CN113617365A - 一种具有堆垛层错的多孔Cd1-xZnxS/GO复合材料及其制备方法 - Google Patents

一种具有堆垛层错的多孔Cd1-xZnxS/GO复合材料及其制备方法 Download PDF

Info

Publication number
CN113617365A
CN113617365A CN202110977411.6A CN202110977411A CN113617365A CN 113617365 A CN113617365 A CN 113617365A CN 202110977411 A CN202110977411 A CN 202110977411A CN 113617365 A CN113617365 A CN 113617365A
Authority
CN
China
Prior art keywords
composite material
porous
porcelain
placing
square boat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110977411.6A
Other languages
English (en)
Other versions
CN113617365B (zh
Inventor
宋彩霞
吕淑华
李明轩
王德宝
王静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202110977411.6A priority Critical patent/CN113617365B/zh
Publication of CN113617365A publication Critical patent/CN113617365A/zh
Application granted granted Critical
Publication of CN113617365B publication Critical patent/CN113617365B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/02Sulfur, selenium or tellurium; Compounds thereof
    • B01J27/04Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种具有堆垛层错的多孔Cd1‑xZnxS/GO复合材料及其制备方法,该复合材料是由Cd1‑xZnxS固溶体纳米晶包覆一层氧化石墨烯复合而成,而Cd1‑xZnxS固溶体纳米晶具有堆垛层错结构缺陷的多孔结构;首先将CdCl2·2.5H2O、ZnCl2,丙二酸,加热搅拌混合,形成均匀透明的液体,然后将该液体转移到方舟中,与另一个盛有升华硫的方舟一起,置于管式炉内,在氮气气氛下以1‑10℃/min的速度加热至300‑600℃,保温1‑4h,得到具有堆垛层错结构缺陷的多孔Cd1‑xZnxS/GO复合材料。该复合材料对于可见光光催化分解水(或海水)制氢和光催化吸附降解水中有机污染物都有很好的光催化活性。

Description

一种具有堆垛层错的多孔Cd1-xZnxS/GO复合材料及其制备方法
技术领域
本发明属于新能源光催化材料与技术领域,涉及一种具有堆垛层错的多孔Cd1- xZnxS/GO复合材料及其制备方法,具体地说,是涉及一种具有堆垛层错结构缺陷的多孔Cd1- xZnxS/GO复合材料光催化剂及其制备方法。
背景技术
由于能源和淡水的短缺,在可见光下设计具有高效稳定析氢性能的无贵金属光催化剂越来越受到人们的关注。Cd1-xZnxS固溶体因其禁带可调、是一种有前途的对可见光有响应的催化剂。不幸的是,光催化过程中易发生的光腐蚀现象影响了Cd1-xZnxS催化剂的推广应用。氧化石墨烯(GO)由于其独特的二维平面结构、优异的导电性、大比表面积和优越的耐腐蚀性使得构建GO@Cd1-xZnxS复合材料成为改善光催化活性、稳定性和电荷分离的理想策略。虽然关于GO@Cd1-xZnxS材料的合成方法已经做了大量的工作,包括水/溶剂热法、自组装法、化学气相沉积法等,但目前制备的GO@Cd1-xZnxS材料其光催化效率仍然较低而限制了其应用。另一方面,具有堆垛层错的材料能够降低表观活化能,堆垛层错形成“背靠背”肖特基电位,加速自由电荷的转移,抑制电子-空穴对的复合,显示出增强的催化活性。
设计合成一种具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料光催化剂,为高效水/海水光催分解产氢提供了新的选择,在新能源材料与技术领域具有重要的实用价值和现实意义。
发明内容:
本发明针对现有技术制备Cd1-xZnxS/GO复合材料过程复杂繁琐、需要多步合成,光催化活性低等缺点,提出了一种具有堆垛层错的多孔Cd1-xZnxS/GO复合材料及其制备方法,其特征在于所述复合材料是由Cd1-xZnxS固溶体纳米晶包覆一层氧化石墨烯复合而成,所述Cd1-xZnxS固溶体纳米晶具有堆垛层错结构缺陷的多孔结构,所述制备方法是前驱体碳化、硫化与氧化石墨烯壳层的生长和复合一步完成,具体包括下述步骤:
(1)将1-10mmol CdCl2·2.5H2O、1-10mmol ZnCl2,5-100mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在60-120℃的油浴锅中搅拌混合0.1-1h,形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入0.2-3g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以1-10℃/min的速度加热至300-600℃,保温1-4h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
本发明的优点在于:该方法工艺简单,采用一步热解-硫化法制备具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。所述制备方法是Cd1-xZnxS与氧化石墨烯壳层的生长和耦合是一步完成的,氧化石墨烯壳层原位生长于Cd1-xZnxS固溶体纳米晶表面,形成分子水平的偶联界面,提高催化剂耐腐蚀,耐高温,耐酸碱性,有利于长期的光催化稳定性和有效的界面电荷转移。同时,氧化石墨烯壳层独特的二维平面结构促使电子快速迁移到表面接收H+生成H2,从而提高了析氢性能。堆垛层错形成“背靠背”肖特基电位,加速自由电荷的转移,抑制电子-空穴对的复合,有利于催化活性提高。
本发明所述方法制备的具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料的光催化效率高,对于光催化分解水(海水)制氢和光催化吸附降解水中有机污染物都有很好的光催化活性。
附图说明
图1为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料和对比例一、对比利二催化剂的XRD谱图。
图2为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料和商品GO的拉曼图谱。
图3为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料的SEM照片。
图4为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料的TEM照片(a)和HREM照片(b)
图5为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料N2吸脱附等温线(a)及孔分布曲线(b)。
图6为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料和对比例一、对比例二催化剂在水中(a)和海水中(b)的可见光光催化析氢速率图。
图7为为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料用于水中和海水中光催化析氢的循环稳定性实验。
具体实施方式
下面通过实施例对本发明作进一步详细说明:
实施例一:
(1)将5mmol CdCl2·2.5H2O、5mmol ZnCl2,50mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在90℃的油浴锅中搅拌混合0.5h,,至形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入2g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以5℃/min的速度加热至550℃,保温4h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
实施例二:
(1)将6mmol CdCl2·2.5H2O、4mmol ZnCl2,50mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在90℃的油浴锅中搅拌混合0.5h,,至形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入2g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以5℃/min的速度加热至550℃,保温4h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
实施例三:
(1)将4mmol CdCl2·2.5H2O、6mmol ZnCl2,50mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在90℃的油浴锅中搅拌混合0.5h,,至形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入2g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以5℃/min的速度加热至550℃,保温4h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
实施例四:
(1)将5mmol CdCl2·2.5H2O、5mmol ZnCl2,30mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在80℃的油浴锅中搅拌混合1h,,至形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入1g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以5℃/min的速度加热至550℃,保温4h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
实施例五:
(1)将1mmol CdCl2·2.5H2O、1mmol ZnCl2,10mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在70℃的油浴锅中搅拌混合1h,,至形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入0.2g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以2℃/min的速度加热至600℃,保温2h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
实施例六:
(1)将8mmol CdCl2·2.5H2O、2mmol ZnCl2,40mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在70℃的油浴锅中搅拌混合1h,,至形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入0.2g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以10℃/min的速度加热至600℃,保温3h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
实施例七:
(1)将2mmol CdCl2·2.5H2O、8mmol ZnCl2,60mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在100℃的油浴锅中搅拌混合0.5h,,至形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入0.2g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以2℃/min的速度加热至400℃,保温4h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
对比例一:
(1)将10mmol CdCl2·2.5H2O、50mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在90℃的油浴锅中搅拌混合0.5h,,至形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入2g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以5℃/min的速度加热至550℃,保温4h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
对比例二:
(1)将10mmol ZnCl2、50mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在90℃的油浴锅中搅拌混合0.5h,,至形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入2g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以5℃/min的速度加热至550℃,保温4h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
图1为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料和对比例一、对比利二催化剂的XRD谱图。由图可以看出,实施例一所述方法制备复合材料的6个衍射峰,分别对应于六方相固溶体Cd0.5Zn0.5S(JCPDS No.49-1302)的(100)、(002)、(101)、(102)、(110)和(103)晶面,表明所制备的复合材料中Cd1- xZnxS以Cd0.5Zn0.5S六方相固溶体的形式存在。对比例一催化剂的XRD谱图对应于六方CdS的衍射,对比例二催化剂的XRD谱图对应于六方ZnS的衍射。Cd0.5Zn0.5S固溶体衍射峰的位置介于六方CdS和六方ZnS的衍射峰之间。
图2为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料和商品GO的拉曼图谱。由图2可以看出,与商品GO的拉曼图谱相似,Cd0.5Zn0.5S/GO样品有氧化石墨烯结构的两个特征拉曼峰D峰和G峰,而且ID/IG比值为0.8,这是氧化石墨烯原位生长过程中引入含氧基团造成的缺陷导致的。
图3为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料的SEM照片。由图3中的SEM照片可以看出,Cd0.5Zn0.5S/GO样品为纳米颗粒聚集而成的直径约为100-300nm的微球。
图4为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料的TEM照片(a)和HREM照片(b)。从图4a的TEM照片可以看出,单个微球是由粒径为5-20nm的纳米颗粒组装而成,同时形成堆积孔结构。图4b是微球局部的HRTEM照片,在两个Cd0.5Zn0.5S纳米颗粒的边缘可以观察到几乎透明的少层氧化石墨烯层(虚线区域),其中0.37nm为氧化石墨烯的层间距,进一步证明通过本发明所述方法成功合成了有氧化石墨烯壳层包覆的Cd0.5Zn0.5S光催化剂,这有利于抑制Cd0.5Zn0.5S的光腐蚀和加速光生电荷在界面处的传输,这使光催化剂的稳定性和催化活性得到有效改善。两个Cd0.5Zn0.5S纳米颗粒的晶格条纹明显,0.33nm的晶格条纹与Cd0.5Zn0.5S的(002)晶面匹配,图中方框区域中出现了明显的堆叠层错缺陷结构,这是Cd2+离子和Zn2+离子在交换和取代过程中导致高密度周期性纤锌矿结构中出现的晶格缺陷。
图5为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料N2吸脱附等温线(a)及孔分布曲线(b)。Cd0.5Zn0.5S/GO复合材料N2吸脱附等温线具有明显的介孔结构的等温线特征,通过BET计算得到其比表面为33.83cm2/g,具有高的比表面积,图5b的孔径分布图显示,Cd0.5Zn0.5S/GO复合材料孔径分布较宽,存在丰富的孔结构,孔大小在2-100nm之间。这类多孔结构有利于Cd0.5Zn0.5S/GO复合材料暴露更多的活性位点,并且有利于加速质子传输和气体转移。
图6为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料和对比例一、对比例二催化剂在水中(a)和海水中(b)的可见光光催化析氢速率图。光照由300W氙灯(北京中教金源)提供,可见光照射时配备420nm截止滤波器。光密度为100mA·cm-2。在每次试验中,用超声波将30mg催化剂分散在100mL含有30%(vt)甲醇或0.25M Na2S·9H2O/0.35M Na2SO3作为牺牲剂的去离子水或简单过滤的天然海水中,天然海水取自中国黄海青岛海岸。混合溶液被转移到与检测系统相连的石英反应器中,抽真空15min以清除溶液中溶解的O2和CO2。通过循环冷却水将系统的温度维持在7℃。采用在线气相色谱仪(Agilent 7890A,高纯度N2为载气),每30min自动检测一次生成的氢气。从附图6中可以看出,无论是水光催化析氢还是海水光催化析氢,发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料都远高于对比例一CdS/GO和对比例二ZnS/GO的光催化析氢速率,在水中和海水中的光催化析氢速率分别为10.4mmol g- 1h-1和8.2mmol g-1h-1,具有高的光催化产氢速率,尤其是具有高的海水光催化分解产氢效率,这种高光催化活性对于氢能的开发具有重要意义。
图7为利用本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料用于水中和海水中光催化析氢的循环稳定性,用以表征所制备催化剂的循环使用稳定性。从图中可以看出,反应进行5个循环30h后,水中和海水中光催化析氢的产氢性能基本保持不变,说明本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料用于水尤其是海水的光催化产氢具有很好的稳定性。
将本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料用于对水溶液中有机染料进行光催化降解,结果表明本发明所制备的Cd0.5Zn0.5S/GO复合材料对于有机染料的光催化降解也具有很好的光催化性能,可以用于有机废水的处理。
将本发明实施例一所述方法制备的具有堆垛层错结构缺陷的多孔Cd0.5Zn0.5S/GO复合材料用于有机物小分子的光催化氧化,也具有很好的催化氧化选择性,表明本发明所制备的Cd0.5Zn0.5S/GO复合材料能用于小分子精细有机化学品的光催化反应合成。
上述实施例是本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,未背离本发明的原理与工艺过程下所作的其它任何改变、替代、简化等,均为等效的置换,都应包含在本发明的保护范围之内。

Claims (1)

1.一种具有堆垛层错的多孔Cd1-xZnxS/GO复合材料及其制备方法,其特征在于所述复合材料是由Cd1-xZnxS固溶体纳米晶包覆一层氧化石墨烯复合而成,所述Cd1-xZnxS固溶体纳米晶具有堆垛层错结构缺陷的多孔结构,所述制备方法是前驱体碳化、硫化与氧化石墨烯壳层的生长和复合一步完成,具体包括下述步骤:
(1)将1-10mmol CdCl2·2.5H2O、1-10mmol ZnCl2,5-100mmol丙二酸,装在有盖的玻璃瓶中,加入磁子,在60-120℃的油浴锅中搅拌混合0.1-1h,形成均匀透明的液体;
(2)将步骤①形成的透明液体转移到瓷方舟中,置于管式炉内,另一个瓷方舟加入0.2-3g的升华硫,放入管式炉的气流上游,然后在氮气气氛下以1-10℃/min的速度加热至300-600℃,保温1-4h,得到具有堆垛层错结构缺陷的多孔Cd1-xZnxS/GO复合材料。
CN202110977411.6A 2021-08-24 2021-08-24 一种具有堆垛层错的多孔Cd1-xZnxS/GO复合材料及其制备方法 Active CN113617365B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110977411.6A CN113617365B (zh) 2021-08-24 2021-08-24 一种具有堆垛层错的多孔Cd1-xZnxS/GO复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110977411.6A CN113617365B (zh) 2021-08-24 2021-08-24 一种具有堆垛层错的多孔Cd1-xZnxS/GO复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113617365A true CN113617365A (zh) 2021-11-09
CN113617365B CN113617365B (zh) 2023-08-04

Family

ID=78387622

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110977411.6A Active CN113617365B (zh) 2021-08-24 2021-08-24 一种具有堆垛层错的多孔Cd1-xZnxS/GO复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113617365B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055899A (zh) * 2012-12-10 2013-04-24 上海师范大学 介孔纳米球型ZnxCd1-xS粒子及其制备方法和应用
CN103316694A (zh) * 2013-07-11 2013-09-25 吉林大学 一种Zn0.8Cd0.2S和石墨烯复合材料的制备方法
CN110102316A (zh) * 2019-05-07 2019-08-09 东莞理工学院 一种多孔纳米球状硫化锌镉固溶体的制备方法
CN110227500A (zh) * 2019-06-14 2019-09-13 青岛科技大学 一种Cd1-xZnxS-Ni/MoS2复合光催化剂及其制备方法、应用
CN110354867A (zh) * 2019-07-18 2019-10-22 陕西科技大学 一种Zn0.2Cd0.8S/rGO光催化材料的制备方法
CN111662707A (zh) * 2020-06-17 2020-09-15 武汉理工大学 一锅法制备Cu:ZnCdS/ZnS量子点发光材料的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103055899A (zh) * 2012-12-10 2013-04-24 上海师范大学 介孔纳米球型ZnxCd1-xS粒子及其制备方法和应用
CN103316694A (zh) * 2013-07-11 2013-09-25 吉林大学 一种Zn0.8Cd0.2S和石墨烯复合材料的制备方法
CN110102316A (zh) * 2019-05-07 2019-08-09 东莞理工学院 一种多孔纳米球状硫化锌镉固溶体的制备方法
CN110227500A (zh) * 2019-06-14 2019-09-13 青岛科技大学 一种Cd1-xZnxS-Ni/MoS2复合光催化剂及其制备方法、应用
CN110354867A (zh) * 2019-07-18 2019-10-22 陕西科技大学 一种Zn0.2Cd0.8S/rGO光催化材料的制备方法
CN111662707A (zh) * 2020-06-17 2020-09-15 武汉理工大学 一锅法制备Cu:ZnCdS/ZnS量子点发光材料的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DELIANG ZHANG ET AL.,: "esign and in-situ synthesis of unique catalyst via embedding graphene oxide shell membrane in NiS2 for efficient hydrogen evolution" *

Also Published As

Publication number Publication date
CN113617365B (zh) 2023-08-04

Similar Documents

Publication Publication Date Title
Sun et al. Selective wet-chemical etching to create TiO2@ MOF frame heterostructure for efficient photocatalytic hydrogen evolution
Bi et al. Research progress on photocatalytic reduction of CO 2 based on LDH materials
Dong et al. Construction of BiOCl/g-C3N4/kaolinite composite and its enhanced photocatalysis performance under visible-light irradiation
CN106964339B (zh) 碳掺杂超薄钨酸铋纳米片光催化材料及其制备方法
Yang et al. Constructing 2D/1D heterostructural BiOBr/CdS composites to promote CO2 photoreduction
CN110252352B (zh) 一种碳量子点修饰钨酸铋/有序大孔氟掺杂氧化锡复合光催化剂及其制备方法和应用
CN110665527B (zh) 海胆状g-C3N4/NiAl-LDH半导体异质结的制备方法
Zheng et al. Preparation and characterization of CuxZn1-xS nanodisks for the efficient visible light photocatalytic activity
CN112958061B (zh) 一种氧空位促进直接Z机制介孔Cu2O/TiO2光催化剂及其制备方法
Huang et al. Synthesis of GO-modified Cu2O nanosphere and the photocatalytic mechanism of water splitting for hydrogen production
CN111185210B (zh) 二碳化三钛/二氧化钛/黑磷纳米片复合光催化剂及其制备方法和应用
CN111437884A (zh) 一种复合光催化剂及其制备方法
CN106390986A (zh) 一种钒酸铋/钛酸锶复合光催化剂的制备方法
Cheng et al. Lollipop-shaped Co9S8/CdS nanocomposite derived from zeolitic imidazolate framework-67 for the photocatalytic hydrogen production
Liu et al. Enhanced photo-Fenton activity of Sm2O3–NiO heterojunction under visible light irradiation
Chu et al. CeO2-g-C3N4 S-scheme heterojunctions for enhanced photocatalytic performance: Effects of surface C/N ratio on photocatalytic and adsorption properties
CN110548532A (zh) 一种可重复利用的高效氮化碳基复合光催化剂的制备方法
Chen et al. Construction of CuCd-BMOF/GO composites based on phosphonate and their boosted visible-light photocatalytic degradation
WANG et al. ZnO disks loaded with reduced graphene oxide for the photodegradation of methylene blue
Jiang et al. Bi2S3 nanorods obtained from the topotactic transformation of single-crystalline Bi2O2S achieving enhanced visible light-driven CO2 conversion
Jiang et al. In-situ construction of magnetic raspberry-like ZnO/C supporting different transition metal (Fe, Co, Ni) species with high adsorption-photocatalysis efficiency
CN108579775B (zh) 一种磷酸银/银/二氧化钛纳米花复合材料及其制备方法与应用
Zhu et al. Synthesis of high crystallinity g-C3N4 hollow spheres for efficient photocatalytic removal of U (VI) under visible light
CN111437857B (zh) 一种基于氮化钛和氧化钛的光催化薄膜及其制备方法
CN112371113A (zh) 一种Bi2WO6-rGO可见光催化剂的制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant