CN113651841A - 具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用 - Google Patents

具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用 Download PDF

Info

Publication number
CN113651841A
CN113651841A CN202110932210.4A CN202110932210A CN113651841A CN 113651841 A CN113651841 A CN 113651841A CN 202110932210 A CN202110932210 A CN 202110932210A CN 113651841 A CN113651841 A CN 113651841A
Authority
CN
China
Prior art keywords
compound
electronic device
organic
delayed fluorescence
resonance type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110932210.4A
Other languages
English (en)
Other versions
CN113651841B (zh
Inventor
杨楚罗
苏晓旋
邹洋
张友明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN202110932210.4A priority Critical patent/CN113651841B/zh
Publication of CN113651841A publication Critical patent/CN113651841A/zh
Application granted granted Critical
Publication of CN113651841B publication Critical patent/CN113651841B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/027Organoboranes and organoborohydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/623Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing five rings, e.g. pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1055Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with other heteroatoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Optics & Photonics (AREA)

Abstract

本发明公开具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用。具有以下结构通式中的一种:
Figure DDA0003211516200000011
其中,R1‑R5中的至少一个选自以下结构中的一种:

Description

具有空间立体结构多重共振型热活化延迟荧光材料、电子器 件及其应用
技术领域
本发明涉及有机电致发光材料技术领域,尤其涉及具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用。
背景技术
有机发光二极管(organic light-emitting diodes,OLED)具有色彩鲜艳、响应速度快、可视角度大、驱动电压低、节能、轻薄以及可柔性显示等优点。其中,发光层材料是OLED的核心部分,早期的OLED发光材料为传统荧光材料,由于在OLED中单重态和三重态的激子比例为1:3,而传统荧光材料只能利用单重态激子发光,因此,传统荧光材料的OLED理论内量子效率为25%。利用金属配合物的磷光材料由于重原子的自旋轨道耦合效应,使得其能够实现理论最大的100%激子利用率。但是,磷光材料通常要使用Ir(铱)、Pt(铂)、Os(锇)等贵重金属,不仅成本高,而且毒性较大。近年来,热活化延迟荧光(ThermallyActivated Delayed Fluorescence)材料的出现,推动了OLED技术的发展。热活化延迟荧光材料利用纯有机的构筑单元,通过特殊的分子设计使最低占据轨道(HOMO)和最高未占据轨道(LUMO)有效分离,减小了最低激发单重态-三重态的能级差。热活化延迟荧光分子可使三重态激子通过反向系间窜越过程转换为单重态激子,再通过辐射跃迁回到基态,发出荧光,其激子利用率也可达100%。相较于磷光材料,纯有机的热活化延迟荧光材料明显降低了材料的成本,并且热活化延迟荧光材料结构设计灵活,易于获得满足要求的高效、长寿命的有机发光材料。
对于热活化延迟荧光材料,小的ΔEST以及高的光致发光量子产率(PLQY)是制备高效率OLED的必要条件。目前,多重共振型热活化延迟荧光材料由于具有分子内多重共振效应,它们的最高占据轨道(HOMO)和最低未占据轨道(LUMO)能级可以有效地分离到不同的原子上。在多重共振热活化延迟荧光分子中,Franck-Condon(夫兰克-康登)激发使分子具有大的振子强度,从而导致高的量子产率。因此,多重共振热活化延迟荧光分子以相当独特的方式结合了长程相互作用和离域效应,从而促进了辐射速率,并通过短程电荷密度改组最小化了单重态-三重态的能隙。此外,该分子的刚性特性导致分子振动大大减弱,从而使硼-氮分子的发射光谱更窄。但是多重共振型热活化延迟荧光材料由于存在分子间堆积从而产生固态聚集诱导荧光淬灭效应,不利于发光器件寿命和稳定性。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用,旨在解决现有多重共振型热活化延迟荧光材料存在分子间堆积导致的聚集淬灭效应,导致降低OLED器件效率的问题。
本发明通过引入具有三维立体结构的外围单元,合成一系列具有立体结构多重共振型B-N热活化延迟荧光分子。该三维立体的刚性结构可以抑制分子的聚集,避免多重共振型热活化延迟荧光材料分子间堆积导致的聚集诱导荧光淬灭效应的问题,从而能够有效提高器件的效率;三维立体结构的外围单元还具有较大的位阻,有利于提高热活化延迟荧光材料的溶解性和热稳定性,从而能够有效提高器件的寿命。
具体地,本发明的技术方案如下:
本发明提供的具有空间立体结构多重共振型热活化延迟荧光材料,其中,具有以下结构通式中的一种:
Figure BDA0003211516190000021
其中,R1-R5中的至少一个独立地选自以下结构中的一种:
Figure BDA0003211516190000022
需说明的是,本发明R1-R5中的至少一个独立地选自A-E(即A、B、C、D、E)结构中的一种,其可以是R1-R5中的一个选自A-E结构中的一种,也可以是R1-R5中的任意两个独立地选自A-E结构中的一种,也可以是R1-R5中的任意三个独立地选自A-E结构中的一种,也可以是R1-R5中的任意四个独立地选自A-E结构中的一种,还可以是R1-R5均独立地选自A-E结构中的一种。
上述R1-R5中,当其中任意一个不选自A-E结构中的任意一种时,其可选自不成键、包含叔丁基在内的柔性脂肪烃或者芳香烃等不限于此中的一种。进一步地,所述R1-R5中的一个、两个或三个为包含叔丁基在内的柔性脂肪烃或者芳香烃,如此可以提高多重共振型热活化延迟荧光材料的溶解性。
需说明的是,本发明上述R1-R5均能够相互以共价键方式相连成环。
本发明通过在多重共振型分子的不同位点引入不同三维立体结构来改变材料的整体结构,通过调控分子结构,实现高纯度、多颜色发光。此类分子由于包含三维立体结构,具有如下优点,如:溶解性好,热稳定好,分子结构易于调控,分子可精确的重复合成等,改善传统多重共振型热活化延迟荧光材料存在分子间堆积导致的聚集淬灭效应,导致降低OLED器件效率的问题;同时又可以有效调控热活化延迟荧光分子能级和分子构象,进而调控材料的发光颜色和发光性能。
进一步地,所述热活化延迟荧光材料具有以下结构中的一种:
Figure BDA0003211516190000031
Figure BDA0003211516190000041
Figure BDA0003211516190000051
Figure BDA0003211516190000061
Figure BDA0003211516190000071
一种电子器件,其中,包括本发明所述的具有空间立体结构多重共振型热活化延迟荧光材料。
进一步地,所述电子器件为有机电致发光器件、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机传感器、有机光伏电池、有机自旋电子器件等中的一种,但不限于此。
进一步地,所述电子器件为有机电致发光器件,所述有机电致发光器件包括功能层,所述功能层由质量百分含量为0.1~99.9%的具有空间立体结构多重共振型热活化延迟荧光材料和质量百分含量为0.1~99.9%有机功能材料组成;
所述有机功能材料选自空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料、激子阻隔材料、荧光发光材料、磷光发光材料、主体材料及有机染料等中的一种,但不限于此。
进一步地,所述电子器件为有机电致发光器件,所述有机电致发光器件包括发光层,所述发光层包括所述具有空间立体结构多重共振型热活化延迟荧光材料。
本发明所述的电子器件在电子设备中的应用。
本发明还提供了一种制备上述具有空间立体结构多重共振型热活化延迟荧光材料的方法,该方法将常见具有空间立体结构分子例如:三蝶烯,金刚烷等与多重共振型结构分子的至少一种进行相连,形成上述结构式中的一种结构。具体可通过Buchwald-Hartwig偶联、硼化等反应实现所述相连。
本发明主要具有以下技术优势:
材料可在有机电致发光器件中作为发光层材料,由于引入三维立体结构且反应位点多样的外围单元,因此提高发光分子的溶解性和热稳定性,有效提高器件的寿命,改善传统多重共振型热活化延迟荧光分子由于在固态下会发生分子间聚集,导致降低OLED器件效率的问题,有效提高器件的效率;
通过将具有立体结构的外围单元引入多重共振型热活化延迟荧光分子内,以实现多种波长的发射光,该材料作为发光层客体材料应用于溶液加工和真空蒸镀的电致发光器件中具有良好的综合性能;
由于在外电压作用下,不同的具有三维立体结构的外围单元可以较好地与不同的多重共振型热活化延迟荧光单元结合,且两者通过单键或者面对面连接,可实现一定的分子扭曲,从而较好地分离HOMO和LUMO,较小的HOMO和LUMO重叠可以减小单线态和三线态之间的能级差(ΔEST),足够小的ΔEST可以实现热活化延迟荧光性质。且较小的ΔEST使反向系间窜越过程的效率更高,因此应用该类材料的OLED器件可实现高的发光效率,同时有效降低起亮电压;
引入具有三维立体结构的外围单元后,分子的溶解性显著提高,将其应用于溶液加工型器件,简化器件结构,解决大面积柔性OLED的技术缺陷问题,而且上述化合物通过拓展分子共轭提高分子刚性,可以最小化分子激发态中的非辐射跃迁过程,并且高的分子刚性对于提高量子产率至关重要;
上述外围具有三维立体结构的多重共振型热活化延迟荧光分子分解温度Td大于或等于400℃,使得材料具有良好的热稳定性,材料的应用范围更广。
具体实施方式
本发明提供具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本实施例中的热活化延迟荧光材料化合物(4)、化合物(8)、化合物(27)、化合物(30)、化合物(37)、化合物(40)、化合物(45)、化合物(58)的结构式如下:
Figure BDA0003211516190000091
实施例1
上述热活化延迟荧光材料化合物(4)的具体合成过程如下:
Figure BDA0003211516190000101
化合物2的制备:取100mL两口烧瓶,在氩气保护下加入2-溴三蝶烯(1.67g,5mmol)、联硼酸频那醇酯(1.30g,5.1mmol)、醋酸钾(0.98g,10mmol),Pd(dppf)2Cl2(0.36g,0.5mmol)和25mL的1,4-二氧六环,100℃下反应8小时,冷却至室温后,经硅藻土过滤掉后,并用DCM(二氯甲烷)与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/4)作为洗脱剂,得白色固体1.7g,产率90%。
1H NMR(500MHz,CDCl3)δ[ppm]:7.26–7.31(m,4H),7.22–7.18(m,2H),7.13(d,J=8.2Hz,2H),7.10–7.08(m,2H),7.2(d,J=8.6Hz,1H),5.18(t,J=6.9Hz,2H),1.24(m,12H),13C NMR(126MHz,CDCl3)δ159.37,145.69,145.29,144.70,144.62,141.76,139.29,138.32,134.13,129.79,129.04,128.91,127.15,124.41,123.58,123.47,123.30,120.58,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd forC26H25BO2[M+H]+:380.29;found:380.33.
Figure BDA0003211516190000102
化合物4的制备:取100mL耐压瓶,在氩气保护下加入化合物3(4.74g,6mmol)和60mL均三甲苯,搅拌0.3h。在0℃下缓慢加入正丁基锂溶液(2.64mL,2.50M,6.6mmol),搅拌0.5h后转至室温反应2h。然后在-40℃下加入三溴化硼(1.14mL,12mmol),反应混合物在室温搅拌1h,在0℃下加入N,N-二异丙基乙胺(0.45mL,12mmol),最后将反应混合物转至室温,升至150℃搅拌5h。冷却至室温后,反应混合物通过硅藻土过滤并用二氯甲烷淋洗。有机相用无水硫酸钠干燥,减压浓缩,然后硅胶柱层析分离,得橙黄色固体1.73g,产率40%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.26–8.31(m,2H),7.62–7.58(m,2H),7.43(d,J=8.2Hz,2H),7.20–7.18(m,2H),7.2(d,J=8.6Hz,1H),7.18(t,J=6.9Hz,1H),1.44(m,18H),1.24(m,18H),13C NMR(126MHz,CDCl3)δ159.37,145.69,145.29,144.70,144.62,141.76,139.29,138.32,134.13,129.79,129.04,128.91,127.15,123.47,123.30,120.58,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C46H48BBrN2[M+H]+:718.62;found:718.70.
Figure BDA0003211516190000111
化合物(4)的制备:取100mL两口烧瓶,在氩气保护下加入化合物2(0.80g,2.1mmol)、化合物5(1.44g,2mmol)、Pd(pph3)4(0.12g,0.1mmol)、碳酸钾(0.55g,4mmol)和混合溶剂(甲苯10mL、乙醇5mL、水5mL),100℃下反应过夜,冷却至室温后,经硅藻土过滤后,粗产品硅胶柱层析分离,得绿色固体1.42g,产率80%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.56–8.51(m,2H),7.92–7.88(m,4H),7.76(d,J=8.2Hz,1H),7.65–7.54(m,2H),7.5(d,J=8.6Hz,2H),7.44(t,J=6.9Hz,2H),7.38(t,J=6.9Hz,2H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,2H),7.28(t,J=6.9Hz,2H),7.22(t,J=6.9Hz,2H),7.14(t,J=6.9Hz,2H),1.42(m,18H),1.34(m,18H),13C NMR(126MHz,CDCl3)δ159.37,145.69,145.29,144.70,144.62,141.76,139.29,138.32,134.13,129.79,129.04,128.91,127.15,123.47,123.30,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C66H61BN2[M+H]+:893.04;found:893.34。
实施例2
上述热活化延迟荧光材料化合物(8)的具体合成过程如下:
Figure BDA0003211516190000121
化合物3的制备:取100mL两口烧瓶,在氩气保护下加入化合物2(2.26g,5mmol),三蝶烯(1.75g,5.1mmol),醋酸钯(0.05g,0.25mmol),叔丁醇钠(0.75g,8mmol),三叔丁基磷四氟硼酸盐(0.14g,0.5mmol)和25mL无水甲苯搅拌回流24小时。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/3)作为洗脱剂,得白色固体2.44g,产率90%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.56–8.51(m,2H),7.92–7.88(m,4H),7.76(d,J=8.2Hz,1H),7.65–7.54(m,2H),7.5(d,J=8.6Hz,2H),7.44(t,J=6.9Hz,2H),7.38(t,J=6.9Hz,2H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,2H),7.28(t,J=6.9Hz,2H),7.22(t,J=6.9Hz,2H),7.14(t,J=6.9Hz,2H),1.42(m,9H),1.33(m,9H),13C NMR(126MHz,CDCl3)δ159.37,145.69,145.29,144.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,135.91,135.15,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,123.47,123.30,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C52H43FN2[M+H]+:714.93;found:714.83。
Figure BDA0003211516190000122
化合物(8)的制备:取100mL耐压瓶,在氩气保护下加入化合物3(2.14g,3mmol)和60mL均三甲苯,搅拌0.3h。在0℃下缓慢加入正丁基锂在戊烷中的溶液(1.32mL,2.50M,3.3mmol),搅拌0.5h后转至室温反应2h。戊烷等低沸点分子在真空中被除去后在-40℃下加入三溴化硼(0.57mL,6mmol),反应混合物在室温搅拌1h后,在0℃下加入,N,N-二异丙基乙胺(0.23mL,6mmol),然后将反应混合物转至室温,升至150℃搅拌5h。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/6)作为洗脱剂,得黄色固体0.63g,产率30%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.56–8.51(m,2H),7.76(d,J=8.2Hz,1H),7.65–7.54(m,2H),7.5(d,J=8.6Hz,2H),7.44(t,J=6.9Hz,2H),7.38(t,J=6.9Hz,2H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,2H),7.28(t,J=6.9Hz,2H),7.22(t,J=6.9Hz,2H),7.14(t,J=6.9Hz,4H),1.44(m,9H),1.35(m,9H),13C NMR(126MHz,CDCl3)δ169.37,155.69,155.29,144.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,135.91,135.15,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C52H41BN2[M+H]+:704.72;found:704.92。
实施例3
上述热活化延迟荧光材料化合物(27)的具体合成过程如下:
Figure BDA0003211516190000131
化合物3的制备:取100mL两口烧瓶,在氩气保护下加入化合物2(2.26g,5mmol),化合物3(2.23g,5.1mmol),醋酸钯(0.05g,0.25mmol),叔丁醇钠(0.75g,8mmol),三叔丁基磷四氟硼酸盐(0.14g,0.5mmol)和25mL无水甲苯搅拌回流24小时。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/3)作为洗脱剂,得白色固体3.09g,产率75%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.76–8.61(m,2H),7.76(d,J=8.2Hz,4H),7.65–7.54(m,2H),7.5(d,J=8.6Hz,1H),7.44(t,J=6.9Hz,2H),7.38(t,J=6.9Hz,4H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,2H),7.28(t,J=6.9Hz,2H),1.44(m,9H),1.35(m,9H),13CNMR(126MHz,CDCl3)δ169.37,155.69,155.29,144.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcdfor C58H49FN2S[M+H]+:825.10;found:825.20。
Figure BDA0003211516190000141
化合物(27)的制备:取100mL耐压瓶,在氩气保护下加入化合物3(2.48g,3mmol)和60mL均三甲苯,搅拌0.3h。在0℃下缓慢加入正丁基锂在戊烷中的溶液(1.32mL,2.50M,3.3mmol),搅拌0.5h后转至室温反应2h。戊烷等低沸点分子在真空中被除去后在-40℃下加入三溴化硼(0.57mL,6mmol),反应混合物在室温搅拌1h后,在0℃下加入,N,N-二异丙基乙胺(0.23mL,6mmol),然后将反应混合物转至室温,升至150℃搅拌5h。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/6)作为洗脱剂,得黄色固体0.82g,产率30%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.66–8.59(m,2H),7.76(d,J=8.2Hz,4H),7.65–7.54(m,2H),7.5(d,J=8.6Hz,1H),7.44(t,J=6.9Hz,2H),7.38(t,J=6.9Hz,4H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,2H),7.28(t,J=6.9Hz,4H),1.44(m,18H),1.35(m,18H),13C NMR(126MHz,CDCl3)δ169.37,155.69,155.29,155.11,154.69,153.29,152.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C65H59BN2S[M+H]+:911.07;found:911.27。
实施例4
上述热活化延迟荧光材料化合物(30)的具体合成过程如下:
Figure BDA0003211516190000151
化合物3的制备:取100mL两口烧瓶,在氩气保护下加入2-溴-1,3-二氟苯(1.16g,6mmol)、化合物2(6.02g,12.2mmol)、碳酸铯(3.91g,12mmol)和60mLDMF(N,N-二甲基甲酰胺)的混合物,155℃下反应12小时,冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/3)作为洗脱剂,得白色固体4.51g,产率67%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.66–8.59(m,2H),7.76(d,J=8.2Hz,4H),7.65–7.54(m,2H),7.5(d,J=8.6Hz,1H),7.52–7.50(m,2H),7.44(t,J=6.9Hz,6H),7.38(t,J=6.9Hz,8H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,4H),7.28(t,J=6.9Hz,4H),1.44(m,9H),1.35(m,9H),13C NMR(126MHz,CDCl3)δ169.37,165.69,165.29,165.11,164.69,163.29,158.69,157.29,156.11,154.69,153.29,152.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcdfor C77H59BrN2S2[M+H]+:1156.36;found:1156.56。
Figure BDA0003211516190000161
化合物(30)的制备:取100mL耐压瓶,在氩气保护下加入化合物3(3.47g,3mmol)和60mL均三甲苯,搅拌0.3h。在0℃下缓慢加入正丁基锂在戊烷中的溶液(1.32mL,2.50M,3.3mmol),搅拌0.5h后转至室温反应2h。戊烷等低沸点分子在真空中被除去后在-40℃下加入三溴化硼(0.57mL,6mmol),反应混合物在室温搅拌1h后,在0℃下加入,N,N-二异丙基乙胺(0.23mL,6mmol),然后将反应混合物转至室温,升至150℃搅拌5h。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/6)作为洗脱剂,得黄色固体0.99g,产率30%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.86–8.89(m,2H),7.76(d,J=8.2Hz,4H),7.75–7.64(m,4H),7.5(d,J=8.6Hz,1H),7.52–7.50(m,2H),7.44(t,J=6.9Hz,6H),7.38(t,J=6.9Hz,8H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,4H),7.28(t,J=6.9Hz,4H),1.44(m,9H),1.35(m,9H),13C NMR(126MHz,CDCl3)δ173.37,172.69,171.29,169.37,165.69,165.29,165.11,164.69,163.29,158.69,157.29,156.11,154.69,153.29,152.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C78H61BN2S2[M+H]+:1101.29;found:1101.39。
实施例5
上述热活化延迟荧光材料化合物(37)的具体合成过程如下:
Figure BDA0003211516190000171
化合物4的制备:取100mL两口烧瓶,在氩气保护下加入化合物2(2.26g,5mmol),化合物3(2.15g,5.1mmol),醋酸钯(0.05g,0.25mmol),叔丁醇钠(0.75g,8mmol),三叔丁基磷四氟硼酸盐(0.14g,0.5mmol)和25mL无水甲苯搅拌回流24小时。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/3)作为洗脱剂,得白色固体3.24g,产率80%。
1H NMR(500MHz,CDCl3)δ[ppm]:1H NMR(500MHz,CDCl3)δ[ppm]:8.76–8.61(m,2H),7.76(d,J=8.2Hz,4H),7.65–7.54(m,2H),7.6(d,J=8.6Hz,1H),7.44(t,J=6.9Hz,2H),7.38(t,J=6.9Hz,4H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,2H),7.28(t,J=6.9Hz,2H),1.44(m,9H),1.35(m,9H),13C NMR(126MHz,CDCl3)δ169.37,155.69,155.29,144.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C58H49FN2O[M+H]+:809.04;found:809.34。
Figure BDA0003211516190000172
化合物(37)的制备:取100mL耐压瓶,在氩气保护下加入化合物4(2.43g,3mmol)和60mL均三甲苯,搅拌0.3h。在0℃下缓慢加入正丁基锂在戊烷中的溶液(1.32mL,2.50M,3.3mmol),搅拌0.5h后转至室温反应2h。戊烷等低沸点分子在真空中被除去后在-40℃下加入三溴化硼(0.57mL,6mmol),反应混合物在室温搅拌1h后,在0℃下加入,N,N-二异丙基乙胺(0.23mL,6mmol),然后将反应混合物转至室温,升至150℃搅拌5h。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/6)作为洗脱剂,得黄色固体0.67g,产率25%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.56–8.51(m,2H),7.76(d,J=8.2Hz,4H),7.65–7.54(m,2H),7.5(d,J=8.6Hz,1H),7.44(t,J=6.9Hz,2H),7.38(t,J=6.9Hz,4H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,2H),7.28(t,J=6.9Hz,4H),1.44(m,18H),1.35(m,18H),13C NMR(126MHz,CDCl3)δ169.37,155.69,155.29,155.11,154.69,153.29,152.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C65H59BN2O[M+H]+:895.01;found:895.18.
实施例6
上述热活化延迟荧光材料化合物(40)的具体合成过程如下:
Figure BDA0003211516190000181
化合物3的制备:取100mL两口烧瓶,在氩气保护下加入2-溴-1,3-二氟苯(1.16g,6mmol)、化合物2(5.83g,12.2mmol)、碳酸铯(3.91g,12mmol),和60mLDMF的混合物,155℃下反应12小时,冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/3)作为洗脱剂,得白色固体4.38g,产率65%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.55–8.49(m,2H),7.76(d,J=8.2Hz,4H),7.65–7.54(m,2H),7.5(d,J=8.5Hz,1H),7.52–7.50(m,2H),7.44(t,J=6.9Hz,6H),7.38(t,J=6.9Hz,8H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,4H),7.28(t,J=6.9Hz,4H),1.44(m,9H),1.35(m,9H),13C NMR(126MHz,CDCl3)δ167.37,166.69,165.29,165.11,164.69,163.29,158.69,157.29,156.11,154.69,153.29,152.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcdfor C77H59BrN2O2[M+H]+:1124.24;found:1124.34。
Figure BDA0003211516190000191
化合物(40)的制备:取100mL耐压瓶,在氩气保护下加入化合物33.37g,3mmol)和60mL均三甲苯,搅拌0.3h。在0℃下缓慢加入正丁基锂在戊烷中的溶液(1.32mL,2.50M,3.3mmol),搅拌0.5h后转至室温反应2h。戊烷等低沸点分子在真空中被除去后在-40℃下加入三溴化硼(0.57mL,6mmol),反应混合物在室温搅拌1h后,在0℃下加入,N,N-二异丙基乙胺(0.23mL,6mmol),然后将反应混合物转至室温,升至150℃搅拌5h。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/6)作为洗脱剂,得黄色固体0.75g,产率24%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.86–8.89(m,2H),7.76(d,J=8.2Hz,4H),7.75–7.64(m,4H),7.5(d,J=8.6Hz,1H),7.52–7.50(m,2H),7.44(t,J=6.9Hz,4H),7.38(t,J=6.9Hz,8H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,4H),7.28(t,J=6.9Hz,4H),1.44(m,9H),1.35(m,9H),13C NMR(126MHz,CDCl3)δ163.37,162.69,161.29,159.37,155.69,155.29,155.11,154.69,153.29,148.69,147.29,146.11,144.69,143.29,142.70,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C76H53BN2O2[M+H]+:1037.08;found:1037.28。
实施例7
上述热活化延迟荧光材料化合物(45)的具体合成过程如下:
Figure BDA0003211516190000201
化合物4的制备:取100mL两口烧瓶,在氩气保护下加入化合物2(2.47g,5mmol),化合物3(2.23g,5.1mmol),醋酸钯(0.05g,0.25mmol),叔丁醇钠(0.75g,8mmol),三叔丁基磷四氟硼酸盐(0.14g,0.5mmol)和25mL无水甲苯搅拌回流24小时。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/3)作为洗脱剂,得白色固体3.18g,产率70%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.76–8.61(m,2H),7.76(d,J=8.2Hz,6H),7.65–7.54(m,2H),7.5(d,J=8.6Hz,1H),7.44(t,J=6.9Hz,2H),7.38(t,J=6.9Hz,4H),7.32(t,J=6.9Hz,4H),7.24(t,J=6.9Hz,6H),7.28(t,J=6.9Hz,2H),1.44(m,9H),1.38(m,9H),1.34(m,6H),1.31(m,6H),13C NMR(126MHz,CDCl3)δ169.37,155.69,155.29,155.37,154.69,153.29,152.13,151.79,151.04,144.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd forC64H61FN2S[M+H]+:909.26;found:909.36。
Figure BDA0003211516190000211
化合物(45)的制备:取100mL耐压瓶,在氩气保护下加入化合物4(2.73g,3mmol)和60mL均三甲苯,搅拌0.3h。在0℃下缓慢加入正丁基锂在戊烷中的溶液(1.32mL,2.50M,3.3mmol),搅拌0.5h后转至室温反应2h。戊烷等低沸点分子在真空中被除去后在-40℃下加入三溴化硼(0.57mL,6mmol),反应混合物在室温搅拌1h后,在0℃下加入,N,N-二异丙基乙胺(0.23mL,6mmol),然后将反应混合物转至室温,升至150℃搅拌5h。冷却至室温后,经硅藻土过滤掉后,并用DCM与水萃取三次。合并的有机相用无水Na2SO4干燥并在减压下浓缩。粗产物通过硅胶柱色谱法纯化,使用DCM/PE(v/v=1/6)作为洗脱剂,得黄色固体0.81g,产率25%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.56–8.51(m,2H),7.76(d,J=8.2Hz,6H),7.65–7.54(m,2H),7.5(d,J=8.6Hz,1H),7.44(t,J=6.9Hz,4H),7.40(t,J=6.9Hz,4H),7.42(t,J=6.9Hz,2H),7.34(t,J=6.9Hz,4H),7.28(t,J=6.9Hz,4H),7.22(t,J=6.9Hz,2H),7.14(t,J=6.9Hz,6H),7.18(t,J=6.9Hz,4H),1.44(m,18H),1.41(m,6H),1.38(m,6H),1.35(m,18H),13C NMR(126MHz,CDCl3)δ169.37,155.69,155.29,155.11,154.69,153.29,152.70,144.62,141.76,139.29,138.32,137.13,136.79,136.04,134.47,134.30,133.58,133.29,132.32,131.13,129.79,129.04,128.91,127.15,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,39.12,38.83,37.12,36.83,35.48,34.67,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd forC76H91BN2S[M+H]+:1075.45;found:1075.65。
实施例8
上述热活化延迟荧光材料化合物(58)的具体合成过程如下:
Figure BDA0003211516190000221
化合物4的制备:取100mL耐压瓶,在氩气保护下加入化合物3(5.13g,6mmol)和60mL均三甲苯,搅拌0.3h。在0℃下缓慢加入正丁基锂溶液(2.64mL,2.50M,6.6mmol),搅拌0.5h后转至室温反应2h。然后在-40℃下加入三溴化硼(1.14mL,12mmol),反应混合物在室温搅拌1h,在0℃下加入N,N-二异丙基乙胺(0.45mL,12mmol),最后将反应混合物转至室温,升至150℃搅拌5h。冷却至室温后,反应混合物通过硅藻土过滤并用二氯甲烷淋洗。有机相用无水硫酸钠干燥,减压浓缩,然后硅胶柱层析分离,得橙黄色固体1.41g,产率30%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.26–8.31(m,2H),7.62–7.58(m,2H),7.43(d,J=8.2Hz,6H),7.20–7.18(m,4H),7.2(d,J=8.6Hz,1H),7.18(t,J=6.9Hz,3H),1.44(m,18H),1.24(m,18H),13C NMR(126MHz,CDCl3)δ159.37,145.69,145.29,144.70,144.62,141.76,139.29,138.32,13729,136.32,134.13,129.79,129.04,128.91,127.15,123.47,123.30,120.58,117.32,115.12,114.15,29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcdfor C48H56BBrN2O2[M+H]+:782.36;found:782.50。
Figure BDA0003211516190000231
化合物(58)的制备:取100mL两口烧瓶,在氩气保护下加入化合物2(0.96g,2.1mmol)、化合物4(1.57g,2mmol)、Pd(OAc)2(0.12g,0.1mmol),叔丁醇钠(0.58g,6mmol)和35mL的甲苯,110℃下反应过夜,冷却至室温后,经硅藻土过滤后,粗产品硅胶柱层析分离,得绿色固体1.50g,产率75%。
1H NMR(500MHz,CDCl3)δ[ppm]:8.56–8.51(m,2H),7.92–7.88(m,4H),7.76(d,J=8.2Hz,1H),7.65–7.54(m,3H),7.5(d,J=8.6Hz,2H),7.44(t,J=6.9Hz,2H),7.38(t,J=6.9Hz,4H),7.32(t,J=6.9Hz,2H),7.24(t,J=6.9Hz,2H),7.28(t,J=6.9Hz,2H),7.22(t,J=6.9Hz,2H),7.14(t,J=6.9Hz,2H),1.42(m,18H),1.34(m,18H),13C NMR(126MHz,CDCl3)δ159.37,145.69,145.29,144.70,144.62,141.76,139.29,138.32,134.13,129.79,129.04,128.91,127.15,123.47,123.30,120.58,120.29,119.70,118.62,118.36,118.29,118.22,117.93,117.79,117.64,117.32,115.12,114.15,29.87,39.12,36.83,35.98,34.97.29.87,29.12,26.83,25.98,24.97.HRMS:(ESI)m/z calcd for C71H64BN3O2[M+H]+:1001.51;found:1001.53。
测试:
测定化合物(4)、化合物(8)、化合物(27)、化合物(30)、化合物(37)、化合物(40)、化合物(45)、化合物(58)的玻璃化转变温度、分解温度。化合物的能级利用含时密度泛函理论(TD-DFT)通过Gaussian09软件模拟,运用函数B3LYP方法计算。表1列出了化合物(4)、化合物(8)、化合物(27)、化合物(30)、化合物(37)、化合物(40)、化合物(45)、化合物(58)的玻璃化转变温度(Tg)、分解温度(Td)以及理论计算所得能级数据。
表1、各化合物的玻璃化转变温度、分解温度及能级数据
Figure BDA0003211516190000241
由表1可以看出,化合物(4)、化合物(8)、化合物(27)、化合物(30)、化合物(37)、化合物(40)、化合物(45)、化合物(58)的HOMO和LUMO能级差较小,表明化合物(4)、化合物(8)、化合物(27)、化合物(30)、化合物(37)、化合物(40)、化合物(45)、化合物(58)的给受体之间能级重叠很小,符合热活化延迟荧光分子的特点;同时它们的玻璃化转变温度均在140℃以上,热分解温度均在400℃以上,说明化合物(4)、化合物(8)、化合物(27)、化合物(30)、化合物(37)、化合物(40)、化合物(45)、化合物(58)的热稳定性较优。同时,化合物(4)、化合物(8)、化合物(27)、化合物(30)、化合物(37)、化合物(40)、化合物(45)、化合物(58)的ΔEST均很小,说明该化合物的材料的发光效率较高。
进一步的,实施例1-8得到的化合物(4)、化合物(8)、化合物(27)、化合物(30)、化合物(37)、化合物(40)、化合物(45)、化合物(58)可以用于电致发光器件中的发光层,以溶液加工法制作四组器件。
OLED器件具体结构为:
器件A1
ITO/PEDOT:PSS/化合物(4)/DPEPO/TmPyPB/Liq/Al
器件A2
ITO/PEDOT:PSS/mCP:化合物(4)(质量比为80:20)/DPEPO/TmPyPB/Liq/Al
器件A3
ITO/PEDOT:PSS/化合物(8)/DPEPO/TmPyPB/Liq/Al
器件A4
ITO/PEDOT:PSS/mCP:化合物(8)(质量比为80:20)/DPEPO/TmPyPB/Liq/Al
其中PEDOT、Liq、mCP、DPEPO和TmPyPB的结构式分别如下:
Figure BDA0003211516190000251
制造OLED器件的具体步骤为:将镀有氧化铟锡(ITO)的玻璃基板依次用去离子水、丙酮、异丙醇超声洗涤30分钟,紫外线臭氧处理15分钟后,将玻璃基板传送至溶液加工室中;依次旋涂各有机层及阴极铝层;将该器件从溶液加工室传送至手套箱中进行封装。
对以上电致发光器件进行性能测试,结果如下表2所示:
表2、器件性能数据
Figure BDA0003211516190000252
Figure BDA0003211516190000261
由表2的器件性能数据可得出,实施例实现了如下技术效果:由于引入具有三维立体结构的外围单元,得到一系列具有立体结构的多重共振型热活化延迟荧光分子,具有分子结构易于调控,分子可精确的重复合成等优点,改善传统多重共振型热活化延迟荧光分子由于在固态下会发生分子间聚集,导致降低OLED器件效率的问题,而且通过引入三蝶烯、金刚烷等三维立体结构的外围单元提高分子刚性,具有非常好的热力学稳定性以及溶解性;上述热活化延迟荧光材料可作为OLED中的热激活延迟荧光(热活化延迟荧光)发光层材料,应用于不掺杂主体材料的溶液加工型和真空蒸镀型OLED器件,降低材料制备成本,获得了高的器件效率和良好的稳定性。
本发明中所涉及的其他衍生物的制备方法与相应的实施例方法相似,通过Buchwald-Hartwig偶联、硼化反应均可制得。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (8)

1.具有空间立体结构多重共振型热活化延迟荧光材料,其特征在于,具有以下结构通式中的一种:
Figure FDA0003211516180000011
其中,R1-R5中的至少一个选自以下结构中的一种:
Figure FDA0003211516180000012
2.根据权利要求1所述的具有空间立体结构多重共振型热活化延迟荧光材料,其特征在于,所述R1-R5中,当其中任意一个不选自A、B、C、D、E结构中的任意一种时,其选自不成键或包含叔丁基在内的柔性脂肪烃或者芳香烃中的一种。
3.根据权利要求1所述的具有空间立体结构多重共振型热活化延迟荧光材料,其特征在于,所述热活化延迟荧光材料具有以下结构中的一种:
Figure FDA0003211516180000013
Figure FDA0003211516180000021
Figure FDA0003211516180000031
Figure FDA0003211516180000041
Figure FDA0003211516180000051
4.一种电子器件,其特征在于,包括权利要求1-3任一项所述的具有空间立体结构多重共振型热活化延迟荧光材料。
5.根据权利要求4所述的电子器件,其特征在于,所述电子器件为有机电致发光器件、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机传感器、有机光伏电池、有机自旋电子器件中的一种。
6.根据权利要求4所述的电子器件,其特征在于,所述电子器件为有机电致发光器件,所述有机电致发光器件包括功能层,所述功能层由质量百分含量为0.1~99.9%的具有空间立体结构多重共振型热活化延迟荧光材料和质量百分含量为0.1~99.9%有机功能材料组成;
所述有机功能材料选自空穴注入材料、空穴传输材料、空穴阻挡材料、电子注入材料、电子传输材料、电子阻挡材料、激子阻隔材料、荧光发光材料、磷光发光材料、主体材料及有机染料中的一种。
7.根据权利要求4所述的电子器件,其特征在于,所述电子器件为有机电致发光器件,所述有机电致发光器件包括发光层,所述发光层包括所述具有空间立体结构多重共振型热活化延迟荧光材料。
8.权利要求4~7任一项所述的电子器件在电子设备中的应用。
CN202110932210.4A 2021-08-13 2021-08-13 具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用 Active CN113651841B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110932210.4A CN113651841B (zh) 2021-08-13 2021-08-13 具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110932210.4A CN113651841B (zh) 2021-08-13 2021-08-13 具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用

Publications (2)

Publication Number Publication Date
CN113651841A true CN113651841A (zh) 2021-11-16
CN113651841B CN113651841B (zh) 2022-12-27

Family

ID=78480254

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110932210.4A Active CN113651841B (zh) 2021-08-13 2021-08-13 具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用

Country Status (1)

Country Link
CN (1) CN113651841B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115947747A (zh) * 2023-01-10 2023-04-11 冠能光电材料(深圳)有限责任公司 一种三蝶烯硼氮化合物及其应用
CN116396314A (zh) * 2023-02-28 2023-07-07 吉林大学 硼氮型有机开壳材料及其制备方法与应用
WO2023142485A1 (zh) * 2022-01-28 2023-08-03 季华恒烨(佛山)电子材料有限公司 一种硼氮化合物及其制备方法和应用
WO2023142486A1 (zh) * 2022-01-28 2023-08-03 季华恒烨(佛山)电子材料有限公司 一种硼氮化合物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627822A (zh) * 2019-10-08 2019-12-31 吉林大学 一种绿光窄光谱三配位硼发光化合物、发光组合物及其应用
CN110790782A (zh) * 2019-11-11 2020-02-14 北京大学深圳研究生院 一种深蓝色有机发光材料及其制备方法与应用
KR20200047400A (ko) * 2018-10-26 2020-05-07 롬엔드하스전자재료코리아유한회사 복수 종의 발광 재료 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200047400A (ko) * 2018-10-26 2020-05-07 롬엔드하스전자재료코리아유한회사 복수 종의 발광 재료 및 이를 포함하는 유기 전계 발광 소자
CN110627822A (zh) * 2019-10-08 2019-12-31 吉林大学 一种绿光窄光谱三配位硼发光化合物、发光组合物及其应用
CN110790782A (zh) * 2019-11-11 2020-02-14 北京大学深圳研究生院 一种深蓝色有机发光材料及其制备方法与应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023142485A1 (zh) * 2022-01-28 2023-08-03 季华恒烨(佛山)电子材料有限公司 一种硼氮化合物及其制备方法和应用
WO2023142486A1 (zh) * 2022-01-28 2023-08-03 季华恒烨(佛山)电子材料有限公司 一种硼氮化合物及其制备方法和应用
CN115947747A (zh) * 2023-01-10 2023-04-11 冠能光电材料(深圳)有限责任公司 一种三蝶烯硼氮化合物及其应用
CN116396314A (zh) * 2023-02-28 2023-07-07 吉林大学 硼氮型有机开壳材料及其制备方法与应用

Also Published As

Publication number Publication date
CN113651841B (zh) 2022-12-27

Similar Documents

Publication Publication Date Title
KR101772371B1 (ko) 화합물 및 유기 전자 소자
CN113651841B (zh) 具有空间立体结构多重共振型热活化延迟荧光材料、电子器件及其应用
KR101703016B1 (ko) 플루오렌 및 이를 함유하는 전자 소자
CN110444694B (zh) 化合物以及有机电致发光器件
TWI646171B (zh) 化合物與有機電子裝置
KR101983019B1 (ko) 전자 소자용 물질
TWI611003B (zh) 用於電子裝置之化合物類
CN101490207B (zh) 用于有机电致发光器件的新材料
TWI507401B (zh) 電子裝置用的化合物
JP2020515073A (ja) 有機発光素子および有機発光素子の有機物層用組成物
TW201134823A (en) Materials for electronic devices
CN103476774B (zh) 用于电子器件的材料
KR20160118366A (ko) 유기 전계발광 소자용 재료
EP4131456A1 (en) Organic light-emitting device
JP7130872B2 (ja) 有機エレクトロルミネッセンス材料及びその調製方法並びに有機エレクトロルミネッセンスデバイス
CN103159745B (zh) 用于有机电激发光装置的化合物及有机电激发光装置
CN115028626B (zh) 一种热致延迟荧光材料及其制备方法和应用
CN116162083A (zh) 一种具有氰基取代的杂环化合物
KR102078110B1 (ko) 치환기를 갖는 피렌 유도체 화합물 및 이를 포함하는 유기전계발광소자
CN111116589B (zh) 含氮杂环化合物、电子器件及其应用
Ma et al. Photo-and electro-luminescent properties of 2, 7-disubstituted spiro [fluorene-9, 9′-xanthene] derivatives containing imidazole-derived moieties
WO2020211127A1 (zh) 热活化延迟荧光材料及其制备方法与有机电致发光二极管器件
JP2023147278A (ja) 有機エレクトロルミネッセンス材料およびその素子
CN116804020A (zh) 一种含氮杂环有机化合物及其在oled器件中的应用
JP2024007420A (ja) 有機エレクトロルミネッセンス材料およびその素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant