CN113655039A - 一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器 - Google Patents

一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器 Download PDF

Info

Publication number
CN113655039A
CN113655039A CN202111024937.9A CN202111024937A CN113655039A CN 113655039 A CN113655039 A CN 113655039A CN 202111024937 A CN202111024937 A CN 202111024937A CN 113655039 A CN113655039 A CN 113655039A
Authority
CN
China
Prior art keywords
aptes
fitc
microcystin
cqds
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111024937.9A
Other languages
English (en)
Other versions
CN113655039B (zh
Inventor
胡雪萍
李苹
宋兴良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linyi University
Original Assignee
Linyi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linyi University filed Critical Linyi University
Priority to CN202111024937.9A priority Critical patent/CN113655039B/zh
Publication of CN113655039A publication Critical patent/CN113655039A/zh
Application granted granted Critical
Publication of CN113655039B publication Critical patent/CN113655039B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/65Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Immunology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器,属于环境检测技术领域。本发明,通过合成以柠檬酸为碳源的碳量子点和二氧化硅负载异硫氰酸荧光素的纳米材料,它们分别对微囊藻毒素有荧光猝灭和荧光增强的特性,从而建立了一种比率荧光的方法,然后采用分子印迹方法,以二甲双胍为假模板,通过在复合纳米材料上留下印迹位点,对微囊藻毒素进行选择性识别,从而达到定量检测的效果。所得CQDS‑FITC‑APTES‑SiO2@MIP对微囊藻毒素RR/LR荧光相应度好,反应灵敏,荧光比率技术和分子印迹技术的结合,完全满足微囊藻毒素的快速检测需求,且成本低廉,适合各类场合使用。

Description

一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器
技术领域
本发明属于环境检测技术领域,具体涉及一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器。
背景技术
微囊藻毒素(Microcystin,简称MC)是蓝藻产生的一类天然毒素,是一类环七肽缩氨酸肝毒素,具有强烈的促肝癌作用,通过食物网对水生生物、饮用水安全和人类健康构成巨大威胁。特别是,MC-LR、MC-RR作为毒性最强、最具普遍性的微囊藻毒素,正受到广泛关注。微囊藻有时会表现出超乎寻常的生命力,不论常规的自来水处理工艺,还是将水煮沸,都难以有效去除微囊藻毒素。研究显示,即使在300摄氏度高温下微囊藻毒素仍然可以保留一部分活性。因此,在生物和环境系统的情况下,敏感和选择性地检测微囊藻毒素至关重要。
到目前为止,已经开发了许多检测微囊藻毒素的方法,包括高效液相色谱(HPLC)、酶联免疫吸附试验(ELISA)、电化学测量、蛋白磷酸酶抑制试验(PPIA)、和光学传感,即生化方法和仪器分析法。其中生化方法中主要采用酶联分析法,该方法简单、高效、快速,但是该方法一方面需要使用微囊藻毒素单克隆抗体,其制备困难导致需要进口,价格昂贵;另一方面该方法选择性较差,容易出现假阳性现象。仪器分析法主要采用高效液相色谱或高效液相色谱-串联质谱法。高效液相色谱法灵敏度低,需要高倍富集从而需要4-6个小时才能检测一批样品,不能够满足水华监测的快速及时分析。
因此,如何找到一种针对微囊藻毒素的快速检测方法,以快速反应水体中微囊藻毒素的存在,以及起到快速预警和控制,对于控制水体污染至关重要。
发明内容
本发明提供一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器,其可实现微囊藻毒素的快速定性和定量检测,简单快捷,生物响应度高,
为实现上述技术目的,本发明所采用的技术方案为:
一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器,制备方法为:
(1)合成荧光碳点CQDS:将0.3~0.6g无水柠檬酸溶解在10mL N-(β-氨基乙基)-γ-氨基丙基-甲基二甲氧基硅烷中,装入50mL特氟隆内衬的不锈钢高压釜中,并用氮气脱气20分钟;然后,将高压釜在240℃下保持2小时,冷却至室温;溶液用过滤膜过滤;再用石油醚洗涤三次,再将获得的产物分散在无水乙醇中,得到荧光碳点CQDS乙醇溶液,并储存在4℃的冰箱中以备进一步使用;根据每次获得产物的数量,产物和乙醇体积比是1:7左右;
(2)FITC-APTES-SiO2复合纳米粒子的制备:取4~10mg异硫氰酸荧光素FITC与10mL水混合,室温下磁力搅拌均匀,加入100μL3-氨丙基三乙氧基硅烷APTES,避光室温搅拌24h,制得FITC-APTES前驱体;取1.77mL Triton X-100、1.80mL正已醇、7.50mL环已烷混合,室温下磁力搅拌30min混合均匀,加入8~11mL的FITC-APTES前驱体作为分散相,继续搅拌,形成油包水微乳液;取正硅酸乙酯滴加到所述油包水微乳液中,两者体积比1:200,室温下磁力搅拌30min后,加入60μL氨水;持续室温搅拌24h后,加入10mL丙酮溶液破乳,高速离心后分别用无水乙醇、超纯水洗涤后真空干燥保存,得FITC-APTES-SiO2复合纳米粒子;
(3)CQDS-FITC-APTES-SiO2@MIP的合成:将100~200mg二甲双胍和40mL荧光碳点CQDS乙醇溶液加入到容器中;然后,在容器里加入步骤(2)所得FITC-APTES-SiO2复合纳米粒子,具体的是将FITC-APTES-SiO2复合纳米粒子配成0.5g/L乙醇溶液,与CQDS体积比1:6加入,再加入300~500μL3-氨丙基三乙氧基硅烷,1~2mL正硅酸乙酯,50~100mg过硫酸铵和800μL氨水搅拌均匀;混合物在室温下黑暗中静置24小时;离心收集所得产物,并用乙醇洗涤,得固体产物;
(4)再将固体产物用有机溶剂洗脱二甲双胍,然后在60℃的真空干燥得终产物比率荧光传感器。
进一步的,步骤(1)中所用滤膜为0.22μm滤膜。
进一步的,步骤(2)所用氨水质量浓度为25%。
进一步的,步骤(3)乙醇洗涤不少于3次。
进一步的,步骤(4)有机溶剂为无水乙醇和乙腈按照体积比4:1混合,洗脱不少于三次。
荧光比率分析法有线性动态范围宽、光谱干扰少等优点。比率荧光检测技术具有明显的优点:灵敏度高、响应速度快、不需要复杂的样品前处理、对样品无破坏、受环境的影响较小等优点。分子印迹技术是合成对某种分子具有特定识别位点的多孔材料的一种很有前途的技术。分子印迹聚合物(MIPs)具有选择性高、制备容易、化学稳定性好和成本低等优点,并已广泛应用于化学传感、光降解和分离。
因此,将荧光比率技术和分子印迹技术相结合,以开发一种适合检测微囊藻毒素的荧光传感器,实现对目标的高选择性和高灵敏度检测。
有益效果
本发明根据二甲双胍和微囊藻毒素均含有特异性胍基结构,以二甲双胍为假模板,后将二甲双胍去除,留下特异性分子印迹结合位点,可实现与微囊藻毒素的特异性结合,实现对微囊藻毒素的定性定量检测。所得CQDS-FITC-APTES-SiO2@MIP对微囊藻毒素RR/LR荧光相应度好,反应灵敏,荧光比率技术和分子印迹技术的结合,完全满足微囊藻毒素的快速检测需求,且成本低廉,适合各类场合使用。
附图说明
图1为本发明CQDS的TEM图;
图2为本发明CQDS的紫外吸收光谱以及荧光发射光谱;
图3为本发明FITC-APTES-SiO2复合纳米粒子透射电镜图;
图4为本发明FITC-APTES-SiO2复合纳米粒子扫描电镜图;
图5为本发明CQDS和FITC-APTES-SiO2纳米粒子的红外光谱对比图;
图6为本发明CQDS-FITC-APTES-SiO2@MIP扫描电镜图;
图7为CQDS-FITC-APTES-SiO2@MIP和CQDS-FITC-APTES-SiO2@NIP红外光谱图;
图8为CQDS-FITC-APTES-SiO2@MIP和CQDS-FITC-APTES-SiO2@NIP紫外光谱图;
图9为本发明CQDS-FITC-APTES-SiO2@MIP对微囊藻毒素-RR荧光响应图;
图10为本发明CQDS-FITC-APTES-SiO2@MIP对微囊藻毒素-LR荧光响应图;
图11为本发明CQDS-FITC-APTES-SiO2@NIP对微囊藻毒素-RR和微囊藻毒素-LR荧光响应图;
具体实施方式
下面结合具体实施例对本发明的技术方案做进一步说明,但不限于此。
实施例1
一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器,制备方法为:
第一步:合成荧光碳点CQDS:将0.3g无水柠檬酸溶解在10mL N-(β-氨基乙基)-γ-氨基丙基-甲基二甲氧基硅烷中,装入50mL特氟隆内衬的不锈钢高压釜中,并用氮气脱气20分钟;然后,将高压釜在240℃下保持2小时,冷却至室温;溶液用过滤膜过滤;再用石油醚洗涤三次,再将获得的产物分散在无水乙醇中,得到荧光碳点CQDS乙醇溶液,并储存在4℃的冰箱中以备进一步使用;
第二步:FITC-APTES-SiO2复合纳米粒子的制备:取4mg异硫氰酸荧光素FITC与10mL水混合,室温下磁力搅拌均匀,加入100μL3-氨丙基三乙氧基硅烷APTES,避光恒温搅拌24h,制得FITC-APTES前驱体;取1.77mL Triton X-100、1.80mL正已醇、7.50mL环已烷混合,室温下磁力搅拌30min混合均匀,加入8mL的FITC-APTES前驱体作为分散相,继续搅拌,形成油包水微乳液;取100μL正硅酸乙酯滴加到所述油包水微乳液中,室温下磁力搅拌30min后,加入60μL氨水;持续室温搅拌24h后,加入10mL丙酮溶液破乳,高速离心后分别用无水乙醇、超纯水洗涤后真空干燥保存,得FITC-APTES-SiO2复合纳米粒子。
第三步:CQDS-FITC-APTES-SiO2@MIP的合成:将100mg二甲双胍和40mL荧光碳点CQDS乙醇溶液加入到容器中;然后,在容器里加入步骤(2)所得FITC-APTES-SiO2复合纳米粒子,300μL3-氨丙基三乙氧基硅烷,1mL正硅酸乙酯,50mg过硫酸铵和800μL氨水搅拌均匀;混合物在室温下黑暗中静置24小时;离心收集所得产物,并用乙醇洗涤,得固体产物;
再将固体产物用有机溶剂洗脱二甲双胍,洗脱不少于三次。然后在60℃的真空干燥得终产物比率荧光传感器。
实施例2
一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器,制备方法为:
第一步:合成荧光碳点CQDS:将0.6g无水柠檬酸溶解在10mL N-(β-氨基乙基)-γ-氨基丙基-甲基二甲氧基硅烷中,装入50mL特氟隆内衬的不锈钢高压釜中,并用氮气脱气20分钟;然后,将高压釜在240℃下保持2小时,冷却至室温;溶液用过滤膜过滤;再用石油醚洗涤三次,再将获得的产物分散在无水乙醇中,得到荧光碳点CQDS乙醇溶液,并储存在4℃的冰箱中以备进一步使用;
第二步:FITC-APTES-SiO2复合纳米粒子的制备:取4~10mg异硫氰酸荧光素FITC与10mL水混合,室温下磁力搅拌均匀,加入100μL3-氨丙基三乙氧基硅烷APTES,避光恒温搅拌24h,制得FITC-APTES前驱体;取1.77mL Triton X-100、1.80mL正已醇、7.50mL环已烷混合,室温下磁力搅拌30min混合均匀,加入11mL的FITC-APTES前驱体作为分散相,继续搅拌,形成油包水微乳液;取100μL正硅酸乙酯滴加到所述油包水微乳液中,室温下磁力搅拌30min后,加入60μL氨水;持续室温搅拌24h后,加入10mL丙酮溶液破乳,高速离心后分别用无水乙醇、超纯水洗涤后真空干燥保存,得FITC-APTES-SiO2复合纳米粒子。
第三步:CQDS-FITC-APTES-SiO2@MIP的合成:将200mg二甲双胍和40mL荧光碳点CQDS乙醇溶液加入到容器中;然后,在容器里加入步骤(2)所得FITC-APTES-SiO2复合纳米粒子,500μL3-氨丙基三乙氧基硅烷,2mL正硅酸乙酯,100mg过硫酸铵和800μL氨水搅拌均匀;混合物在室温下黑暗中静置24小时;离心收集所得产物,并用乙醇洗涤,得固体产物;
再将固体产物用有机溶剂洗脱二甲双胍,洗脱不少于三次。然后在60℃的真空干燥得终产物比率荧光传感器。
实施例3
一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器,制备方法为:
第一步:合成荧光碳点CQDS:将0.5g无水柠檬酸溶解在10mL N-(β-氨基乙基)-γ-氨基丙基-甲基二甲氧基硅烷中,装入50mL特氟隆内衬的不锈钢高压釜中,并用氮气脱气20分钟;然后,将高压釜在240℃下保持2小时,冷却至室温;溶液用过滤膜过滤;再用石油醚洗涤三次,再将获得的产物分散在无水乙醇中,得到荧光碳点CQDS乙醇溶液,并储存在4℃的冰箱中以备进一步使用;
所得荧光碳点CQDS的透射电镜图如图1所示。
碳点的合成产物包括无水柠檬酸的分解和热解,同时酰化反应和表面钝化同时发生。为了评价制备的碳点的光学性质,进行了紫外-可见吸收光谱和荧光光谱。在光谱图(图2)中有一个位于349nm的吸收峰。合成的碳点的荧光光谱在349nm激发下,在458nm处出现最大发射峰。
第二步:FITC-APTES-SiO2复合纳米粒子的制备:取4.3mg异硫氰酸荧光素FITC与10mL水混合,室温下磁力搅拌均匀,加入100μL3-氨丙基三乙氧基硅烷APTES,避光恒温搅拌24h,制得FITC-APTES前驱体;取1.77mL Triton X-100、1.80mL正已醇、7.50mL环已烷混合,室温下磁力搅拌30min混合均匀,加入10mL的FITC-APTES前驱体作为分散相,继续搅拌,形成油包水微乳液;取100μL正硅酸乙酯滴加到所述油包水微乳液中,室温下磁力搅拌30min后,加入60μL氨水;持续室温搅拌24h后,加入10mL丙酮溶液破乳,高速离心后分别用无水乙醇、超纯水洗涤后真空干燥保存,得FITC-APTES-SiO2复合纳米粒子。
进一步对FITC-APTES-SiO2复合纳米粒子进行透射电镜和扫描电镜的表征,TEM图如图3所示,SEM图如图4所示,图中可以看出,纳米粒子呈现边缘整齐而光滑的球型结构,形态良好。
进一步对合成荧光碳点CQDS和FITC-APTES-SiO2复合纳米粒子进行红外光谱分析,如图5所示,1565cm-1处的峰属于二级酰胺氮氢弯曲和碳氮拉伸,而1650cm-1处的峰属于二级酰胺碳氧拉伸,3291cm-1处的宽峰属于二级酰胺氮氢拉伸。这些情况揭示了酰胺键的形成,这是表明CQDS表面钝化反应成功的最典型特征。这些情况表明,CQDS是成功合成的。
1090cm-1和469cm-1附近处均有强的吸收峰,为氧化硅的特征振动峰,分别对应于Si-O-Si的不对称伸缩振动和弯曲振动。799cm-1处是Si-O对称伸缩振动峰,960cm-1为Si—OH的伸缩振动峰,1555cm-1是多了一个峰,为N—H弯曲振动的贡献,证明成功地将氨基官能团修饰到氧化硅材料中,进一步说明FITC已通过与APTES偶联,以化学键的形式连接到氧化硅纳米粒子中。
第三步:CQDS-FITC-APTES-SiO2@MIP的合成:将200mg二甲双胍和40mL荧光碳点CQDS乙醇溶液加入到容器中;然后,在容器里加入步骤(2)所得FITC-APTES-SiO2复合纳米粒子,350μL3-氨丙基三乙氧基硅烷,1.5mL正硅酸乙酯,50mg过硫酸铵和800μL氨水搅拌均匀;混合物在室温下黑暗中静置24小时;离心收集所得产物,并用乙醇洗涤,得固体产物;
再将固体产物用有机溶剂洗脱二甲双胍,洗脱不少于三次。然后在60℃的真空干燥得终产物比率荧光传感器。
图6为CQDS-FITC-APTES-SiO2@MIP扫描电镜图,图中可以看出,纳米粒子形貌明显发生改变,也可以说明,纳米粒子成分发生变化,有新物质附着于纳米粒子表面。
对比例1
CQDS-FITC-APTES-SiO2@NIP制备,即不使用二甲双胍进行分子印迹。
一种微囊藻毒素比率荧光传感器,制备方法为:
(1)合成荧光碳点CQDS:将0.5g无水柠檬酸溶解在10mL N-(β-氨基乙基)-γ-氨基丙基-甲基二甲氧基硅烷中,装入50mL特氟隆内衬的不锈钢高压釜中,并用氮气脱气20分钟;然后,将高压釜在240℃下保持2小时,冷却至室温;溶液用过滤膜过滤;再用石油醚洗涤三次,再将获得的产物分散在无水乙醇中,得到荧光碳点CQDS乙醇溶液,并储存在4℃的冰箱中以备进一步使用;
(2)FITC-APTES-SiO2复合纳米粒子的制备:取4.3mg异硫氰酸荧光素FITC与10mL水混合,室温下磁力搅拌均匀,加入100μL3-氨丙基三乙氧基硅烷APTES,避光恒温搅拌24h,制得FITC-APTES前驱体;取1.77mL Triton X-100、1.80mL正已醇、7.50mL环已烷混合,室温下磁力搅拌30min混合均匀,加入10mL的FITC-APTES前驱体作为分散相,继续搅拌,形成油包水微乳液;取100μL正硅酸乙酯滴加到所述油包水微乳液中,室温下磁力搅拌30min后,加入60μL氨水;持续室温搅拌24h后,加入10mL丙酮溶液破乳,高速离心后分别用无水乙醇、超纯水洗涤后真空干燥保存,得FITC-APTES-SiO2复合纳米粒子;
(3)CQDS-FITC-APTES-SiO2@NIP的合成:将40mL荧光碳点CQDS乙醇溶液加入到容器中;然后,在容器里加入步骤(2)所得FITC-APTES-SiO2复合纳米粒子,350μL3-氨丙基三乙氧基硅烷,1.5mL正硅酸乙酯,50mg过硫酸铵和800μL氨水搅拌均匀;混合物在室温下黑暗中静置24小时;离心收集所得产物,并用乙醇洗涤,得固体产物;然后在60℃的真空干燥得终产物比率荧光传感器。
本对比例与实施例1唯一的区别即为不使用二甲双胍印迹,其余步骤和原料选择配比均相同。
性能测试
CQDS-FITC-APTES-SiO2@MIP和CQDS-FITC-APTES-SiO2@NIP进行红外分析,谱图如图7所示,红外谱图中MIP,NIP具有相似的振动峰,说明模板分子二甲双胍被洗脱完全。同时对实施例洗脱前后进行分析,如图8所示,紫外谱图中,实施例1分子印迹聚合物在300-400nm范围内没有特征吸收峰,这表明它成功地去除了分子印迹聚合物纳米复合材料中的模板分子。
微囊藻毒素的检测
将实施例1得到的烘干的分子印迹涂层粉末CQDS-FITC-APTES-SiO2@MIP溶解在生理盐水中,制成分子印迹涂层工作溶液(400μg/mL)。3mL的工作溶液加入试管,然后加入一系列不同浓度的微囊藻毒素溶液。荧光测量在310nm的激发波长下进行。充分混合后立即测量荧光光谱。荧光响应图如图9-11所示,图中可以看出:CQDS-FITC-APTES-SiO2@MIP对两种微囊藻毒素具有良好的荧光响应,荧光传感器可以特异性识别藻毒素里面的胍基进而实现检测。而同一浓度的材料对同一浓度的两种藻毒素荧光响应大小是不一样的,以实现两种毒素的定性定量检测。
需要说明的是,上述实施例仅仅是实现本发明的优选方式的部分实施例,而非全部实施例。显然,基于本发明的上述实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其他所有实施例,都应当属于本发明保护的范围。

Claims (5)

1.一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器,其特征在于,制备方法为:
(1)合成荧光碳点CQDS:将0.3~0.6g水柠檬酸溶解在10mL N-(β-氨基乙基)-γ-氨基丙基-甲基二甲氧基硅烷中,装入50mL特氟隆内衬的不锈钢高压釜中,并用氮气脱气20分钟;然后,将高压釜在240℃下保持2小时,冷却至室温;溶液用过滤膜过滤;再用石油醚洗涤三次,再将获得的产物分散在无水乙醇中,得到荧光碳点CQDS乙醇溶液,并储存在4℃的冰箱中以备进一步使用;
(2)FITC-APTES-SiO2复合纳米粒子的制备:取4~10mg异硫氰酸荧光素FITC与10mL水混合,室温下磁力搅拌均匀,加入100μL 3-氨丙基三乙氧基硅烷APTES,避光室温搅拌24h,制得FITC-APTES前驱体;取1.77mL Triton X-100、1.80mL正已醇、7.50mL环已烷混合,室温下磁力搅拌30min混合均匀,加入8~11mL的FITC-APTES前驱体作为分散相,继续搅拌,形成油包水微乳液;取正硅酸乙酯滴加到所述油包水微乳液中,两者体积比1:200,室温下磁力搅拌30min后,加入60μL氨水;持续室温搅拌24h后,加入10mL丙酮溶液破乳,高速离心后分别用无水乙醇、超纯水洗涤后真空干燥保存,得FITC-APTES-SiO2复合纳米粒子;
(3)CQDS-FITC-APTES-SiO2@MIP的合成:将100~200mg二甲双胍和40mL荧光碳点CQDS乙醇溶液加入到容器中;然后,在容器里加入步骤(2)所得FITC-APTES-SiO2复合纳米粒子,300~500μL3-氨丙基三乙氧基硅烷,1~2mL正硅酸乙酯,50~100mg过硫酸铵和800μL氨水搅拌均匀;混合物在室温下黑暗中静置24小时;离心收集所得产物,并用乙醇洗涤,得固体产物;
(4)再将固体产物用有机溶剂洗脱二甲双胍,然后在60℃的真空干燥得终产物比率荧光传感器。
2.根据权利要求1所述基于分子印迹技术构建的微囊藻毒素比率荧光传感器,其特征在于,步骤(1)中所用滤膜为0.22μm滤膜。
3.根据权利要求1所述基于分子印迹技术构建的微囊藻毒素比率荧光传感器,其特征在于,步骤(2)所用氨水质量浓度为25%。
4.根据权利要求1所述基于分子印迹技术构建的微囊藻毒素比率荧光传感器,其特征在于,步骤(3)乙醇洗涤不少于3次。
5.根据权利要求1所述基于分子印迹技术构建的微囊藻毒素比率荧光传感器,其特征在于,步骤(4)有机溶剂为无水乙醇和乙腈按照体积比4:1混合。
CN202111024937.9A 2021-09-02 2021-09-02 一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器 Active CN113655039B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111024937.9A CN113655039B (zh) 2021-09-02 2021-09-02 一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111024937.9A CN113655039B (zh) 2021-09-02 2021-09-02 一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器

Publications (2)

Publication Number Publication Date
CN113655039A true CN113655039A (zh) 2021-11-16
CN113655039B CN113655039B (zh) 2024-01-26

Family

ID=78493459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111024937.9A Active CN113655039B (zh) 2021-09-02 2021-09-02 一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器

Country Status (1)

Country Link
CN (1) CN113655039B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477942A (zh) * 2022-07-06 2022-12-16 上海理工大学 一种固态荧光碳点的制备方法及应用
CN116465872A (zh) * 2023-05-09 2023-07-21 临沂大学 一种快速检测微囊藻毒素方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382541A (zh) * 2008-06-27 2009-03-11 江南大学 一种微囊藻毒素-lr的免疫荧光猝灭检测方法
CN101870866A (zh) * 2010-05-19 2010-10-27 合肥学院 对超痕量tnt蒸气检测的反蛋白石结构荧光薄膜的制备方法
CN102241753A (zh) * 2011-05-06 2011-11-16 深圳大学 一种微囊藻毒素荧光标记的方法
CN110180509A (zh) * 2019-05-24 2019-08-30 吉林大学 一种荧光分子印迹聚合物空心微球及其制备方法和应用
CN111024673A (zh) * 2020-01-20 2020-04-17 南京医科大学附属逸夫医院 一种比率荧光分子印迹聚合物及其制备方法和应用
CN112525873A (zh) * 2020-11-12 2021-03-19 滨州医学院 一种用于检测微囊藻毒素-lr的荧光化学传感器及制备方法
CN112808254A (zh) * 2020-12-31 2021-05-18 中国农业科学院蔬菜花卉研究所 一种农药比率荧光分子印迹聚合微球的制备方法
CN112898965A (zh) * 2021-03-05 2021-06-04 河南理工大学 一种可视化区分检测用比率荧光探针制备及使用方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101382541A (zh) * 2008-06-27 2009-03-11 江南大学 一种微囊藻毒素-lr的免疫荧光猝灭检测方法
CN101870866A (zh) * 2010-05-19 2010-10-27 合肥学院 对超痕量tnt蒸气检测的反蛋白石结构荧光薄膜的制备方法
CN102241753A (zh) * 2011-05-06 2011-11-16 深圳大学 一种微囊藻毒素荧光标记的方法
CN110180509A (zh) * 2019-05-24 2019-08-30 吉林大学 一种荧光分子印迹聚合物空心微球及其制备方法和应用
CN111024673A (zh) * 2020-01-20 2020-04-17 南京医科大学附属逸夫医院 一种比率荧光分子印迹聚合物及其制备方法和应用
CN112525873A (zh) * 2020-11-12 2021-03-19 滨州医学院 一种用于检测微囊藻毒素-lr的荧光化学传感器及制备方法
CN112808254A (zh) * 2020-12-31 2021-05-18 中国农业科学院蔬菜花卉研究所 一种农药比率荧光分子印迹聚合微球的制备方法
CN112898965A (zh) * 2021-03-05 2021-06-04 河南理工大学 一种可视化区分检测用比率荧光探针制备及使用方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
P LI 等: "A dummy molecularly imprinted ratiometric fluorescence nanosensor for the sensitive detection of guanidyl-microcystins in environmental water", ANALYST, no. 148, pages 573 - 582 *
宋兴良 等: "虚拟模板分子印迹微球的制备及其对水中微囊藻毒素的吸附性能", 环境化学, vol. 35, no. 3, pages 451 - 459 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115477942A (zh) * 2022-07-06 2022-12-16 上海理工大学 一种固态荧光碳点的制备方法及应用
CN116465872A (zh) * 2023-05-09 2023-07-21 临沂大学 一种快速检测微囊藻毒素方法
CN116465872B (zh) * 2023-05-09 2023-11-28 临沂大学 一种快速检测微囊藻毒素方法

Also Published As

Publication number Publication date
CN113655039B (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
Liu et al. Molecularly imprinted optosensing material based on hydrophobic CdSe quantum dots via a reverse microemulsion for specific recognition of ractopamine
Qin et al. Highly water-stable Cd-MOF/Tb3+ ultrathin fluorescence nanosheets for ultrasensitive and selective detection of Cefixime
CN103264165B (zh) 一种以单链dna为模板合成银纳米簇的方法
Knauer et al. Optimized surface-enhanced Raman scattering (SERS) colloids for the characterization of microorganisms
CN113655039A (zh) 一种基于分子印迹技术构建的微囊藻毒素比率荧光传感器
CN106433632A (zh) 一种碳量子点的制备方法及其应用
Liu et al. Highly selective, colorimetric detection of Hg2+ based on three color changes of AuNPs solution from red through sandy beige to celandine green
CN106802295B (zh) 一种对痕量tnt检测的石墨烯量子点荧光探针的化学制备方法
Gong et al. Ratiometric fluorescent sensing for phosphate based on Eu/Ce/UiO-66-(COOH) 2 nanoprobe
CN110082329A (zh) 一种菠萝蛋白酶包裹的荧光铂纳米簇及制备方法和应用
Liu et al. A two-dimensional zinc (II)-based metal-organic framework for fluorometric determination of ascorbic acid, chloramphenicol and ceftriaxone
Li et al. Quantum dot based molecularly imprinted polymer test strips for fluorescence detection of ferritin
Duan et al. SERS-based chip for discrimination of formaldehyde and acetaldehyde in aqueous solution using silver reduction
CN113136205A (zh) 一种荧光碳量子点、制备方法及其在检测超氧阴离子中的应用
Liu et al. Determination of DNA based on fluorescence quenching of terbium doped carbon dots
Chen et al. A homogeneous capillary fluorescence imprinted nanozyme intelligent sensing platform for high sensitivity and visual detection of triclocarban
Liu et al. A simple and feasible fluorescent approach for rapid detection of hexavalent chromium based on gold nanoclusters
CN108623815B (zh) 一种镉基金属有机框架材料的制备方法及其在离子识别中的应用
Han et al. Encapsulating functionalized graphene quantum dot into metal-organic framework as a ratiometric fluorescent nanoprobe for doxycycline sensing
Liang et al. Europium coordination polymer particles based electrospun nanofibrous film for point-of-care testing of copper (II) ions
Li et al. A dummy molecularly imprinted ratiometric fluorescence nanosensor for the sensitive detection of guanidyl-microcystins in environmental water
Li et al. Highly catalytic nanoenzyme of covalent organic framework loaded starch-surface-enhanced Raman scattering/absorption bi-mode peptide as biosensor for ultratrace determination of cadmium
Li et al. Facile aqueous synthesis of functionalized CdTe nanoparticles and their application as fluorescence probes for determination of adenine and guanine
Zhang et al. A fluorescent probe for the detection of Hg 2+ based on rhodamine derivative and modified CdTe quantum dots
CN112322280A (zh) 一种哌嗪功能化碳量子点的制备方法及其在土霉素检测中的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant