CN113617379B - 一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化应用 - Google Patents

一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化应用 Download PDF

Info

Publication number
CN113617379B
CN113617379B CN202111030697.3A CN202111030697A CN113617379B CN 113617379 B CN113617379 B CN 113617379B CN 202111030697 A CN202111030697 A CN 202111030697A CN 113617379 B CN113617379 B CN 113617379B
Authority
CN
China
Prior art keywords
ncn
flake
ahp
methanol
assembled nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202111030697.3A
Other languages
English (en)
Other versions
CN113617379A (zh
Inventor
黄涛
李昱霖
赵燕熹
张道洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South Central Minzu University
Original Assignee
South Central University for Nationalities
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South Central University for Nationalities filed Critical South Central University for Nationalities
Priority to CN202111030697.3A priority Critical patent/CN113617379B/zh
Publication of CN113617379A publication Critical patent/CN113617379A/zh
Application granted granted Critical
Publication of CN113617379B publication Critical patent/CN113617379B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C3/00Cyanogen; Compounds thereof
    • C01C3/16Cyanamide; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/01Crystal-structural characteristics depicted by a TEM-image
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明属于纳米材料及其制备技术领域,具体公开了一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化应用。该方法在非水条件下,以AgNO3为前驱体,甲醇为溶剂,以一种端氨基超支化聚合物N102作为载体和模板剂,加入NaHCO3作为添加剂,常温下充分混合后,加入一定量H2NCN甲醇溶液反应30‑60 min,制备得到亮黄色片状Ag2NCN及其组装纳米微球。所述片状Ag2NCN及其组装纳米微球分别为近圆形的大片状结构、片状Ag2NCN的球状聚集结构,平均直径为0.3‑4.75μm,片的平均厚度为17.5‑22 nm,带隙宽度为2.25‑2.36eV。片状Ag2NCN组装纳米微球具有较强的光催化活性,可用于光催化等领域,对抗生素诺氟沙星的光催化降解具有较高的活性、稳定性及可重复使用性。

Description

一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化 应用
技术领域
本发明属于纳米材料及其制备技术领域,具体涉及一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化应用。
背景技术
随着纳米技术的发展,金属氰氨化合物作为一种新型无机功能材料再次引起人们的关注。Ag2NCN作为重要的金属氰氨化合物之一,由于具有合适的带隙宽度(2.30eV)而在光化学领域表现良好的应用前景。金属氰氨化合物中[NCN]2-可以采取两种电子形式:对称碳化二亚胺[N=C=N]2-形式和不对称氰氨基[N≡C-N]2-形式,共存在于同一[NCN]2-中。在Ag2NCN中[N=C=N]2-和[N≡C-N]2-的键长分别为和/>其中,[NCN]基团的不对称形式所具有的偶极子和偶极域,能够辅助光反应中携带相反电荷的离子进行远程迁移,这一特性能够促进光催化反应进行。因此,Ag2NCN可以应用于太阳能和光电领域。由于Ag2NCN中存在的不对称形式的[NCN]2-以及被广泛认识的各种Ag的化合物如Ag2O、AgBr和AgI等等的光催化性能较好,因此,金属氰氨化合物作为一种半导体材料在光催化领域展现出良好的应用前景。利用纳米技术控制合成得到不同形貌结构的Ag2NCN纳米晶,有利于进一步改善其光化学性能。
发明内容
本发明的目的在于提供一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化应用。本发明以一种端氨基超支化聚合物(AHP)为载体(结构如图1),采用模板法快速合成一种片状Ag2NCN及片状Ag2NCN组装纳米微球,并将其应用于光催化降解诺氟沙星,具有简便、快速、高效的特点。
为实现上述目的,本发明所采取的技术方案为:
本发明提供了一种片状Ag2NCN及其组装纳米微球,所述片状Ag2NCN及其组装纳米微球分别为近圆形的大片状结构、片状Ag2NCN的球状聚集结构,片状Ag2NCN和其组装的纳米微球的平均直径为0.3-4.75μm,片的平均厚度为17.5-22nm,片状Ag2NCN和其组装的纳米微球带隙宽度为2.25-2.36eV。
优选的,本发明提供了一种片状Ag2NCN组装纳米微球,所述片状Ag2NCN组装纳米微球:平均直径为0.3-2.1μm,片的平均厚度为17.5-22nm,带隙宽度为2.25-2.36eV。
本发明还提供了一种上述片状Ag2NCN及其组装纳米微球的合成方法,具体包括如下步骤:
(1)将一种端氨基超支化聚合物(AHP)溶于甲醇中,配制成一定浓度的储备液;
(2)将H2NCN溶于甲醇中,配制成一定浓度的储备液;
(3)将一定量的AgNO3溶于一定量的甲醇中,常温下搅拌溶解后,加入一定量步骤(1)所得储备液,常温下搅拌混合均匀;加入一定量NaHCO3,搅拌溶解;再加入一定量步骤(2)所得储备液,使反应体系中AHP/AgNO3/H2NCN/NaHCO3保持一定的摩尔比,其中AgNO3保持一固定浓度;常温下搅拌反应一定时间,得黄色悬浊液;加入一定量的丙酮终止反应;利用离心机以9000rpm离心10min,分离得到黄色颗粒;再用一种混合溶剂洗涤三次,将收集到的黄色沉淀物室温下真空干燥,即得所述片状Ag2NCN组装纳米微球。
优选的,步骤(1)中所述一种端氨基超支化聚合物(AHP)为端氨基超支化聚合物N102。
优选的,步骤(3)中所述反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为(0.5-1.5)/1/1/(0-2),其中AgNO3浓度保持0.06mol·L-1,并据此确定步骤(1)中所述储备液、步骤(2)中所述储备液、甲醇及NaHCO3的用量。
优选的,步骤(3)中所述丙酮的用量为反应体系体积(“反应体系”均指加入丙酮前的反应体系)的(1/5)-(1/3)。
更优选的,步骤(3)中所述反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为(0.5-1)/1/1/(0-2)。
更优选的,步骤(3)中所述反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为1/1/1/(0-2)。
最优选的,步骤(3)中所述反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为1/1/1/0.5。
优选的,步骤(3)中所述反应一定时间,反应时间为30-60min。
优选的,步骤(3)中所述一种混合溶剂为丙酮-甲醇混合溶剂,丙酮:甲醇体积比为1:2。
本发明还提供了上述片状Ag2NCN及其组装纳米微球合成方法所合成的片状Ag2NCN及其组装纳米微球作为催化剂在光催化领域中的应用,优选的,应用于光催化诺氟沙星移除。
与现有技术相比,本发明的技术效果为:
(1)本发明中为非水条件下利用一种端氨基超支化聚合物N102作为模板,通过与Ag+配位来调控Ag2NCN纳米颗粒的形貌,得到由Ag2NCN纳米片组装而成的片状Ag2NCN组装纳米微球,其形貌和合成方法均不同于其它方法。
(2)所述片状Ag2NCN组装纳米微球为纳米片的球状聚集,其典型特征是所得Ag2NCN纳米颗粒由厚度约18nm的Ag2NCN纳米片呈球状聚集而成,带隙宽度为2.31eV。所得到的片状Ag2NCN组装纳米微球对诺氟沙星表现出良好的可见光光催化降解性能,并且在光催化应用中具有良好的结构稳定性和循环使用性能。
(3)本发明采用模板剂端氨基超支化聚合物N102价廉易得,片状Ag2NCN及其组装纳米微球的控制合成具有反应时间短、操作简单、效率高等优点,在常温条件下可以简单大量制备,是一种适合大规模生产的方法。
附图说明
图1为本发明中所用端氨基超支化聚合物N102最主要成分的结构。
图2为本发明实施例1合成得到的片状Ag2NCN组装纳米微球的TEM图;
图3为本发明实施例1合成得到的片状Ag2NCN组装纳米微球的SEM图;
图4为本发明实施例1合成得到的片状Ag2NCN组装纳米微球的EDS面扫照片;
图5为本发明实施例1合成得到的片状Ag2NCN组装纳米微球的XRD谱图;
图6为本发明实施例1合成得到的片状Ag2NCN组装纳米微球的XPS谱图;
图7为本发明实施例1合成得到的片状Ag2NCN组装纳米微球的FT-IR谱图;
图8为本发明实施例1合成得到的片状Ag2NCN组装纳米微球的紫外漫反射光谱(DRS);
图9为本发明实施例1合成得到的片状Ag2NCN组装纳米微球的Mott-schottky图;
图10为本发明实施例1合成得到的片状Ag2NCN组装纳米微球Ag2NCN-AHP-1的能带结构示意图;
图11为本发明实施例2合成得到的饺子形片状Ag2NCN组装纳米结构Ag2NCN-AHP-0.5的SEM图;
图12为本发明实施例3合成得到的大片状Ag2NCN纳米颗粒Ag2NCN-AHP-1.5的SEM图;
图13为本发明实施例4合成得到的片状Ag2NCN组装纳米微球Ag2NCN-AHP-1-0的SEM图;
图14为本发明实施例5合成得到的片状Ag2NCN组装纳米微球Ag2NCN-AHP-1-2的SEM图;
图15为本发明实施例6合成得到的不规则片状Ag2NCN纳米结构Ag2NCN-AHP-1-3的SEM图;
图16为本发明实施例1合成得到的片状Ag2NCN组装纳米微球Ag2NCN-AHP-1光催化降解诺氟沙星(NOR)的UV-vis吸收光谱;
图17为本发明实施例2合成得到的饺子形片状Ag2NCN组装纳米结构Ag2NCN-AHP-0.5光催化降解NOR的UV-vis吸收光谱;
图18为本发明实施例3合成得到的大片状Ag2NCN纳米颗粒Ag2NCN-AHP-1.5光催化降解NOR的UV-vis吸收光谱;
图19为本发明实施例1-5合成得到的样品Ag2NCN-AHP-1、Ag2NCN-AHP-0.5、Ag2NCN-AHP-1.5、Ag2NCN-AHP-1-0和Ag2NCN-AHP-1-2光催化降解NOR的降解率曲线;
图20为本发明实施例1合成得到的片状Ag2NCN组装纳米微球Ag2NCN-AHP-1样品光催化降解NOR循环使用4次的降解率随时间变化曲线;
图21为本发明实施例1合成得到的片状Ag2NCN组装纳米微球Ag2NCN-AHP-1样品光催化降解NOR循环使用4次后的SEM图。
具体实施方式
下面结合实施例对本发明的技术方案做进一步的阐述:
以下实施例中,AgNO3购自阿拉丁试剂(上海)有限公司;端氨基超支化合物AHP(HyPer N10系列,商品代号N102)来自武汉超支化树脂科技有限公司,最主要成分的结构式如图1所示;甲醇、H2NCN及其它试剂均购自国药集团化学试剂有限公司。
实施例1
一种片状Ag2NCN及其组装纳米微球的合成方法,包括如下步骤:
(1)将端氨基超支化聚合物N102溶于甲醇中,配制成浓度为0.1mol·L-1的储备液;
(2)将H2NCN溶于甲醇中,配制成浓度为1mol·L-1的储备液;
(3)称取0.6mmol AgNO3于50mL烧瓶中,加入3mL甲醇,在常温下搅拌溶解完全后,立刻加入6mL步骤(1)所得储备液,常温下搅拌混合均匀;加入0.3mmol NaHCO3,搅拌溶解;再加入0.6mL步骤(2)所得储备液,反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为1/1/1/0.5,其中AgNO3浓度为0.06mol·L-1。常温下搅拌60min,得黄色悬浊液;加入2mL丙酮终止反应。利用离心机以9000rpm离心10min,分离得到黄色颗粒;再用体积比为1:2的丙酮-甲醇混合溶剂洗涤三次,将收集到的黄色沉淀物室温下真空干燥10h,即得所述片状Ag2NCN组装纳米微球,样品标记为Ag2NCN-AHP-1。
经TEM测试,显示实施例1所得产物Ag2NCN-AHP-1呈现为微球形纳米结构,平均直径约1.1μm。如图2所示。
SEM测试进一步显示实施例1所得产物样Ag2NCN-AHP-1为片状Ag2NCN组装纳米微球结构,平均直径约1.1μm。组装纳米片表面光滑,平均厚度约18nm,如图3所示。
EDS元素分布分析结果显示实施例1所得片状Ag2NCN组装纳米微球颗粒由Ag、N、C、O四种元素组成,如图4所示。其中(a)为STEM-HAADF图像,(b)、(c)、(d)、(e)分别N、O、C、Ag元素分布;(f)为四种元素分布的叠加图像。
XRD分析显示所得到的片状Ag2NCN组装纳米微球Ag2NCN-AHP-1的特征衍射峰的2θ角分别位于19°、32°、37°、39°、41°、52°,分别对应(110)、(202)、(300)、(220)、(022)、(-322)晶面,与Ag2NCN标准粉末衍射一致;衍射峰尖锐,半峰宽较窄,显示Ag2NCN-AHP-1具有良好的结晶度。如图5所示。
XPS测试显示所制备的片状微球的Ag2NCN纳米样品Ag2NCN-AHP-1的3d5/2和3d3/2的电子结合能分别为368.3eV和374.4eV。如图6所示。
FT-IR光谱显示3440.03cm-1处的N-H伸缩振动吸收峰。2136.04cm-1处的C≡N伸缩振动吸收峰,1976.01cm-1处的NCN伸缩振动吸收峰,显示氰胺银中有两种结构,对称的碳化二亚胺[N=C=N]2-形式和不对称的氰氨化[N≡C-N]2-形式。如图7所示。
紫外漫反射光谱(DRS)及(A×hν)2-hν关系图分析显示片状Ag2NCN组装纳米微球样品Ag2NCN-AHP-1的直接带隙(Eg)为2.31eV,与理论值(2.30eV)基本一致,如图8所示。
根据Mott-schottky电化学分析曲线显示片状Ag2NCN组装纳米微球样品Ag2NCN-AHP-1导带电位相对于饱和甘汞电极为-0.65V,如图9所示。
结合带隙计算公式EVB=ECB+Eg得到的Ag2NCN-AHP-1的能带结构,如图10所示。
实施例2
一种片状Ag2NCN及其组装纳米微球的合成方法,包括如下步骤:
(1)将端氨基超支化聚合物N102溶于甲醇中,配制成浓度为0.1mol·L-1的储备液;
(2)将H2NCN溶于甲醇中,配制成浓度为1mol·L-1的储备液;
(3)称取0.6mmol AgNO3于50mL烧瓶中,加入6mL甲醇,在常温下搅拌溶解完全后,立刻加入3mL步骤(1)所得储备液,常温下搅拌混合均匀;加入0.3mmol NaHCO3,搅拌溶解;再加入0.6mL步骤(2)所得储备液,反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为0.5/1/1/0.5,其中AgNO3浓度为0.06mol·L-1。常温下搅拌60min,得黄色悬浊液;加入2mL丙酮终止反应。利用离心机以9000rpm离心10min,分离得到黄色颗粒;再用体积比为1:2的丙酮-甲醇混合溶剂洗涤三次,将收集到的黄色沉淀物室温下真空干燥10h,即得所述片状Ag2NCN组装纳米微球,样品标记为Ag2NCN-AHP-0.5。
经SEM测试,显示实施例2的产物也为片状Ag2NCN组装纳米结构。与实施例1产物不同的是,实施例2所得产物Ag2NCN-AHP-0.5的片状Ag2NCN紧密堆积组装成饺子形结构,平均直径约350nm,如图11所示。
XPS测试显示所制备饺子形Ag2NCN-AHP-0.5微球的3d5/2和3d3/2的电子结合能分别为368.2eV和374.2eV,与实施例1基本一致。如图6所示。
紫外漫反射光谱(DRS)及(A×hν)2-hν关系图分析显示饺子形Ag2NCN-AHP-0.5微球的直接带隙(Eg)为2.25eV,与实施例1相比明显降低。如图8所示。
实施例3
一种片状Ag2NCN的合成方法,包括如下步骤:
(1)将端氨基超支化聚合物N102溶于甲醇中,配制成浓度为0.1mol·L-1的储备液;
(2)将H2NCN溶于甲醇中,配制成浓度为1mol·L-1的储备液;
(3)称取0.6mmol AgNO3于50mL烧瓶中,加入9mL步骤(1)所得储备液,常温下搅拌溶解并混合均匀;加入0.3mmol NaHCO3,搅拌溶解;再加入0.6mL步骤(2)所得储备液,反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为1.5/1/1/0.5,其中AgNO3浓度为0.06mol·L-1。常温下搅拌60min,得黄色悬浊液;加入2mL丙酮终止反应。利用离心机以9000rpm离心10min,分离得到黄色颗粒;再用体积比为1:2的丙酮-甲醇混合溶剂洗涤三次,将收集到的黄色沉淀物室温下真空干燥10h,即得所述片状Ag2NCN,样品标记为Ag2NCN-AHP-1.5。
经SEM测试,显示实施例3所得产物Ag2NCN-AHP-1.5呈现较大的片状结构,呈层状堆叠,近圆形的纳米片直径约为4.75μm,厚度约为18nm,与实施例1不同的是,Ag2NCN-AHP-1.5样品由于纳米片较大,未能组装成微球结构。如图12所示。
XPS测试显示所制备大片状Ag2NCN-AHP-1.5样品的3d5/2和3d3/2的电子结合能分别为368.3eV和374.3eV,与实施例1一致。如图6所示。
紫外漫反射光谱(DRS)及(A×hν)2-hν关系图分析显示大片状Ag2NCN-AHP-1.5的直接带隙(Eg)为2.36eV,与实施例1相比带隙增大。如图8所示。
实施例4
一种片状Ag2NCN及其组装纳米微球的合成方法,包括如下步骤:
(1)将端氨基超支化聚合物N102溶于甲醇中,配制成浓度为0.1mol·L-1的储备液;
(2)将H2NCN溶于甲醇中,配制成浓度为1mol·L-1的储备液;
(3)称取0.6mmolAgNO3于50mL烧瓶中,加入3mL甲醇,在常温下搅拌溶解完全后,立刻加入6mL步骤(1)所得储备液,常温下搅拌混合均匀;再加入0.6mL步骤(2)所得储备液,反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为1/1/1/0,其中AgNO3浓度为0.06mol·L-1。常温下搅拌60min,得黄色悬浊液;加入2mL丙酮终止反应。利用离心机以9000rpm离心10min,分离得到黄色颗粒;再用体积比为1:2的丙酮-甲醇混合溶剂洗涤三次,将收集到的黄色沉淀物室温下真空干燥10h,即得所述片状Ag2NCN组装纳米微球,样品标记为Ag2NCN-AHP-1-0。
经SEM测试,显示实施例4的产物与实施例1产物结构类似,呈片状Ag2NCN组装纳米微球结构。与实施例1不同的是,反应体系未加入NaHCO3,Ag2NCN-AHP-1-0产量较少,且生成的片状球体直径增大,平均直径约1.87μm,纳米片厚度约17.5nm。如图13所示。
实施例5
一种片状Ag2NCN及其组装纳米微球的合成方法,包括如下步骤:
(1)将端氨基超支化聚合物N102溶于甲醇中,配制成浓度为0.1mol·L-1的储备液;
(2)将H2NCN溶于甲醇中,配制成浓度为1mol·L-1的储备液;
(3)称取0.6mmol AgNO3于50mL烧瓶中,加入3mL甲醇,在常温下搅拌溶解完全后,立刻加入6mL步骤(1)所得储备液,常温下搅拌混合均匀;加入1.2mmol NaHCO3,搅拌溶解;再加入0.6mL步骤(2)所得储备液,反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为1/1/1/2,其中AgNO3浓度为0.06mol·L-1。常温下搅拌60min,得黄色悬浊液;加入2mL丙酮终止反应。利用离心机以9000rpm离心10min,分离得到黄色颗粒;再用体积比为1:2的丙酮-甲醇混合溶剂洗涤三次,将收集到的黄色沉淀物室温下真空干燥10h,即得所述片状Ag2NCN组装纳米微球,样品标记为Ag2NCN-AHP-1-2。
经SEM测试,显示实施例5的产物与实施例1产物结构类似,呈片状Ag2NCN组装纳米微球结构,但是产量较少,生成的片状球体直径更大,平均直径约2.1μm,纳米片平均厚度约22nm。如图14所示。
实施例6
一种片状Ag2NCN的合成方法,包括如下步骤:
(1)将端氨基超支化聚合物N102溶于甲醇中,配制成浓度为0.1mol·L-1的储备液;
(2)将H2NCN溶于甲醇中,配制成浓度为1mol·L-1的储备液;
(3)称取0.9mmol AgNO3于50mL烧瓶中,加入3mL甲醇,在常温下搅拌溶解完全后,立刻加入6mL步骤(1)所得储备液,常温下搅拌混合均匀;加入0.3mmol NaHCO3,搅拌溶解;再加入0.6mL步骤(2)所得储备液,反应体系中AHP/AgNO3/H2NCN/NaHCO3的摩尔比为1/1.5/1/0.5,其中AgNO3浓度为0.09mol·L-1。常温下搅拌60min,得黄色悬浊液;加入2mL丙酮终止反应。利用离心机以9000rpm离心10min,分离得到黄色颗粒;再用体积比为1:2的丙酮-甲醇混合溶剂洗涤三次,将收集到的黄色沉淀物室温下真空干燥10h,即得所述片状Ag2NCN,样品标记为Ag2NCN-AHP-1-3。
经SEM测试,显示实施例6的产物与实施例1产物形貌明显不同,为分散的不规则片状Ag2NCN纳米结构。如图15所示。
以实施例1所述一种片状Ag2NCN组装纳米微球Ag2NCN-AHP-1、实施例2所述一种饺子形片状Ag2NCN组装纳米结构Ag2NCN-AHP-0.5、实施例3所述一种大片状Ag2NCN纳米颗粒Ag2NCN-AHP-1.5、实施例4所述一种片状Ag2NCN组装纳米微球Ag2NCN-AHP-1-0、实施例5所述一种片状Ag2NCN组装纳米微球Ag2NCN-AHP-1-2为催化剂,分别考察其对诺氟沙星(NOR)的光催化降解性能。以NOR为模拟污染物,称取30mg催化剂粉末于光反应器中;再量取50mL10mg/L的NOR水溶液,超声10min使分散均匀;然后将光反应器放置于暗箱中搅拌30min达到吸附解析平衡,同时通循环冷却水来保持系统的温度为室温。利用300w氙灯作为激发光源,在光反应过程中每隔一定时间用注射器取出3mL悬浮液,用0.22μm有机相滤膜过滤后,利用Cary5000紫外-可见(UV-vis)分光光度计测定NOR的吸光度,测得Ag2NCN-AHP-1的UV-vis吸收光谱随时间变化曲线,如图16(图中original指未加催化剂的原液)所示。饺子形Ag2NCN-AHP-0.5和大片状Ag2NCN-AHP-1.5的UV-vis吸收光谱随时间变化曲线分别如图17、图18(图中original指未加催化剂的原液)所示。根据NOR最大吸收峰的吸光度的变化,结合工作曲线,确定NOR的浓度变化,获得降解率曲线,如图19所示。从所得降解率曲线可以看出,片状组装纳米微球Ag2NCN-AHP-1具有最佳的光催化性能,可见光照射120min,NOR的降解率达到65%;而饺子形Ag2NCN-AHP-0.5在光照120min后NOR的降解率约49%,大片状Ag2NCN-AHP-1.5光照120min后NOR的降解率约为34%。此外,Ag2NCN-AHP-1-0及Ag2NCN-AHP-1-2样品对NOR的降解率分别为60%和55%,均低于Ag2NCN-AHP-1。对比来看,片状组装纳米微球Ag2NCN-AHP-1光催化降解NOR的效果最好。将实施例1样品光催化反应后的反应混合物减压过滤回收反应后的催化剂Ag2NCN-AHP-1,在25℃真空烘箱中干燥10h后,再次用于同样的NOR的循环降解实验,考察其重复使用效果。由实施例1制备所得片状组装纳米微球Ag2NCN-AHP-1光催化降解NOR循环使用4次,仍保持45%的NOR降解率,如图20;且循环使用4次后Ag2NCN-AHP-1形貌基本保持不变,如图21所示。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明。尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、等比放大/缩小、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.片状Ag2NCN及其组装纳米微球作为光催化剂在光催化移除诺氟沙星中的应用,其特征在于,所述片状Ag2NCN及其组装纳米微球的合成方法包括如下步骤:
(1)将端氨基超支化聚合物N102溶于甲醇中,配制成一定浓度的储备液;所述端氨基超支化聚合物N102来自武汉超支化树脂科技有限公司HyPer N10系列,商品代号N102;
(2)将H2NCN溶于甲醇中,配制成一定浓度的储备液;
(3)将一定量的AgNO3溶于甲醇中,搅拌溶解后,加入一定量步骤(1)所得储备液,搅拌混合均匀;加入一定量NaHCO3,搅拌溶解;再加入一定量步骤(2)所得储备液,使反应体系中N102/AgNO3/H2NCN/NaHCO3的摩尔比为(0.5-1)/1/1/(0-2),AgNO3浓度为0.06 mol·L-1;搅拌反应一定时间,得黄色悬浊液;加入一定量的丙酮终止反应;离心,分离得到黄色颗粒;再用混合溶剂洗涤至少三次,将收集到的黄色沉淀物干燥,得到所述片状Ag2NCN及其组装纳米微球。
2.根据权利要求1所述的应用,其特征在于,N102/AgNO3/H2NCN/NaHCO3的摩尔比为1/1/1/0.5。
3.根据权利要求1所述的应用,其特征在于,步骤(3)中,所述反应时间为30-60 min。
4.根据权利要求1所述的应用,其特征在于,步骤(3)中,所述丙酮的用量为反应体系体积的1/5-1/3。
5.根据权利要求1所述的应用,其特征在于,步骤(3)中,所述混合溶剂为丙酮-甲醇混合溶剂,丙酮:甲醇体积比为1:2。
CN202111030697.3A 2021-09-03 2021-09-03 一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化应用 Active CN113617379B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111030697.3A CN113617379B (zh) 2021-09-03 2021-09-03 一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111030697.3A CN113617379B (zh) 2021-09-03 2021-09-03 一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化应用

Publications (2)

Publication Number Publication Date
CN113617379A CN113617379A (zh) 2021-11-09
CN113617379B true CN113617379B (zh) 2023-10-03

Family

ID=78388986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111030697.3A Active CN113617379B (zh) 2021-09-03 2021-09-03 一种片状Ag2NCN及其组装纳米微球的合成方法及其光催化应用

Country Status (1)

Country Link
CN (1) CN113617379B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536824A (zh) * 2015-12-30 2016-05-04 陕西师范大学 一种纳米介孔微球状Bi5O7I光催化剂及其水热-热分解制备方法
CN107537543A (zh) * 2017-09-11 2018-01-05 南通纺织丝绸产业技术研究院 一种N‑Au‑Ag共掺杂纳米二氧化钛光催化剂的制备方法
CN110240197A (zh) * 2019-07-04 2019-09-17 福州大学 超薄纳米片自组装的多层次BiOCl微球及其在光催化偶联苄胺到亚胺的应用
CN110354887A (zh) * 2019-08-05 2019-10-22 生态环境部华南环境科学研究所 一种用于光催化降解抗生素的可磁分离的催化剂及其制备方法和应用
CN113070092A (zh) * 2021-03-31 2021-07-06 中南民族大学 一种棒形簇状Ag2NCN纳米颗粒及其合成方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101766590B1 (ko) * 2016-07-06 2017-08-10 경희대학교 산학협력단 복합 나노구조 광촉매 및 이의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105536824A (zh) * 2015-12-30 2016-05-04 陕西师范大学 一种纳米介孔微球状Bi5O7I光催化剂及其水热-热分解制备方法
CN107537543A (zh) * 2017-09-11 2018-01-05 南通纺织丝绸产业技术研究院 一种N‑Au‑Ag共掺杂纳米二氧化钛光催化剂的制备方法
CN110240197A (zh) * 2019-07-04 2019-09-17 福州大学 超薄纳米片自组装的多层次BiOCl微球及其在光催化偶联苄胺到亚胺的应用
CN110354887A (zh) * 2019-08-05 2019-10-22 生态环境部华南环境科学研究所 一种用于光催化降解抗生素的可磁分离的催化剂及其制备方法和应用
CN113070092A (zh) * 2021-03-31 2021-07-06 中南民族大学 一种棒形簇状Ag2NCN纳米颗粒及其合成方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Aiqiong Qin."Constructing hyperbranched polymers as a stable elastic framework for copper sulfide nanoplates for enhancing sodium-storage performance".《Nanoscale》.2019,第第11卷卷第2.2节,第7191页左栏第一段,图1. *
基于氰胺银复合材料的制备及可见光催化性能研究;李晓雪;《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》;全文 *
王国建等.《高分子现代合成方法与技术》.上海:同济大学出版社,2013,第238-239页. *

Also Published As

Publication number Publication date
CN113617379A (zh) 2021-11-09

Similar Documents

Publication Publication Date Title
Shi et al. Onion-ring-like g-C3N4 modified with Bi3TaO7 quantum dots: A novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation
Chen et al. Preparation of CdS/g-C3N4/MOF composite with enhanced visible-light photocatalytic activity for dye degradation
Yang et al. Controllable synthesis of Bi2MoO6 nanosheets and their facet-dependent visible-light-driven photocatalytic activity
Su et al. Cu 2 O nanoparticle-functionalized cellulose-based aerogel as high-performance visible-light photocatalyst
Ma et al. Synthesis of yolk-shell structure Fe3O4/P (MAA-MBAA)-PPy/Au/void/TiO2 magnetic microspheres as visible light active photocatalyst for degradation of organic pollutants
Mohamed Isa et al. Photocatalytic degradation of methyl orange using pullulan-mediated porous zinc oxide microflowers
Dou et al. Fabrication of Bi2SiO5 hierarchical microspheres with an efficient photocatalytic performance for rhodamine B and phenol removal
Chen et al. Self-assembling TiO2 on aminated graphene based on adsorption and catalysis to treat organic dyes
CN111450858B (zh) 一种复合光催化剂Ag/AgCl@Co3O4的制备方法及由此制得的复合光催化剂
Zhao et al. Novel carboxy-functionalized PVP-CdS nanopopcorns with homojunctions for enhanced photocatalytic hydrogen evolution
CN110624594A (zh) 一种磁性Fe3O4/ZnO/g-C3N4复合光催化剂及其制备方法
Ma et al. Amorphous Ti (iv)-modified flower-like ZnIn 2 S 4 microspheres with enhanced hydrogen evolution photocatalytic activity and simultaneous wastewater purification
CN113145134B (zh) 一种基于矿物复合材料的可见光催化剂及其制备方法
CN105731535A (zh) 一种氧化锌/二氧化钛复合纳米材料的制备方法
Ma et al. Z-scheme g-C3N4/ZnS heterojunction photocatalyst: One-pot synthesis, interfacial structure regulation, and improved photocatalysis activity for bisphenol A
Wang et al. Plasmon-enhanced instantaneous photocatalytic activity of Au@ Ag 3 PO 4 heterostructure targeted at emergency treatment of environmental pollution
Cui et al. Effects of shape and particle size on the photocatalytic kinetics and mechanism of nano-CeO2
Gao et al. Synthesis of “walnut‐like” BiOCl/Br solid solution photocatalyst by electrostatic self‐assembly method
Liu et al. Biomass assisted synthesis of 3D hierarchical structure BiOX (X Cl, Br)-(CMC) with enhanced photocatalytic activity
Mac et al. Controlling the 3D flower‐like ZnO via simple precipitation method and its formation mechanism and photocatalytic application
Xie et al. A visible light responsive Bi2S3/MIL-53 (Fe) heterojunction with enhanced photocatalytic activity for degradation of tetracycline
Wang et al. Bovine serum albumin modified ZnO to degrade organic dyes under ultraviolet light irradiation
Liu et al. Assembling BiOBr nanoplates on MIL-125 (Ti)–NH2 via group linkage towards effective dye-contaminated water purification
CN102274719A (zh) 一种可见光响应型纳米复合物粉体光触媒及其制备方法
US11896960B1 (en) High-efficiency visible-light catalytic material and preparation method and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant