制备方法。本发明的制备方法得到的水溶性聚卟啉类无载体纳米药物的数均分子量范围为5000g/mol‑30000g/mol,在水中溶解度可达50mg/mL,单线态氧产率为四羧基苯基卟啉的1.5‑3倍。该聚合物可直接溶解于水中,在浓度为0.01mg/mL‑10mg/mL的范围内,可以无载体的形式自发形成稳定的纳米粒,粒径范围为100nm‑200nm。与普通的聚卟啉相比,该种聚卟啉具有水溶性,提高了生物相容性。该种聚卟啉可以在水中自组装成纳米颗粒,无需其他载体,具有潜在的体内递送效果。

Description

一种水溶性聚卟啉类无载体纳米药物的制备方法
技术领域
本发明属于高分子材料,生物医药材料及光动力、声动力治疗技术领域,涉及一种水溶性聚卟啉的制备方法及在光声动力治疗肿瘤中的应用。
背景技术
癌症是世界上致病和致死的首要原因之一,传统的肿瘤治疗手段有外科手术切除、放射治疗以及化疗,在一定程度上可以达到治疗肿瘤的效果,但是具有易复发、毒副作用大、选择性差以及有创性等弊端。相比于传统治疗肿瘤的方法,光动力治疗及声动力治疗是新型的、非侵入性治疗肿瘤的方法,具有毒副作用小、可重复性、选择性好以及无创或微创性,被认为是具有潜力的治疗肿瘤的新手段。目前,光动力或声动力治疗已成为多种包括癌症在内的疾病的临床治疗方式。
光动力治疗需要光、氧和光敏剂的共同作用,而声动力同样需要借助声敏剂发挥治疗效果,光敏剂或声敏剂是光动力或声动力治疗的核心。目前已被开发的光、声敏剂主要有卟啉类、酞菁类、稠环类以及氟硼二吡咯类等,其中,卟啉类衍生物在光动力或声动力中的应用最为广泛。四苯基卟啉(Tetraphenylporphyrin,TPP)是典型的第二代光敏剂,能高效的产生单线态氧,并且具有相对较低的暗毒性。但由于TPP是平面刚性共轭结构,由于在水性介质中的强疏水性π-π堆积效应,随着浓度的增加光敏剂趋于聚集,容易聚集引发聚集诱导淬灭(ACQ)效应,ACQ效应可能会大大降低单线态氧量子产率,并削弱光动力的功效。另外,TPP是水溶性差的小分子,不利于给药,且在体内循环时间短,这些问题限制了其体内应用。
为了克服上述问题,我们通过引入柔性链设计合成了一种水溶性的无载体的聚卟啉纳米药物,在水中可以自组装成纳米颗粒,并对其单线态氧产率、纳米粒稳定性以及体外光暗毒性进行了测试。此项发明解决了具有大环平面共轭结构的光敏剂极易发生聚集诱导淬灭的问题以及水溶性差的问题。该发明所设计的聚卟啉结构同样可作为声敏剂用于肿瘤的声动力治疗。
发明内容
本发明的目的是主要提供了一种水溶性的聚卟啉类无载体纳米药物的制备方法。
本发明的技术方案:
一种水溶性的无载体的聚卟啉纳米药物的制备方法,步骤如下:
称取1摩尔当量的四羧基苯基卟啉、4-10摩尔当量的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(EDCI)和4-10摩尔当量的对二甲氨基吡啶(DMAP)溶于氯仿(CHCl3)、四氢呋喃(THF)或N,N-二甲基甲酰胺(DMF)中,控制四羧基苯基卟啉的单体浓度范围为0.1M-5M,加热至40-90℃搅拌10-30min;然后,在溶液中加入1.8-2.2摩尔当量的含有多个醚键的二醇类单体,将反应体系升温至90-140℃继续反应12-144h;待反应结束后,将反应液在正己烷或乙醚中沉降(正己烷或乙醚的体积为混合溶液体积的10-50倍),经离心收集沉淀,真空干燥过夜除去残留的溶剂。将沉淀溶于体积比为1/10-0/10的DMSO和H2O的溶剂中,并用截留分子量(MWCO)为300-3000Da的透析袋在去离子水中透析12-48h后,于冷冻干燥机中冻干,最终产物为紫色固体P-nO,n=1-20。该聚卟啉数均分子量范围为5000g/mol-30000g/mol,在水中溶解度可达50mg/mL,单线态氧产率为四羧基苯基卟啉的1.5-3倍。该聚合物可直接溶解于水中,在浓度为0.01mg/mL-10mg/mL的范围内,可以无载体的形式自发形成稳定的纳米粒,粒径范围为100nm-200nm。
反应路线如下:
Figure BDA0003247920380000031
本发明的有益效果:
(1)本发明提出了一种水溶性聚卟啉的制备方法,且普适性高,为合成高分子量卟啉聚合物提供了技术参考。
(2)与单体小分子卟啉相比,聚卟啉的单线态氧产率可以提高至2-3倍左右。
(3)与普通的聚卟啉相比,该种聚卟啉具有水溶性,提高了生物相容性。
(4)与普通的聚卟啉相比,该种聚卟啉可以在水中自组装成纳米颗粒,无需其他载体,具有潜在的体内递送效果。
附图说明
图1是聚卟啉P-3O的氢核磁。
图2是聚卟啉P-3O的碳核磁。
图3是聚卟啉P-5O的氢核磁。
图4是聚卟啉P-5O的稀释稳定性表征。
图5是聚卟啉P-5O的冻干稳定性表征。
图6是聚卟啉P-5O的光毒性及声毒性。
具体实施方式
以下结合附图和技术方案,进一步说明本发明的具体实施方式。
实施例1:水溶性聚卟啉P-3O的合成
准确称取四羧基苯基卟啉(25mg,0.032mmol)、EDCI(49mg,0.256mmol)和DMAP(15.6mg,0.128mmol)溶于0.2mL-2mLDMF中,加热至60℃-80℃搅拌10min。然后,加入三缩四乙二醇(12.4mg,0.064mmol)和0.1mL-0.5mLDMF的混合溶液,升温至100℃-140℃继续反应24h-48h。待反应结束后,将反应液在15mL乙醚中沉降,经离心收集沉淀,真空干燥过夜除去残留的乙醚。将沉淀溶于体积比为10:1的H2O和DMSO的混合溶剂中,并用截留分子量(MWCO)为500的透析袋在去离子水中透析24h后,于冷冻干燥机中冻干,最终产物为紫色固体P-3O。所得聚卟啉的氢谱核磁表征如图1所示。所得聚卟啉的碳谱核磁表征如图2所示。
实施例2:水溶性聚卟啉P-5O的合成
准确称取四羧基苯基卟啉(25mg,0.032mmol)、EDCI(49mg,0.256mmol)和DMAP(15.6mg,0.128mmol)溶于0.2mL-2mLDMF中,加热至60℃-80℃搅拌10min。然后,加入六甘醇(17.6mg,0.064mmol)和0.1mL-0.5mLDMF的混合溶液,升温至100℃-140℃继续反应24h-48h。待反应结束后,将反应液在15mL乙醚中沉降,经离心收集沉淀,真空干燥过夜除去残留的乙醚。将沉淀溶于体积比为10:1的H2O和DMSO的混合溶剂中,并用截留分子量(MWCO)为500的透析袋在去离子水中透析24h后,于冷冻干燥机中冻干,最终产物为紫色固体P-5O。所得聚卟啉的氢谱核磁表征如图3所示。
实施例3:水溶性聚卟啉P-11O的合成
准确称取四羧基苯基卟啉(25mg,0.032mmol)、EDCI(49mg,0.256mmol)和DMAP(15.6mg,0.128mmol)溶于1mL氯仿中,加热至60℃-80℃搅拌10min。然后,加入分子量为500Da的聚乙二醇(32mg,0.064mmol)和1mL氯仿的混合溶液,升温至70℃继续反应24h-48h。待反应结束后,将反应液在30mL正己烷中沉降,经离心收集沉淀,真空干燥过夜除去残留的正己烷。将沉淀溶于1mL H2O中,并用截留分子量(MWCO)为1000的透析袋在去离子水中透析24h后,于冷冻干燥机中冻干,最终产物为紫色固体P-11O。
实施例4:水溶性聚卟啉P-18O的合成
准确称取四羧基苯基卟啉(25mg,0.032mmol)、EDCI(49mg,0.256mmol)和DMAP(15.6mg,0.128mmol)溶于1mL四氢呋喃中,加热至60℃-80℃搅拌10min。然后,加入分子量为800Da的聚乙二醇(51.2mg,0.064mmol)和1mL四氢呋喃的混合溶液,升温至70℃继续反应24h-48h。待反应结束后,将反应液在30mL正己烷中沉降,经离心收集沉淀,真空干燥过夜除去残留的正己烷。将沉淀溶于1mLH2O中,并用截留分子量(MWCO)为1000的透析袋在去离子水中透析24h后,于冷冻干燥机中冻干,最终产物为紫色固体P-11O。
实施例5:水溶性聚卟啉纳米颗粒的稳定性表征
首先将聚卟啉P-5O直接溶于去离子水中制成母液,浓度为0.5mg/mL,在37℃静置1h,自组装成纳米粒。
对稀释液的稳定性:在室温下将纳米粒用血清缓冲液(FBS:10%)稀释成5倍,10倍,20倍,50倍,100倍,随即通过DLS测量粒径变化,所得粒径如图4所示。
冻干稳定性:将纳米粒溶于PBS缓冲液中进行冻干前后DLS测量粒径,所得粒径如图5所示。
实施例6:水溶性聚卟啉的光声毒性表征
光毒性:采用MTT法测定聚卟啉纳米粒对小鼠肝癌细胞(Hep1-6)的细胞毒性。将Hep1-6细胞以1×104细胞/孔的密度接种在96孔板中,孵育在含10%FBS的细胞培养皿中。更换培养基,加入50μM的纳米粒。培养24小时后,用650nm激光(10mW/cm2)照射孔板30分钟。细胞再孵育20小时后进行MTT检测,以评估细胞存活率。
声毒性:采用MTT法测定聚卟啉纳米粒对小鼠肝癌细胞(Hep1-6)的细胞毒性。将Hep1-6细胞以1×104细胞/孔的密度接种在96孔板中,孵育在含10%FBS的细胞培养皿中。更换培养基,加入50μM的纳米粒。培养24小时后,用超声治疗仪对细胞进行超声(1MHz,700mW/cm2)10分钟处理,细胞再孵育20小时后进行MTT检测,以评估细胞存活率。

Claims (1)

1.一种水溶性的无载体的聚卟啉纳米药物的制备方法,其特征在于,步骤如下:
称取1摩尔当量的四羧基苯基卟啉、4-10摩尔当量的1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和4-10摩尔当量的对二甲氨基吡啶溶于氯仿、四氢呋喃或N,N-二甲基甲酰胺中,控制四羧基苯基卟啉的单体浓度范围为0.1M-5M,加热至40-90℃搅拌10-30min;然后,在溶液中加入1.8-2.2摩尔当量的含有多个醚键的二醇类单体,将反应体系升温至90-140℃继续反应12-144h;待反应结束后,将反应液在正己烷或乙醚中沉降(正己烷或乙醚的体积为混合溶液体积的10-50倍),经离心收集沉淀,真空干燥过夜除去残留的溶剂;将沉淀溶于体积比为1/10-0/10的DMSO和H2O的溶剂中,并用截留分子量为300-3000Da的透析袋在去离子水中透析12-48h后,于冷冻干燥机中冻干,最终产物为紫色固体P-nO,n=1-20;该聚卟啉数均分子量范围为5000g/mol-30000g/mol,在水中溶解度可达50mg/mL,单线态氧产率为四羧基苯基卟啉的1.5-3倍;该聚合物可直接溶解于水中,在浓度为0.01mg/mL-10mg/mL的范围内,可无载体的形式自发形成稳定的纳米粒,粒径范围为100nm-200nm。
CN202111037625.1A 2021-09-06 2021-09-06 一种水溶性聚卟啉类无载体纳米药物的制备方法 Pending CN113773488A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111037625.1A CN113773488A (zh) 2021-09-06 2021-09-06 一种水溶性聚卟啉类无载体纳米药物的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111037625.1A CN113773488A (zh) 2021-09-06 2021-09-06 一种水溶性聚卟啉类无载体纳米药物的制备方法

Publications (1)

Publication Number Publication Date
CN113773488A true CN113773488A (zh) 2021-12-10

Family

ID=78841168

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111037625.1A Pending CN113773488A (zh) 2021-09-06 2021-09-06 一种水溶性聚卟啉类无载体纳米药物的制备方法

Country Status (1)

Country Link
CN (1) CN113773488A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041319A (zh) * 2022-11-08 2023-05-02 江苏中利集团股份有限公司 一种吲哚基四氢异喹啉衍生物的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242630A (ja) * 1988-03-24 1989-09-27 Mitsubishi Kasei Corp ポルフィリン構造を有する単分子膜もしくは単分子累積膜
CN103536919A (zh) * 2013-10-24 2014-01-29 天津市肿瘤研究所 肿瘤靶向的光动力载药纳米粒子及其制备方法和用途
CN110790922A (zh) * 2019-11-06 2020-02-14 大连理工大学 一种聚卟啉类化合物的制备方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01242630A (ja) * 1988-03-24 1989-09-27 Mitsubishi Kasei Corp ポルフィリン構造を有する単分子膜もしくは単分子累積膜
CN103536919A (zh) * 2013-10-24 2014-01-29 天津市肿瘤研究所 肿瘤靶向的光动力载药纳米粒子及其制备方法和用途
CN110790922A (zh) * 2019-11-06 2020-02-14 大连理工大学 一种聚卟啉类化合物的制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041319A (zh) * 2022-11-08 2023-05-02 江苏中利集团股份有限公司 一种吲哚基四氢异喹啉衍生物的制备方法
CN116041319B (zh) * 2022-11-08 2023-08-25 江苏中利集团股份有限公司 一种吲哚基四氢异喹啉衍生物的制备方法

Similar Documents

Publication Publication Date Title
Gulzar et al. Nano-graphene oxide-UCNP-Ce6 covalently constructed nanocomposites for NIR-mediated bioimaging and PTT/PDT combinatorial therapy
KR101035269B1 (ko) 고분자 유도체-광감작제 복합체를 이용한 새로운 광역학치료제
CN110201163B (zh) 一种透明质酸和聚多巴胺修饰的载药介孔二氧化钛纳米粒
Sun et al. Protein-assisted synthesis of nanoscale covalent organic frameworks for phototherapy of cancer
CN109503455B (zh) 一种以四苯乙烯吲哚衍生物为光敏剂的纳米复合材料及制备方法和在肿瘤治疗方面的应用
CN108295256B (zh) 一种靶向修饰的二硫化钼纳米载药复合物及其制备方法
Xu et al. Photocontrollable release and enhancement of photodynamic therapy based on host–guest supramolecular amphiphiles
JP7055881B2 (ja) 新規光増感剤複合ナノ多機能材料の調製及びその使用
CN110960697B (zh) 一种两性离子修饰树状大分子包裹硫化铜纳米颗粒/pDNA复合物的制备方法
CN110624113B (zh) 一种靶向聚乙二醇纳米粒子药物载体的超声制备方法与应用
CN107158410B (zh) 一种具有肿瘤靶向性的叶酸-壳聚糖-Cy7聚合物及其制备方法
Zhang et al. Heavy atom substituted near-infrared BODIPY nanoparticles for photodynamic therapy
Xia et al. Enhanced photodynamic therapy through supramolecular photosensitizers with an adamantyl-functionalized porphyrin and a cyclodextrin dimer
CN110790922B (zh) 一种聚卟啉类化合物的制备方法及应用
Zhang et al. A single-wavelength NIR-triggered polymer for in situ generation of peroxynitrite (ONOO−) to enhance phototherapeutic efficacy
Zheng et al. A pH-sensitive nanoagent self-assembled from a highly negatively-charged phthalocyanine with excellent biosafety for photothermal therapy
Qin et al. Multi-responsive drug delivery nanoplatform for tumor-targeted synergistic photothermal/dynamic therapy and chemotherapy
CN113773488A (zh) 一种水溶性聚卟啉类无载体纳米药物的制备方法
CN112121166B (zh) 特异性卟啉自运输纳米载体材料及其制备方法
CN113694023A (zh) 一种氧化响应型纳米胶束及其制法与应用
Gao et al. Confined microemulsion sono-polymerization of poly (ethylene glycol) nanoparticles for targeted delivery
CN110917349B (zh) 一种碗状isp复合功能性纳米粒子及其制备方法和应用
CN110201165B (zh) 一种光动力-化疗联用给药系统及其制备方法和用途
CN110354276B (zh) 一种前药及其制备方法和应用
CN104758244B (zh) 一种纳米凝胶、其制备方法和抗肿瘤纳米凝胶载药体系及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211210