CN113640776A - 一种基于负反馈的高精度频率锁定电路 - Google Patents

一种基于负反馈的高精度频率锁定电路 Download PDF

Info

Publication number
CN113640776A
CN113640776A CN202110948552.5A CN202110948552A CN113640776A CN 113640776 A CN113640776 A CN 113640776A CN 202110948552 A CN202110948552 A CN 202110948552A CN 113640776 A CN113640776 A CN 113640776A
Authority
CN
China
Prior art keywords
voltage
frequency
output
output frequency
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110948552.5A
Other languages
English (en)
Other versions
CN113640776B (zh
Inventor
李响
蔡胜凯
董渊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Indie Microelectronics Technology Co Ltd
Original Assignee
Wuxi Indie Microelectronics Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Indie Microelectronics Technology Co Ltd filed Critical Wuxi Indie Microelectronics Technology Co Ltd
Priority to CN202110948552.5A priority Critical patent/CN113640776B/zh
Publication of CN113640776A publication Critical patent/CN113640776A/zh
Application granted granted Critical
Publication of CN113640776B publication Critical patent/CN113640776B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Inductance-Capacitance Distribution Constants And Capacitance-Resistance Oscillators (AREA)

Abstract

本发明公开了一种基于负反馈的高精度频率锁定电路,涉及时钟产生电路领域,该高精度频率锁定电路由开关控制电路按照输出的信号的输出频率调节电压输出回路中的开关的开闭频率,从而调节电路电压输出回路提供给压控振荡器的输入电压,使得压控振荡器改变输出的信号的输出频率,实现对输出频率的负反馈调节直到达到稳定,该高精度频率锁定电路无需复杂的补偿电路就可以保持高精度且高稳定性的输出频率,具有较优的电路性能。

Description

一种基于负反馈的高精度频率锁定电路
技术领域
本发明涉及时钟产生电路领域,尤其是一种基于负反馈的高精度频率锁定电路。
背景技术
时钟产生电路是集成电路中的重要部分,在许多集成电路中,都需要时钟产生电路输出基准时钟信号,以使数字电路及有开关动作参与的模拟电路正常工作。常见的时钟产生电路有利用LC谐振的LC振荡器,多级反相器串联的环形振荡器,通过比较被充放电的电容电压与基准电压而决定振荡频率的比较振荡器等。
目前一种常见的振荡器的电路结构如图1所示,使用比较器比较一个斜坡上升信号,以此决定振荡频率。这个振荡器的最大缺点是比较器的延时会影响振荡频率,当输出信号频率较高时,不同温度和工艺漂移下,比较器的延时变化会严重影响振荡频率。另一种常见的振荡器的电路结构如图2所示,这是一个传统的环形振荡器,其中电容和电阻决定反相器链的大信号延迟,由此确定振荡频率。传统环形振荡器在不同温度和工艺漂移下也有较大的振荡频率变化,同时,其振荡频率不是随电阻或电容线性变化的,因此不太适用于需要在较大范围调节振荡器频率的应用。现有的其他各类振荡器在输出频率的稳定性、电路功耗、精度和电路面积方面也都有其固有缺陷。
发明内容
本发明人针对上述问题及技术需求,提出了一种基于负反馈的高精度频率锁定电路,本发明的技术方案如下:
一种基于负反馈的高精度频率锁定电路,该高精度频率锁定电路包括电压输出回路、压控振荡器以及开关控制电路;在电压输出回路中,电容CF的负极接地、正极通过第一开关S1连接基准电压端VB,电容C2的负极接地、正极连接基准电压端VB,电容CF的两端并联有第二开关S2,基准电压端VB通过开关管连接至电源VDD,电容CF的容值远小于电容C2
压控振荡器的输入端连接至电压输出回路获取输入电压、输出端作为高精度频率锁定电路的信号输出端,信号输出端所输出的信号的输出频率fclkout与压控振荡器的输入电压正相关;
第一开关S1和第二开关S2的开闭状态互补且不交叠,开关控制电路根据输出频率fclkout调节第一开关S1和第二开关S2的开闭频率,使得压控振荡器的输入电压与输出频率fclkout呈负相关、形成对输出频率fclkout的负反馈调节。
其进一步的技术方案为,第一开关S1和第二开关S2交替闭合一次形成一个开关周期且两个开关在一个开关周期中的闭合时长相等,电容C2的电荷量在一个开关周期内减少Δq=VBCF,使得基准电压端的等效下沉电流为
Figure BDA0003217576400000021
输出频率增大时,开关周期降低使得基准电压端的电压值降低、压控振荡器的输入电压降低,带动输出频率降低直到达到预定值,输出频率减小时,开关周期增大使得基准电压端的电压值升高、压控振荡器的输入电压升高,带动输出频率增大直到达到预定值,实现对输出频率fclkout的负反馈调节。
其进一步的技术方案为,开关控制电路中包括N分频器,开关控制电路按照
Figure BDA0003217576400000022
的频率分别控制两个开关的开闭状态,开关周期
Figure BDA0003217576400000023
其进一步的技术方案为,在电压输出回路中,基准电压端VB连接第二NMOS管MN2的源极,第二NMOS管MN2的漏极连接第二PMOS管MP2的漏极,第二PMOS管MP2的源极连接电源VDD,第二PMOS管MP2和第二NMOS管MN2的公共端连接压控振荡器的输入端;
第一PMOS管MP1与第二PMOS管MP2连接形成电流镜,第一PMOS管MP1的漏端连接第一NMOS管MN1的漏极,第一NMOS管MN1的源极通过电阻RF接地,第一NMOS管MN1与第二NMOS管MN2的栅极相连并连接运算放大器的输出端,运算放大器的同相输入端连接参考电压VREF、反相输入端连接第一NMOS管MN1的源极。
其进一步的技术方案为,输出频率fclkout仅与电容CF的容值以及电阻RF的阻值相关、与参考电压VREF无关。
其进一步的技术方案为,输出频率
Figure BDA0003217576400000024
其中,k为与电路结构相关的固有系数。
其进一步的技术方案为,输出频率
Figure BDA0003217576400000025
其中m为电流镜中第一PMOS管MP1与第二PMOS管MP2的电流比例,开关控制电路按照输出频率fclkout的N分频作为两个开关的开闭频率。
本发明的有益技术效果是:
本申请公开了一种基于负反馈的高精度频率锁定电路,该电路由开关控制电路按照输出的信号的输出频率调节电压输出回路提供给压控振荡器的输入电压,使得压控振荡器负反馈调节输出的信号的输出频率,从而无需复杂的补偿电路就可以保持高精度且高稳定性的输出频率。
该高精度频率锁定电路输出的信号的输出频率与参考电压无关,因此只需提供粗略的参考电压即可,对电压精确度要求较低。而且也与开关管的参数无关,因此不需要考虑MOS管随温度改变而改变的参数,输出频率温漂很小。
附图说明
图1是目前一种常见的振荡器的电路结构。
图2是目前另一种常见的振荡器的电路结构。
图3是本申请的高精度频率锁定电路的电路结构。
图4是图3中的压控振荡器的一种电路结构图。
图5是图3中的开关控制电路的一种电路结构图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步说明。
本申请公开了一种基于负反馈的高精度频率锁定电路,请参考图3,该高精度频率锁定电路包括电压输出回路、压控振荡器以及开关控制电路。在电压输出回路中,电容CF的负极接地、正极通过第一开关S1连接基准电压端VB,电容C2的负极接地、正极连接基准电压端VB,电容CF的两端并联有第二开关S2,基准电压端VB通过开关管连接至电源VDD,电容CF的容值远小于电容C2
压控振荡器的输入端连接至电压输出回路获取输入电压、输出端作为高精度频率锁定电路的信号输出端,信号输出端所输出的信号Vout的输出频率fclkout与压控振荡器的输入电压VC正相关。一种常用的压控振荡器的电路结构如图4所示,通过合适的尺寸选择可以保证较好的线性度,输出频率fclkout=dVC,d是压控振荡器的增益系数。
第一开关S1和第二开关S2的开闭状态互补且不交叠,开关控制电路根据输出频率fclkout调节第一开关S1和第二开关S2的开闭频率,使得压控振荡器的输入电压VC与输出频率fclkout呈负相关、形成对输出频率fclkout的负反馈调节。
本申请中,第一开关S1和第二开关S2交替闭合一次形成一个开关周期且两个开关在一个开关周期中的闭合时长相等,电容C2的电荷量在一个开关周期内减少Δq=VBCF,使得基准电压端的等效下沉电流为
Figure BDA0003217576400000041
当输出频率增大时,开关的开闭频率增大、开关周期TS降低使得基准电压端VB的电压值降低、继而使得压控振荡器的输入电压VC降低,带动输出频率fclkout降低直到达到预定值时稳定。当输出频率fclkout减小时,开关的开闭频率增大、开关周期TS增大使得基准电压端VB的电压值升高、压控振荡器的输入电压VC升高,带动输出频率fclkout增大直到达到预定值时稳定,从而实现对输出频率fclkout的负反馈调节。
其中,开关控制电路中包括N分频器,请参考图5,开关控制电路对信号输出端所输出的信号Vout进行N分频结合逻辑电路产生两个开关的控制信号Ctrl1和Ctrl2,两个控制信号Ctrl1和Ctrl2的频率为
Figure BDA0003217576400000042
由此开关控制电路按照
Figure BDA0003217576400000043
的频率分别控制两个开关的开闭状态,则开关周期
Figure BDA0003217576400000044
分频的倍数N在电路设计阶段预先配置。
在电压输出回路中,具体的,请参考图3,基准电压端VB连接第二NMOS管MN2的源极,第二NMOS管MN2的漏极连接第二PMOS管MP2的漏极,第二PMOS管MP2的源极连接电源VDD,第二PMOS管MP2和第二NMOS管MN2的公共端连接压控振荡器的输入端。压控振荡器的输入端处还连接补偿电容C1
第一PMOS管MP1与第二PMOS管MP2连接形成电流镜,具体的,MP1的源极连接电源VDD,MP1的漏极和栅极相连并连接MP2的栅极。第一PMOS管MP1的漏端连接第一NMOS管MN1的漏极,第一NMOS管MN1的源极通过电阻RF接地,第一NMOS管MN1与第二NMOS管MN2的栅极相连并连接运算放大器的输出端,运算放大器的同相输入端连接参考电压VREF、反相输入端连接第一NMOS管MN1的源极,即为VA电压端。
由于运算放大器OP与第一NMOS管MN1形成负反馈,使得VA电压端的电压值与参考电压相等。而由于MN1和MN2的栅极电压相同,使得VA电压端与基准电压端VB的电压也相等,因此有VA=VB=VREF
流过MP1的电流IMP1与流过电阻RF的电流IRF相等,有
Figure BDA0003217576400000045
假设电流镜中第一PMOS管MP1与第二PMOS管MP2的电流比例为m,也即IMP2=mIMP1,电流比例m在电路设计阶段预先配置。因此流过MP2的电流
Figure BDA0003217576400000051
则在负反馈调节过程中,当等效下沉电流
Figure BDA0003217576400000052
与MP2的电流
Figure BDA0003217576400000053
保持一致时达到平衡稳定状态,则当输出频率fclkout达到预定值稳定时,有
Figure BDA0003217576400000054
基于图3的结构以及图5的开关控制电路,有
Figure BDA0003217576400000055
VB=VREF,因此有
Figure BDA0003217576400000056
可知
Figure BDA0003217576400000057
而电流比例为m和分频的倍数N在电路设计阶段就配置固定好,可以认为属于固有的电路结构。因此可知输出频率
Figure BDA0003217576400000058
其中,k为与电路结构相关的固有系数。
由上述表达式可知,输出频率fclkout仅与电容CF的容值以及电阻RF的阻值相关,通过改变CF和RF可以调节输出频率fclkout。电阻RF可以采用可变电阻,在电路结构固定后,通过调节RF的阻值可以实现对输出频率fclkout的调节。由于输出频率fclkout与参考电压VREF无关,因此只需提供粗略的参考电压VREF即可,对电压精确度要求较低。而且输出频率fclkout也不与开关管的参数相关,因此不需要考虑MOS管随温度改变而改变的参数,输出频率温漂很小。
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想到的其他改进和变化,均应认为包含在本发明的保护范围之内。

Claims (7)

1.一种基于负反馈的高精度频率锁定电路,其特征在于,所述高精度频率锁定电路包括电压输出回路、压控振荡器以及开关控制电路;在所述电压输出回路中,电容CF的负极接地、正极通过第一开关S1连接基准电压端VB,电容C2的负极接地、正极连接所述基准电压端VB,电容CF的两端并联有第二开关S2,所述基准电压端VB通过开关管连接至电源VDD,所述电容CF的容值远小于所述电容C2
所述压控振荡器的输入端连接至所述电压输出回路获取输入电压、输出端作为所述高精度频率锁定电路的信号输出端,所述信号输出端所输出的信号的输出频率fclkout与所述压控振荡器的输入电压正相关;
所述第一开关S1和第二开关S2的开闭状态互补且不交叠,所述开关控制电路根据所述输出频率fclkout调节第一开关S1和第二开关S2的开闭频率,使得所述压控振荡器的输入电压与所述输出频率fclkout呈负相关、形成对所述输出频率fclkout的负反馈调节。
2.根据权利要求1所述的高精度频率锁定电路,其特征在于,所述第一开关S1和第二开关S2交替闭合一次形成一个开关周期且两个开关在一个开关周期中的闭合时长相等,所述电容C2的电荷量在一个开关周期内减少Δq=VBCF,使得所述基准电压端的等效下沉电流为
Figure FDA0003217576390000011
所述输出频率增大时,所述开关周期降低使得所述基准电压端的电压值降低、所述压控振荡器的输入电压降低,带动所述输出频率降低直到达到预定值,所述输出频率减小时,所述开关周期增大使得所述基准电压端的电压值升高、所述压控振荡器的输入电压升高,带动所述输出频率增大直到达到预定值,实现对所述输出频率fclkout的负反馈调节。
3.根据权利要求2所述的高精度频率锁定电路,其特征在于,所述开关控制电路中包括N分频器,所述开关控制电路按照
Figure FDA0003217576390000012
的频率分别控制两个开关的开闭状态,所述开关周期
Figure FDA0003217576390000013
4.根据权利要求1所述的高精度频率锁定电路,其特征在于,在所述电压输出回路中,所述基准电压端VB连接第二NMOS管MN2的源极,所述第二NMOS管MN2的漏极连接第二PMOS管MP2的漏极,所述第二PMOS管MP2的源极连接所述电源VDD,所述第二PMOS管MP2和所述第二NMOS管MN2的公共端连接所述压控振荡器的输入端;
第一PMOS管MP1与所述第二PMOS管MP2连接形成电流镜,所述第一PMOS管MP1的漏端连接第一NMOS管MN1的漏极,所述第一NMOS管MN1的源极通过电阻RF接地,所述第一NMOS管MN1与所述第二NMOS管MN2的栅极相连并连接运算放大器的输出端,所述运算放大器的同相输入端连接参考电压VREF、反相输入端连接所述第一NMOS管MN1的源极。
5.根据权利要求4所述的高精度频率锁定电路,其特征在于,所述输出频率fclkout仅与电容CF的容值以及所述电阻RF的阻值相关、与所述参考电压VREF无关。
6.根据权利要求4所述的高精度频率锁定电路,其特征在于,所述输出频率
Figure FDA0003217576390000021
其中,k为与电路结构相关的固有系数。
7.根据权利要求6所述的高精度频率锁定电路,其特征在于,所述输出频率
Figure FDA0003217576390000022
其中m为电流镜中第一PMOS管MP1与第二PMOS管MP2的电流比例,所述开关控制电路按照所述输出频率fclkout的N分频作为两个开关的开闭频率。
CN202110948552.5A 2021-08-18 2021-08-18 一种基于负反馈的高精度频率锁定电路 Active CN113640776B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110948552.5A CN113640776B (zh) 2021-08-18 2021-08-18 一种基于负反馈的高精度频率锁定电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110948552.5A CN113640776B (zh) 2021-08-18 2021-08-18 一种基于负反馈的高精度频率锁定电路

Publications (2)

Publication Number Publication Date
CN113640776A true CN113640776A (zh) 2021-11-12
CN113640776B CN113640776B (zh) 2024-02-09

Family

ID=78422612

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110948552.5A Active CN113640776B (zh) 2021-08-18 2021-08-18 一种基于负反馈的高精度频率锁定电路

Country Status (1)

Country Link
CN (1) CN113640776B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400888A (zh) * 2022-01-25 2022-04-26 无锡英迪芯微电子科技股份有限公司 一种自适应混合线性调制和频率调制的电荷泵电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023490A (zh) * 2012-12-07 2013-04-03 广州润芯信息技术有限公司 一种稳定锁相环路特性的电路
CN104993701A (zh) * 2015-07-22 2015-10-21 无锡中星微电子有限公司 一种pwm/pfm控制电路
CN108021168A (zh) * 2017-12-19 2018-05-11 电子科技大学 一种适用于开关电容稳压器的变频变压调制电路
CN109495075A (zh) * 2017-12-29 2019-03-19 深圳市国电科技通信有限公司 一种带温度补偿的晶体振荡电路
CN111726106A (zh) * 2020-06-19 2020-09-29 东南大学 一种双反馈环路张弛振荡器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103023490A (zh) * 2012-12-07 2013-04-03 广州润芯信息技术有限公司 一种稳定锁相环路特性的电路
CN104993701A (zh) * 2015-07-22 2015-10-21 无锡中星微电子有限公司 一种pwm/pfm控制电路
CN108021168A (zh) * 2017-12-19 2018-05-11 电子科技大学 一种适用于开关电容稳压器的变频变压调制电路
CN109495075A (zh) * 2017-12-29 2019-03-19 深圳市国电科技通信有限公司 一种带温度补偿的晶体振荡电路
CN111726106A (zh) * 2020-06-19 2020-09-29 东南大学 一种双反馈环路张弛振荡器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114400888A (zh) * 2022-01-25 2022-04-26 无锡英迪芯微电子科技股份有限公司 一种自适应混合线性调制和频率调制的电荷泵电路
CN114400888B (zh) * 2022-01-25 2023-10-10 无锡英迪芯微电子科技股份有限公司 一种自适应混合线性调制和频率调制的电荷泵电路

Also Published As

Publication number Publication date
CN113640776B (zh) 2024-02-09

Similar Documents

Publication Publication Date Title
KR102509824B1 (ko) 발진기
CN106059538B (zh) 一种自带工艺偏差校准功能的张弛振荡器
US7463101B2 (en) Voltage controlled oscillator with temperature and process compensation
CN110429915B (zh) Rc振荡电路
US8710930B2 (en) Differential ring oscillator and method for calibrating the differential ring oscillator
US7719331B2 (en) PLL circuit
US20080088379A1 (en) Current device and method for phase-locked loop
KR102463655B1 (ko) Cmos 회로들을 사용하여 정밀하고 pvt-안정적인 시간 지연 또는 주파수를 생성하는 방법
CN112234957A (zh) 一种具有负反馈调节功能的模拟振荡器电路
WO2007072551A1 (ja) 電圧制御リングオシレータ
CN115208320B (zh) 一种具有占空比校准和快速起振的晶体振荡器电路
CN110011644B (zh) 一种环形振荡器
CN115395888A (zh) 一种基于周期检测的低功耗高精度rc振荡器
Lee et al. Design of a three-stage ring-type voltage-controlled oscillator with a wide tuning range by controlling the current level in an embedded delay cell
CN112636725B (zh) 一种电阻电容rc振荡器
CN113640776A (zh) 一种基于负反馈的高精度频率锁定电路
CN107437931B (zh) Rc张弛振荡器
Singh et al. Low power low jitter phase locked loop for high speed clock generation
CN107565961B (zh) 用于延迟锁相环的单端负反馈电荷泵
CN103036423A (zh) 一种用于锁相环的电荷泵电路
CN111181491B (zh) 一种时钟产生电路
JP2011188323A (ja) Pll回路
KR100983124B1 (ko) 문턱전압 조절형 전압 제어 발진기
CN111917396A (zh) 一种具有自适应电压偏置的宽带低功耗的振荡器装置
KR101419834B1 (ko) 전압 제어 발진기를 이용하는 주파수 합성 장치

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant