CN113667913A - 提高Hastelloy N合金ΣCSL晶界比例的工艺方法 - Google Patents

提高Hastelloy N合金ΣCSL晶界比例的工艺方法 Download PDF

Info

Publication number
CN113667913A
CN113667913A CN202110651912.5A CN202110651912A CN113667913A CN 113667913 A CN113667913 A CN 113667913A CN 202110651912 A CN202110651912 A CN 202110651912A CN 113667913 A CN113667913 A CN 113667913A
Authority
CN
China
Prior art keywords
alloy
annealing
deformation
hastelloy
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110651912.5A
Other languages
English (en)
Other versions
CN113667913B (zh
Inventor
白琴
刘黎明
夏爽
陶新
孔洁
周邦新
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202110651912.5A priority Critical patent/CN113667913B/zh
Publication of CN113667913A publication Critical patent/CN113667913A/zh
Application granted granted Critical
Publication of CN113667913B publication Critical patent/CN113667913B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本发明公开了一种提高Hastelloy N合金低ΣCSL晶界比例的工艺方法,将Hastelloy N合金冷轧加工30‑70%,然后在1020‑1200℃退火5‑60min,以水淬的方式快速冷却至室温。而后在垂直原冷轧方向进行30‑70%的冷轧加工,在相同的温度退火同样的时间后水淬至室温。然后再对样品进行3‑15%的冷加工变形,在1020‑1200℃退火3‑120min并水淬快速冷却至室温。可得到Σ≤29的低ΣCSL晶界比例高于70%的HastelloyN合金。本工艺不仅不需改变合金成分,而且与现有其他工艺相比,不需要长时间退火,操作容易,具有十分明显的经济效益。

Description

提高Hastelloy N合金ΣCSL晶界比例的工艺方法
技术领域
本发明涉及一种提高金属材料低ΣCSL晶界比例的晶界工程工艺方法,特别是涉及一种含有大量初生碳化物或者脆、硬夹杂物的低层错能面心立方金属材料的晶界工程工艺方法,应用于金属材料的形变及热处理工艺技术领域。
背景技术
Hastelloy N是一种固溶强化的镍基合金,具有优良的力学性能、高温抗氧化性、耐腐蚀性及耐辐照性,主要用于熔盐反应堆中的结构材料。熔盐堆中核燃料由高温熔盐携带入堆,堆内结构材料与流动的高温熔盐直接接触。而在熔盐堆中生成的裂变产物Te会导致Hastelloy N合金开裂,裂变产物Te通过一般大角晶界扩散进入合金,会导致HastelloyN合金晶间脆化,受力后发生沿晶界开裂现象,大大降低了合金的力学性能。因此,关键结构材料的环境失效问题是制约熔盐堆发展的瓶颈。裂变产物Te会沿着一般大角晶界扩散,而未在孪晶界处观察到Te的扩散,因此提高孪晶界的比例可以有效地降低Te对合金晶间开裂的影响。
Watanabe于1984年提出晶界设计与控制的概念,在上世纪90年代发展成晶界工程(Grain Boundary Engineering,GBE)研究领域。在低层错能面心立方金属材料中,通过适当的形变及热处理工艺,可以促使退火孪晶及多重孪晶过程的充分发展,显著提高提高Σ3,Σ9等Σ3n晶界(n=1,2,3)类型的低ΣCSL晶界比例。重合位置点阵,Coincidence SiteLattice;低ΣCSL晶界是指Σ≤29的CSL晶界,Σ:晶界两侧晶粒点阵重合位置密度的倒数。在低ΣCSL晶界中,特别是Σ3晶界,由于结构有序度高,界面能低,具有优于一般大角晶界的性能。Hastelloy N 合金也是一种低层错能面心立方金属材料,可以通过GBE大幅增加Hastelloy N合金材料的低ΣCSL晶界比例,控制晶界特征分布,提高该种材料的抗Te致晶间脆性开裂性能,也可提高该种材料与晶界相关的其它性能,比如抗晶间腐蚀性能。
然而,Hastelloy N合金的Mo含量高,在冶炼后凝固时很容易形成粗大的Ni3Mo3C型的 M6C初生碳化物,硬度和脆性高于基体,尺寸约有几个微米。这种碳化物的溶解温度超过1300℃,采取常规的固溶热处理方式往往消除不了。在常规的轧制加工过程中这种初生碳化物会呈串状分布,方向与轧制方向平行,会导致串状碳化物附近的基体中产生高应变区。在进行GBE的形变及热处理过程中,串状碳化物通过影响再结晶形核和长大过程从而影响低ΣCSL晶界的形成及演化。因此需要在形变及热处理过程中减小初生碳化物的尺寸,并改变呈串状的分布特征,才能有效提高低ΣCSL晶界比例,成功实施GBE。现有科技文献中已有的GBE工艺技术,无法克服该种材料中初生碳化物呈串状分布对低ΣCSL晶界产生及演化过程带来的影响。
发明内容
为了解决目前Hastelloy N合金在提高低ΣCSL晶界比例上所面临的现有技术问题,本发明的目的在于克服已有技术存在的不足,提供一种提高Hastelloy N合金ΣCSL晶界比例的工艺方法,将Hastelloy N合金的低ΣCSL晶界比例提高到70%以上,使碳化物分布更为均匀,降低了碳化物对晶界演化的影响,缩短退火热处理时间,提高含有大量初生碳化物或者脆、硬夹杂物的低层错能面心立方金属材料的质量,并节省能耗,降低成本。
为达到上述目的,本发明采用如下技术方案:
一种提高Hastelloy N合金ΣCSL晶界比例的工艺方法,包括以下步骤:
a.在室温下对Hastelloy N合金进行初次冷轧,控制变形量为30-70%;
b.在Hastelloy N合金完成所述步骤a初次冷轧变形后,对变形后的合金进行初次退火,在1020-1200℃的初次退火温度下保温5-60min,然后水淬将Hastelloy N合金快速冷却至室温;
c.在室温下对经过所述步骤b进行初次退火的合金进行再次冷轧变形,保证与初次冷轧方向垂直,控制变形量为30-70%,进行二次冷轧;
d.在合金完成所述步骤c的二次冷轧变形后,对变形后的合金进行二次退火,在1020-1200℃的退火温度下保温5-60min,然后水淬将合金快速冷却至室温;
e.在室温下,对经过所述步骤d二次退火的合金再次进行冷加工变形,采用冷轧、拉伸或者其它变形方式,控制变形量为3-15%,完成冷加工过程;
f.在合金完成所述步骤e的冷加工变形后,对变形后的合金进行再次进行退火,在1020-1200℃的退火温度下保温3-120min,然后水淬将合金快速冷却至室温,得到Σ≤29的低ΣCSL晶界比例不低于70%的合金。
优选地,反复至少一次进行a-d的步骤实施交叉轧制并进行中间退火,为步骤e和f做准备。
优选地,在所述步骤a中,在室温下对Hastelloy N合金进行初次冷轧,控制变形量为 40-70%。
优选地,在所述步骤b中,在Hastelloy N合金完成初次冷轧变形后,对变形后的合金进行初次退火,在1177-1200℃的初次退火温度下保温30-60min,然后水淬将HastelloyN合金快速冷却至室温。
优选地,在所述步骤c中,在室温下对经过进行初次退火的合金进行再次冷轧变形,保证与初次冷轧方向垂直,控制变形量为50-70%,进行二次冷轧。
优选地,在所述步骤d中,在合金完成二次冷轧变形后,对变形后的合金进行二次退火,在1100-1200℃的退火温度下保温30-60min,然后水淬将合金快速冷却至室温。
优选地,在所述步骤e中,对经过二次退火的合金再次进行冷加工变形,控制变形量为 5-15%,完成冷加工过程。
优选地,在所述步骤f中,在合金完成冷加工变形后,对变形后的合金进行再次进行退火,在1170-1200℃的退火温度下保温20-120min,然后水淬将合金快速冷却至室温,得到低ΣCSL晶界比例不低于70%的合金。
本发明主要针对Hastelloy N合金,确定形变及退火工艺,获得低ΣCSL(按照Palumbo-Aust 标准)晶界比例达到70%以上的材料。而经传统工艺加工的材料,其低ΣCSL晶界比例约为 20%-40%。
本发明GBE工艺方法可以实现在不改变合金成分的前提下大幅提高低ΣCSL晶界比例,降低初生串状碳化物对Hastelloy N合金中低ΣCSL晶界产生及演化的影响,达到提高与晶界相关性能的目的,如抗晶间腐蚀、抗Te致晶间脆性开裂性能等。
在所述步骤a中,所述合金包括但不仅限于Hastelloy N合金,主要为含有大量初生碳化物或者脆、硬夹杂物的低层错能的面心立方金属材料。
本发明与现有技术相比较,具有如下显而易见的突出实质性特点和显著优点:
1.本发明对合金进行30%-70%冷轧加工及1020℃-1200℃的退火,并更换方向轧制及再次退火,目的是为了破坏初生碳化物的串状分布,使碳化物分布更为细小而分散,得到相对细小且均匀分布的晶粒尺寸,去除合金中多余的形变储能;
2.本发明在室温下进行3%-15%的冷加工变形,保证变形量精准的在范围内,冷加工后进行1020℃-1200℃的退火;
3.本发明通过这样的工艺组合可以明显提高合金中Σ3n晶界(n=1,2,3)比例,从而提高 Hastelloy N合金材料的总体低ΣCSL晶界比例。
附图说明
图1是本发明实施例一工艺处理前(A)后(B)的Hastelloy N合金的低ΣCSL晶界比例图对比。
图2是本发明实施例一工艺处理前(a)后(b)的Hastelloy N合金的低ΣCSL晶界特征分布图对比。
图3是本发明实施例一在不同工艺处理后Hastelloy N合金的金相图。(a)为经过初次冷轧退火的样品金相图;(b)为经过两次交叉轧制退火的样品金相图;(c)为经过本工艺处理后的样品金相图。
图4是本发明实施例二工艺处理后的Hastelloy N合金的低ΣCSL晶界特征分布图。
图5是本发明实施例三工艺处理后的Hastelloy N合金的低ΣCSL晶界特征分布图。
具体实施方式
以下结合具体的实施例子对上述方案做进一步说明,本发明的优选实施例详述如下:
实施例一:
在本实施例中,一种提高Hastelloy N合金ΣCSL晶界比例的工艺方法,包括以下步骤:
a.在室温下对Hastelloy N合金进行初次冷轧,控制变形量为40%;
b.在Hastelloy N合金完成所述步骤a初次冷轧变形后,对变形后的合金进行初次退火,在1177℃的初次退火温度下保温30min,然后水淬将Hastelloy N合金快速冷却至室温;
c.在室温下对经过所述步骤b进行初次退火的合金进行再次冷轧变形,保证与初次冷轧方向垂直,控制变形量为50%,进行二次冷轧;
d.在合金完成所述步骤c的二次冷轧变形后,对变形后的合金进行二次退火,在1100℃的退火温度下保温30min,然后水淬将合金快速冷却至室温;
e.在室温下,对经过所述步骤d二次退火的合金再次进行冷加工变形,采用冷轧、拉伸或者其它变形方式,控制变形量为5%,完成冷加工过程;
f.在合金完成所述步骤e的冷加工变形后,对变形后的合金进行再次进行退火,在1170℃的退火温度下保温20min,然后水淬将合金快速冷却至室温,得到Σ≤29的低ΣCSL晶界比例达到70%以上的合金。
实验测试分析:
采用未经本实施例工艺实施处理的Hastelloy N合金作为样品A,经本实施例工艺处理后的Hastelloy N合金作为样品B。
采用EBSD(Electron Backscattering Diffraction,电子背散射衍射)方法测定样品A和样品B,低ΣCSL晶界都按Palumbo-Aust标准统计。经EBSD方法测定,样品A中的低ΣCSL 晶界比例为49.8%,样品B中的低ΣCSL晶界比例为75.7%,详见图1。图1为样品A和样品 B的低ΣCSL晶界比例图。本实施例针对Hastelloy N合金,确定形变及退火工艺,获得低ΣCSL 晶界比例为75.7%的材料,而未经本实施例工艺处理的材料,其低ΣCSL晶界比例为49.8%。
图2为经本实施例工艺处理前后Hastelloy N合金的晶界特征分布图。从图2(a)中可以看出,未经过本实施例工艺处理的样品,其晶界特征分布受到合金中碳化物影响,在碳化物周围产生较多细小的晶粒,在再结晶过程中影响晶界特征分布的演化过程,难以形成较大的晶粒团簇,进而降低了合金的特殊晶界比例。而经过本实施例工艺处理后的Hastelloy N合金样品,碳化物分布更为均匀,降低了碳化物对晶界演化的影响,大大提高了合金的特殊晶界比例,如图2(b)所示。
图3为经过不同工艺步骤处理后合金样品的金相图。图3(a)为经过本实施例初次冷轧退火后样品的金相图,合金内部有较多的初生碳化物,沿轧向呈串状分布。图3(b)为经过本实施例二次垂直轧制退火后样品的金相图,在二次垂直交叉轧制后,沿轧向分布的串状碳化物在一定程度上分散,较为均匀的分布在合金内部。图3(c)为经过本实施例工艺处理后样品的金相图,样品内部细小弥散的碳化物并未对晶界特征分布迁移、演化产生较大的影响。
本实施例工艺方法不仅不需改变材料的成分,而且与现有的同类工艺相比,不需长时间退火操作容易,具有十分明显的经济效益。
实施例二:
本实施例与实施例一基本相同,特别之处在于:
一种提高Hastelloy N合金ΣCSL晶界比例的工艺方法,包括以下步骤:
a.在室温下对Hastelloy N合金进行初次冷轧,控制变形量为70%;
b.在Hastelloy N合金完成所述步骤a初次冷轧变形后,对变形后的合金进行初次退火,在1200℃的初次退火温度下保温5min,然后水淬将Hastelloy N合金快速冷却至室温;
c.在室温下对经过所述步骤b进行初次退火的合金进行再次冷轧变形,保证与初次冷轧方向垂直,控制变形量为70%,进行二次冷轧;
d.在合金完成所述步骤c的二次冷轧变形后,对变形后的合金进行二次退火,在1200℃的退火温度下保温5min,然后水淬将合金快速冷却至室温;
e.在室温下,对经过所述步骤d二次退火的合金再次进行冷加工变形,采用冷轧、拉伸或者其它变形方式,控制变形量为15%,完成冷加工过程;
f.在合金完成所述步骤e的冷加工变形后,对变形后的合金进行再次进行退火,在1200℃的退火温度下保温3min,然后水淬将合金快速冷却至室温,得到Σ≤29的低ΣCSL晶界比例达到70%以上的合金。
实验测试分析:
采用经本实施例工艺实施处理的Hastelloy N合金作为样品C,本实施例采用EBSD(Electron Backscattering Diffraction,电子背散射衍射)方法测定样品,低ΣCSL晶界都按 Palumbo-Aust标准统计。经EBSD方法测定,样品中的低ΣCSL晶界比例为76.9%,如图4 所示。本实施例针对Hastelloy N合金,确定形变及退火工艺,获得Σ≤29的低ΣCSL晶界比例达到70%以上的合金材料,明显高于未经本实施例工艺处理的材料的低ΣCSL晶界比例,本实施例工艺方法不仅不需改变材料的成分,而且与现有的同类工艺相比,不需长时间退火操作容易,具有十分明显的经济效益。
实施例三:
本实施例与前述实施例基本相同,特别之处在于:
一种提高Hastelloy N合金ΣCSL晶界比例的工艺方法,包括以下步骤:
a.在室温下对Hastelloy N合金进行初次冷轧,控制变形量为30%;
b.在Hastelloy N合金完成所述步骤a初次冷轧变形后,对变形后的合金进行初次退火,在1020℃的初次退火温度下保温60min,然后水淬将Hastelloy N合金快速冷却至室温;
c.在室温下对经过所述步骤b进行初次退火的合金进行再次冷轧变形,保证与初次冷轧方向垂直,控制变形量为30%,进行二次冷轧;
d.在合金完成所述步骤c的二次冷轧变形后,对变形后的合金进行二次退火,在1020℃的退火温度下保温60min,然后水淬将合金快速冷却至室温;
e.在室温下,对经过所述步骤d二次退火的合金再次进行冷加工变形,采用冷轧、拉伸或者其它变形方式,控制变形量为3%,完成冷加工过程;
f.在合金完成所述步骤e的冷加工变形后,对变形后的合金进行再次进行退火,在1020℃的退火温度下保温120min,然后水淬将合金快速冷却至室温,得到Σ≤29的低ΣCSL晶界比例达到70%以上的合金。
实验测试分析:
采用经本实施例工艺实施处理的Hastelloy N合金作为样品D,本实施例采用EBSD(Electron Backscattering Diffraction,电子背散射衍射)方法测定样品,低ΣCSL晶界都按 Palumbo-Aust标准统计。经EBSD方法测定,样品中的低ΣCSL晶界比例为70.6%,如图5 所示。本实施例针对Hastelloy N合金,确定形变及退火工艺,获得Σ≤29的低ΣCSL晶界比例达到70%以上的合金材料,明显高于未经本实施例工艺处理的材料的低ΣCSL晶界比例,本实施例工艺方法不仅不需改变材料的成分,而且与现有的同类工艺相比,不需长时间退火操作容易,具有十分明显的经济效益。
上面结合附图对本发明实施例进行了说明,但本发明不限于上述实施例,还可以根据本发明的发明创造的目的做出多种变化,凡依据本发明技术方案的精神实质和原理下做的改变、修饰、替代、组合或简化,均应为等效的置换方式,只要符合本发明的发明目的,只要不背离本发明的技术原理和发明构思,都属于本发明的保护范围。

Claims (8)

1.一种提高Hastelloy N合金ΣCSL晶界比例的工艺方法,其特征在于,包括以下步骤:
a.在室温下对Hastelloy N合金进行初次冷轧,控制变形量为30-70%;
b.在Hastelloy N合金完成所述步骤a初次冷轧变形后,对变形后的合金进行初次退火,在1020-1200℃的初次退火温度下保温5-60min,然后水淬将Hastelloy N合金快速冷却至室温;
c.在室温下对经过所述步骤b进行初次退火的合金进行再次冷轧变形,保证与初次冷轧方向垂直,控制变形量为30-70%,进行二次冷轧;
d.在合金完成所述步骤c的二次冷轧变形后,对变形后的合金进行二次退火,在1020-1200℃的退火温度下保温5-60min,然后水淬将合金快速冷却至室温;
e.在室温下,对经过所述步骤d二次退火的合金再次进行冷加工变形,采用冷轧、拉伸或者其它变形方式,控制变形量为3-15%,完成冷加工过程;
f.在合金完成所述步骤e的冷加工变形后,对变形后的合金进行再次进行退火,在1020-1200℃的退火温度下保温3-120min,然后水淬将合金快速冷却至室温,得到Σ≤29的低ΣCSL晶界比例不低于70%的合金。
2.根据权利要求1所述提高合金低ΣCSL晶界比例的GBE工艺方法,其特征在于:反复至少一次进行a-d的步骤实施交叉轧制并进行中间退火,为步骤e和f做准备。
3.根据权利要求1或2所述提高合金的低ΣCSL晶界比例的GBE工艺方法,其特征在于:在所述步骤a中,在室温下对Hastelloy N合金进行初次冷轧,控制变形量为40-70%。
4.根据权利要求1或2所述提高合金的低ΣCSL晶界比例的GBE工艺方法,其特征在于:在所述步骤b中,在Hastelloy N合金完成初次冷轧变形后,对变形后的合金进行初次退火,在1177-1200℃的初次退火温度下保温30-60min,然后水淬将Hastelloy N合金快速冷却至室温。
5.根据权利要求1或2所述提高合金的低ΣCSL晶界比例的GBE工艺方法,其特征在于:在所述步骤c中,在室温下对经过进行初次退火的合金进行再次冷轧变形,保证与初次冷轧方向垂直,控制变形量为50-70%,进行二次冷轧。
6.根据权利要求1或2所述提高合金的低ΣCSL晶界比例的GBE工艺方法,其特征在于:在所述步骤d中,在合金完成二次冷轧变形后,对变形后的合金进行二次退火,在1100-1200℃的退火温度下保温30-60min,然后水淬将合金快速冷却至室温。
7.根据权利要求1或2所述提高合金的低ΣCSL晶界比例的GBE工艺方法,其特征在于:在所述步骤e中,对经过二次退火的合金再次进行冷加工变形,控制变形量为5-15%,完成冷加工过程。
8.根据权利要求1或2所述提高合金的低ΣCSL晶界比例的GBE工艺方法,其特征在于:在所述步骤f中,在合金完成冷加工变形后,对变形后的合金进行再次进行退火,在1170-1200℃的退火温度下保温20-120min,然后水淬将合金快速冷却至室温,得到低ΣCSL晶界比例不低于70%的合金。
CN202110651912.5A 2021-06-11 2021-06-11 提高Hastelloy N合金ΣCSL晶界比例的工艺方法 Active CN113667913B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110651912.5A CN113667913B (zh) 2021-06-11 2021-06-11 提高Hastelloy N合金ΣCSL晶界比例的工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110651912.5A CN113667913B (zh) 2021-06-11 2021-06-11 提高Hastelloy N合金ΣCSL晶界比例的工艺方法

Publications (2)

Publication Number Publication Date
CN113667913A true CN113667913A (zh) 2021-11-19
CN113667913B CN113667913B (zh) 2022-07-08

Family

ID=78538179

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110651912.5A Active CN113667913B (zh) 2021-06-11 2021-06-11 提高Hastelloy N合金ΣCSL晶界比例的工艺方法

Country Status (1)

Country Link
CN (1) CN113667913B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657488A (zh) * 2022-03-29 2022-06-24 中国航发北京航空材料研究院 一种增加镍基粉末高温合金孪晶界的工艺方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2468022A1 (en) * 2001-11-26 2003-06-05 Integran Technologies Inc. Thermo-mechanical treated lead alloys
CN101029379A (zh) * 2007-03-29 2007-09-05 上海大学 提高690合金材料耐腐蚀性能的工艺方法
CN105886841A (zh) * 2016-06-13 2016-08-24 上海大学兴化特种不锈钢研究院 提高镍基高温合金Hastelloy N的低Σ重位点阵晶界比例的工艺
CN106086582A (zh) * 2016-06-13 2016-11-09 上海大学兴化特种不锈钢研究院 提高铁镍基Incoloy925合金低Σ重位点阵晶界比例的工艺
CN106868280A (zh) * 2017-01-13 2017-06-20 南京理工大学 低晶间腐蚀倾向的Fe‑Ni‑Cr基奥氏体合金的制备方法
CN111575530A (zh) * 2020-05-29 2020-08-25 无锡隆达金属材料有限公司 一种耐高污染海水腐蚀的铜合金管材的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2468022A1 (en) * 2001-11-26 2003-06-05 Integran Technologies Inc. Thermo-mechanical treated lead alloys
CN101029379A (zh) * 2007-03-29 2007-09-05 上海大学 提高690合金材料耐腐蚀性能的工艺方法
CN105886841A (zh) * 2016-06-13 2016-08-24 上海大学兴化特种不锈钢研究院 提高镍基高温合金Hastelloy N的低Σ重位点阵晶界比例的工艺
CN106086582A (zh) * 2016-06-13 2016-11-09 上海大学兴化特种不锈钢研究院 提高铁镍基Incoloy925合金低Σ重位点阵晶界比例的工艺
CN106868280A (zh) * 2017-01-13 2017-06-20 南京理工大学 低晶间腐蚀倾向的Fe‑Ni‑Cr基奥氏体合金的制备方法
CN111575530A (zh) * 2020-05-29 2020-08-25 无锡隆达金属材料有限公司 一种耐高污染海水腐蚀的铜合金管材的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HAITAO YAN ET AL.: "Effect of two-step cold rolling and annealing on texture, grain boundary character distribution and r-value of Nb+Ti stabilized ferritic stainless steel", 《MATERIALS CHARACTERIZATION 60》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114657488A (zh) * 2022-03-29 2022-06-24 中国航发北京航空材料研究院 一种增加镍基粉末高温合金孪晶界的工艺方法

Also Published As

Publication number Publication date
CN113667913B (zh) 2022-07-08

Similar Documents

Publication Publication Date Title
JP3512402B2 (ja) 優秀な耐蝕性を持ったニオブ含有ジルコニウム合金核燃料被覆管の製造方法
EP1111623B1 (en) Zirconium niobium tin alloys for nuclear fuel rods and structural parts for high burnup
JPH0790522A (ja) 亀裂成長抵抗性に優れたジルカロイ管の製造方法
CN114807741B (zh) 一种基于碳化物析出提高奥氏体不锈钢性能的方法
US9099205B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a reactor accident condition, zirconium alloy nuclear fuel claddings prepared by using thereof and methods of preparing the same
McCarley et al. Influence of the starting microstructure on the hot deformation behavior of a low stacking fault energy Ni-based superalloy
Feng et al. Dependence of grain boundary character distribution on the initial grain size of 304 austenitic stainless steel
US3645800A (en) Method for producing wrought zirconium alloys
CN113667913B (zh) 提高Hastelloy N合金ΣCSL晶界比例的工艺方法
US5854818A (en) Zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
EP0899747B1 (en) Method of manufacturing zirconium tin iron alloys for nuclear fuel rods and structural parts for high burnup
JP2011168819A (ja) オーステナイト系ステンレス鋼、その製造方法
JPH11101887A (ja) 高いフルエンスに晒される水性雰囲気中での使用のためのジルコニウム合金、耐食性原子炉要素、構造核燃料集成部材および該合金から構成されている原子炉燃料棒被覆材
CN110964995A (zh) 一种提高IN718镍基高温合金中∑3n型晶界比例的方法
CN109971925A (zh) 改善奥氏体不锈钢抗晶间腐蚀性能的形变热处理工艺方法
CN107815527B (zh) 提高不锈钢管材的低∑csl晶界比例的gbe工艺方法
JP2018514646A (ja) 多段熱間圧延を適用した核燃料用ジルコニウム部品の製造方法
CN114457261A (zh) 熔盐堆用耐蚀镍基变形高温合金及其制备方法
CN114277327B (zh) 一种基于孪晶诱发再结晶的锆合金板材织构调整方法
JP6228231B2 (ja) ジルコニウム合金の処理方法、該方法で得られたジルコニウム合金、および該合金からなる原子炉の部品
US9111650B2 (en) Zirconium alloys for a nuclear fuel cladding having a superior oxidation resistance in a severe reactor operation condition and methods of preparing a zirconium alloy nuclear cladding by using thereof
JP3955097B2 (ja) 燃料ボックスと燃料ボックスを製造する方法
JP2000282101A (ja) 酸化物分散強化型フェライト鋼の製造方法
CN116695038A (zh) 一种高比例孪晶银及其制备方法和应用
JPS59118867A (ja) 金属ジルコニウム及びジルコニウム合金の加工方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant