CN113604212B - 一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备方法 - Google Patents

一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备方法 Download PDF

Info

Publication number
CN113604212B
CN113604212B CN202110994869.2A CN202110994869A CN113604212B CN 113604212 B CN113604212 B CN 113604212B CN 202110994869 A CN202110994869 A CN 202110994869A CN 113604212 B CN113604212 B CN 113604212B
Authority
CN
China
Prior art keywords
rare earth
fluorescence intensity
coo
nano
conversion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110994869.2A
Other languages
English (en)
Other versions
CN113604212A (zh
Inventor
余琦
孙耀
祝红达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei University of Technology
Original Assignee
Hubei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei University of Technology filed Critical Hubei University of Technology
Priority to CN202110994869.2A priority Critical patent/CN113604212B/zh
Publication of CN113604212A publication Critical patent/CN113604212A/zh
Application granted granted Critical
Publication of CN113604212B publication Critical patent/CN113604212B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0063Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres
    • A61K49/0069Preparation for luminescence or biological staining characterised by a special physical or galenical form, e.g. emulsions, microspheres the agent being in a particular physical galenical form
    • A61K49/0089Particulate, powder, adsorbate, bead, sphere
    • A61K49/0091Microparticle, microcapsule, microbubble, microsphere, microbead, i.e. having a size or diameter higher or equal to 1 micrometer
    • A61K49/0093Nanoparticle, nanocapsule, nanobubble, nanosphere, nanobead, i.e. having a size or diameter smaller than 1 micrometer, e.g. polymeric nanoparticle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7772Halogenides
    • C09K11/7773Halogenides with alkali or alkaline earth metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及纳米荧光材料的技术领域,具体涉及一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备方法,该纳米材料包含具有声子能量低的NaYF4主体结构、稳定晶相的Gd3+、发射激子Tm3+、调节荧光强度的锂离子Li+和惰性壳层NaGdF4。本发明的纳米材料粒子通过在稀土掺杂的NaYF4纳米材料中引入不同浓度的小尺寸Li+,诱导纳米材料晶格皱缩或膨胀,直接影响稀土金属的配位环境和晶体场裂分,从而提升纳米材料的荧光强度,在波长808nm激光激发下表现出1473nm下转换荧光;同时,在波长1064nm激光激发下表现出800nm上转换荧光。

Description

一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备 方法
技术领域
本发明涉及纳米荧光材料的技术领域,具体涉及一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备方法。
背景技术
荧光成像技术从分子角度出发,利用光学探针的荧光强度作为检测、分析信号,直观、精确反映生物体内的组织结构和功能信息,为病理机制研究和医学临床诊断等相关领域提供了便利。近红外荧光成像技术因其具有快速和实时显示,高分辨率和高灵敏度,成本相对较低和使用方便等优点正在医学分子成像方面飞速发展。相较于近红外一区(NIR-I,700-1000nm),光在近红外二区(NIR-II,1000-1700nm)生物组织自身吸收、散射弱,可极大地提高光穿透能力和成像质量,使得NIRII荧光成像逐渐成为热点研究。
迄今为止,可用于进行NIRII荧光成像的材料主要为给体-受体-给体型有机小分子荧光染料、有机共轭聚合物和稀土掺杂纳米粒子。小分子荧光染料和有机共轭聚合物因其碳-碳键形成独特的π共轭结构而具有良好的荧光、光热、光动力性能,但也正因这种庞大的共轭结构,导致合成步骤繁琐,水溶性差。稀土掺杂纳米粒子的发光来源于稀土离子的4f电子在不同能级上的跃迁,其发射带窄、光稳定性好,可通过精准筛选掺杂稀土离子调控荧光波长,但量子产率较低亟待提升。因此,设计合成具有强荧光量子产率的稀土掺杂纳米粒子具有重要意义。
发明内容
本发明的目的之一在于提供一种高荧光强度的上、下转换稀土掺杂纳米材料,通过引入不同摩尔浓度的Li+,诱导晶格皱缩或膨胀,改变纳米粒子的上、下转换荧光强度。
本发明的目的之二在于提供一种高荧光强度的上、下转换稀土掺杂纳米材料的制备方法,制备工艺简便,易于调节。
本发明实现目的之一所采用的方案是:一种高荧光强度的上、下转换稀土掺杂纳米材料,其特征在于:该纳米材料包含具有声子能量低的NaYF4主体结构、稳定晶相的Gd3+、发射激子Tm3+、调节荧光强度的锂离子Li+和惰性壳层NaGdF4
优选地,该纳米材料的通式为Na(1-x)YF4:LixGd0.2Tm0.005@NaGdF4,其中x为0.01-0.10。
优选地,该纳米材料在波长808nm激光激发下表现出1473nm下转换荧光;在波长1064nm激光激发下表现出800nm上转换荧光。
优选地,该纳米材料的粒径为20-200nm。
本发明实现目的之二所采用的方案是:一种所述的高荧光强度的上、下转换稀土掺杂纳米材料的制备方法,包括以下步骤:
(1)将一定量的Y(CF3COO)3、Gd(CF3COO)3、Tm(CF3COO)3、CF3COONa和CF3COOLi、油胺、油酸和十八烯混合后,在惰性气氛下、330-350℃下保温一定时间后冷却至室温,得到稀土、Li+掺杂NaYF4纳米核,即Na(1-x)YF4:LixGd0.2Tm0.005纳米核;
(2)通过溶剂热法,在制备好的Na(1-x)YF4:LixGd0.2Tm0.005纳米核表面包覆NaGdF4壳层,即得到稀土、Li+掺杂NaYF4纳米核壳结构,即为Na(1-x)YF4:LixGd0.2Tm0.005@NaGdF4
优选地,所述步骤(1)中,CF3COONa、Y(CF3COO)3、Gd(CF3COO)3、Tm(CF3COO)3、和CF3COOLi的摩尔比为(1-x):0.795:0.2:0.005:x。
首先利用溶剂挥发法合成三氟乙酸化物前体:Y(CF3COO)3、Gd(CF3COO)3、Tm(CF3COO)3、CF3COONa和CF3COOLi;其次将三氟乙酸前体通过一定比例混合于油酸、油胺和十八烯中,通过溶剂热法,在惰性气体保护下制备纳米核Na(1-x)YF4:LixGd0.2Tm0.005NPs;最终滴加壳层种子溶液至上述制备的纳米核溶液中,从而在其表面包覆NaGdF4壳层。形成沉淀经离心后,用乙醇和正己烷洗涤产物,干燥获得Na(1-x)YF4:LixGd0.2Tm0.005@NaGdF4 NPs。
进一步地,三氟乙酸化物前体为Y(CF3COO)3、Gd(CF3COO)3、Tm(CF3COO)3。合成路线如下:
具体制备过程:90℃下将稀土氧化物(Y2O3、Gd2O3、Tm2O3)溶解于CF3COOH中并干燥,加以OM至完全溶解以获得三氟乙酸化物前体;CF3COOLi 90℃下直接溶解在OM中;CF3COONa90℃下直接溶解在OA中。
进一步地,纳米核NaYF4:xLi0.2Gd0.005Tm NPs合成路线如图7所示:
具体制备过程:在110℃下将一定比例的三氟乙酸化物前体混合在OA、OM和ODE中抽真空,并进一步地在氮气气氛下快速升温至340℃,搅拌1小时,获得NaYF4:xLi0.2Gd0.005Tm NPs。
进一步地,核壳结构纳米材料Na(1-x)YF4:LixGd0.2Tm0.005@NaGdF4NPs合成路线如图8所示:
具体制备过程:在纳米粒子溶液中匀速滴加溶解在OA和OM混合物中的CF3COONa和Gd(CF3COO)3前体,在340℃下继续搅拌30分钟,从而在纳米粒子表面包覆上未掺杂的NaGdF4壳层。产物冷却至室温后,用乙醇作为沉降剂加入到反应液中得到沉淀,并用正己烷和乙醇的混合溶液反复离心、洗涤,获得目标产物纳米材料粉末。
具体的,一种所述的高荧光强度的上、下转换稀土掺杂纳米材料的制备方法,包括以下步骤:
S1.制备稀土、Li+掺杂NaYF4纳米核:
第一步:合成三氟乙酸化物前体的油酸或油胺溶液:
2.5mmol氧化钇(以下简称Y2O3)、15mmol三氟乙酸(以下简称CF3COOH)和1mL超纯水在90℃下混合直至Y2O3完全溶解,溶液澄清。进一步将溶剂挥发获得5mmol三氟乙酸钇(以下简称Y(CF3COO)3)白色固体粉末。加以10mL油胺(以下简称OM)在90℃至完全溶解得到0.5M Y(CF3COO)3OM溶液。
2.5mmol氧化钆(以下简称Gd2O3)、15mmol CF3COOH和1mL超纯水在90℃下混合直至Gd2O3完全溶解,溶液澄清。进一步将溶剂挥发获得5mmol三氟乙酸钆(以下简称Gd(CF3COO)3)白色固体粉末。加以10mL OM在90℃下搅拌至完全溶解得到0.5MGd(CF3COO)3OM溶液。
1mmol氧化铥(以下简称Tm2O3)、6mmol CF3COOH和0.5mL超纯水在90℃下混合直至Tm2O3完全溶解,溶液澄清。进一步将溶剂挥发获得2mmol三氟乙酸铥(以下简称Tm(CF3COO)3)白色固体粉末。加以10mL OM在90℃下搅拌至完全溶解得到0.2MTm(CF3COO)3OM溶液。
7.5mmol三氟乙酸钠(以下简称CF3COONa)溶解在10mL油酸(以下简称OA)溶液中得到0.75M CF3COONa OA溶液。
5mmol三氟乙酸锂(以下简称CF3COOLi)溶解在10mL OM溶液中得到0.5M CF3COOLiOM溶液。
第二步:通过溶剂热法制备稀土、Li+掺杂的NaYF4纳米核:
(1-x)mmol CF3COONa OA溶液、0.795mmol Y(CF3COO)3OM溶液、0.2mmol Gd(CF3COO)3OM溶液、0.005mmol Tm(CF3COO)3OM溶液、x mmol CF3COOLi OM溶液、0.5mL OA、3.2mL十八烯(以下简称ODE)加入到三口瓶中搅拌混合,升温至110℃,抽真空10分钟除去低沸点溶剂。待低沸点溶剂除尽,将上述溶液通入氮气,以15℃/min的速度升温至340℃,反应1小时,获得稀土、Li+掺杂NaYF4纳米核(以下简称Na(1-x)YF4:LixGd0.2Tm0.005 NPs,x=0,0.01,0.03,0.05,0.07,0.10)。
第三步:通过溶剂热法,在制备好的稀土、Li+掺杂NaYF4纳米核表面包覆NaGdF4壳层:
将1mmol CF3COONa OA溶液、1mmol Gd(CF3COO)3OM溶液、1mL OA、1mL OM在90℃下混合搅拌30分钟获得NaGdF4壳层种子溶液。在上述纳米核溶液中以1滴/s的速度滴加壳层种子溶液,在340℃下继续搅拌30分钟,从而在纳米核表面包覆上未掺杂的NaGdF4壳层。待反应结束将溶液降至室温,沉淀用乙醇和正己烷(v:v=1:1)在10000rpm下离心洗涤三次并干燥,获得稀土、Li+掺杂NaYF4纳米核壳结构(以下简称Na(1-x)YF4:LixGd0.2Tm0.005@NaGdF4NPs,x=0,0.01,0.03,0.05,0.07,0.10)。
本发明中,Na(1-x)YF4:LixGd0.2Tm0.005@NaGdF4,的具体含义为所述的纳米核引入Gd3+摩尔浓度为20%,Tm3+摩尔浓度为0.5%,Li+摩尔浓度为x。其中Li+的引入为替换NaYF4中的Na+
本发明具有以下优点和有益效果:
1.本发明的纳米材料粒子是以NaYF4掺杂Gd3+、Tm3+以及不同浓度的Li+为纳米核,表面包覆惰性壳层形成的核壳结构纳米粒子,通过在稀土掺杂的NaYF4纳米材料中引入不同浓度的小尺寸Li+,诱导纳米材料晶格皱缩或膨胀,直接影响稀土金属的配位环境和晶体场裂分,从而提升纳米材料的荧光强度。
2.本发明的高荧光强度的上、下转换稀土掺杂纳米材料粒子尺寸均一,分散性良好,上、下转换荧光强度明显提升,在波长808nm激光激发下表现出1473nm下转换荧光;同时,在波长1064nm激光激发下表现出800nm上转换荧光,可作为NIRII荧光成像造影剂,用于疾病诊断。此外,还可与光热试剂、光动力试剂、化学药物等相结合,制备纳米诊疗药物,应用于生物医学诊疗领域,具有广阔前景。
3.本发明的制备方法成本低,工艺操作简单,原料易得廉价,生产设备简单,易于制备。
附图说明
图1为实施例4中掺杂不同浓度的Li+的纳米材料X射线衍射图谱;
图2为实施例5中掺杂不同浓度的Li+的纳米材料扫描电镜图片;
图3为实施例6中掺杂不同浓度的Li+的纳米材料上转换荧光光谱;
图4为实施例6中掺杂不同浓度的Li+的纳米材料上转换荧光800nm处峰值;
图5为实施例7中掺杂不同浓度的Li+的纳米材料下转换荧光光谱;
图6为实施例6中掺杂不同浓度的Li+的纳米材料下转换荧光1473nm处峰值;
图7为纳米核Na(1-x)YF4:LixGd0.2Tm0.005NPs合成路线图;
图8为核壳结构纳米材料Na(1-x)YF4:LixGd0.2Tm0.005@NaGdF4 NPs合成路线图。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
下列实施例中所述的有关试剂均是市售Y2O3、Gd2O3、Tm2O3、CF3COOH、CF3COONa、CF3COOLi、OA、OM、ODE未经任何处理。
实施例1:合成三氟乙酸化物前体的OA或OM溶液
2.5mmol Y2O3、15mmol CF3COOH和1mL超纯水在90℃下混合直至Y2O3完全溶解,溶液澄清。进一步将溶剂挥发获得5mmol Y(CF3COO)3白色固体粉末。加以10mL OM在90℃至完全溶解得到0.5M Y(CF3COO)3OM溶液。
2.5mmol Gd2O3、15mmol CF3COOH和1mL超纯水在90℃下混合直至Gd2O3完全溶解,溶液澄清。进一步将溶剂挥发获得5mmol Gd(CF3COO)3白色固体粉末。加以10mL OM在90℃下搅拌至完全溶解得到0.5M Gd(CF3COO)3OM溶液。
1mmol Tm2O3、6mmol CF3COOH和0.5mL超纯水在90℃下混合直至Tm2O3完全溶解,溶液澄清。进一步将溶剂挥发获得2mmol Tm(CF3COO)3白色固体粉末。加以10mL OM在90℃下搅拌至完全溶解得到0.2M Tm(CF3COO)3OM溶液。
7.5mmol CF3COONa溶解在10mL OA溶液中得到0.75M CF3COONa OA溶液。
5mmol CF3COOLi溶解在10mL OM溶液中得到0.5M CF3COOLi OM溶液。
实施例2:通过溶剂热法制备Na(1-x)YF4:LixGd0.2Tm0.005NPs
(1-x)mmol CF3COONa OA溶液、0.795mmol Y(CF3COO)3OM溶液、0.2mmol Gd(CF3COO)3OM溶液、0.005mmol Tm(CF3COO)3OM溶液、x mmol CF3COOLi OM溶液、0.5mL OA、3.2mL ODE加入到三口瓶中搅拌混合,升温至110℃,抽真空10分钟除去低沸点溶剂。待低沸点溶剂除尽,将上述溶液通入氮气,以15℃/min的速度升温至340℃,反应1小时,获得Na(1-x)YF4:LixGd0.2Tm0.005NPs,其中x=0,0.01,0.03,0.05,0.07,0.10。
实施例3:通过溶剂热法,制备Na(1-x)YF4:LixGd0.2Tm0.005@NaGdF4 NPs
将1mmol CF3COONa OA溶液、1mmol Gd(CF3COO)3OM溶液、1mL OA、1mL OM在90℃下混合搅拌30分钟获得NaGdF4壳层种子溶液。在实施例2制备的纳米核溶液中以1滴/s的速度滴加壳层种子溶液,在340℃下继续搅拌30分钟,从而在纳米核表面包覆上未掺杂的NaGdF4壳层。待反应结束将溶液降至室温,沉淀用乙醇和正己烷(v:v=1:1)在10000rpm下离心洗涤三次并干燥,获得Na(1-x)YF4:LixGd0.2Tm0.005@NaGdF4 NPs,其中x=0,0.01,0.03,0.05,0.07,0.10。
实施例4:晶型表征
将实施例3所合成的干燥粉末样品进行X射线衍射仪表征,如图1a所示,可证明所合成的纳米材料均与六角相的NaYF4主体一致;如图1b所示,调整Li+掺杂的摩尔浓度,可观察到谱图的移动,为晶格皱缩或膨胀的表现。
实施例5:形貌表征
将实施例3所合成的0.1mg/mL样品分散在正己烷中,滴在硅片上,待干燥后进行形貌测试,如图2所示,可以发现所制备的样品尺寸在47~50nm,且分散性良好。
实施例6:上转换光谱测试
将实施例3所合成的干燥粉末样品夹在两个石英片中,选择外置1064nm激光器作为光源(功率密度为382mW/cm2)进行荧光发射光谱测试。如图3所示,样品在800nm处表现出上转换荧光发射。且当Li+掺杂的摩尔浓度为5%时,上转换荧光发射强度最大(图4),说明该掺杂浓度为优选浓度。
实施例7:下转换光谱测试
将实施例3所合成的干燥粉末样品夹在两个石英片中,选择外置800nm激光器作为光源(功率密度为178mW/cm2)进行荧光发射光谱测试。如图5所示,样品在1473nm处表现出下转换荧光发射。且当Li+掺杂的摩尔浓度为5%时,上转换荧光发射强度最大(图6),说明该掺杂浓度为优选浓度。
以上所述是本发明的优选实施方式而已,当然不能以此来限定本发明之权利范围,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和变动,这些改进和变动也视为本发明的保护范围。

Claims (5)

1.一种高荧光强度的上、下转换稀土掺杂纳米材料,其特征在于:该纳米材料包含具有声子能量低的NaYF4主体结构、稳定晶相的Gd3+、发射激子Tm3+、调节荧光强度的锂离子Li+和惰性壳层NaGdF4
该纳米材料在波长808 nm激光激发下表现出1473 nm下转换荧光;在波长1064 nm激光激发下表现出800 nm上转换荧光。
2. 根据权利要求1所述的高荧光强度的上、下转换稀土掺杂纳米材料,其特征在于:该纳米材料的通式为Na(1-x)YF4: LixGd0.2Tm0.005@NaGdF4,其中x为0.01-0.10。
3.根据权利要求1所述的高荧光强度的上、下转换稀土掺杂纳米材料,其特征在于:该纳米材料的粒径为20-200nm。
4.一种如权利要求1-3中任一项所述的高荧光强度的上、下转换稀土掺杂纳米材料的制备方法,其特征在于,包括以下步骤:
(1)将一定量的Y(CF3COO)3、Gd(CF3COO)3、Tm(CF3COO)3、CF3COONa 和CF3COOLi、油胺、油酸和十八烯混合后,在惰性气氛下、330-350℃下保温一定时间后冷却至室温,得到稀土、Li+掺杂NaYF4纳米核,即Na(1-x)YF4: LixGd0.2Tm0.005纳米核;
(2)通过溶剂热法,在制备好的Na(1-x)YF4: LixGd0.2Tm0.005纳米核表面包覆NaGdF4壳层,即得到稀土、Li+掺杂NaYF4纳米核壳结构,即为Na(1-x)YF4: LixGd0.2Tm0.005@NaGdF4
其中,x为0.01-0.10。
5.根据权利要求4所述的高荧光强度的上、下转换稀土掺杂纳米材料的制备方法,其特征在于:所述步骤(1)中,CF3COONa、Y(CF3COO)3、Gd(CF3COO)3、Tm(CF3COO)3、和CF3COOLi的摩尔比为(1-x):0.795:0.2:0.005:x。
CN202110994869.2A 2021-08-27 2021-08-27 一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备方法 Active CN113604212B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110994869.2A CN113604212B (zh) 2021-08-27 2021-08-27 一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110994869.2A CN113604212B (zh) 2021-08-27 2021-08-27 一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113604212A CN113604212A (zh) 2021-11-05
CN113604212B true CN113604212B (zh) 2023-11-07

Family

ID=78309546

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110994869.2A Active CN113604212B (zh) 2021-08-27 2021-08-27 一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113604212B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391874A (zh) * 2011-09-21 2012-03-28 中国科学院上海硅酸盐研究所 具有双重作用的NaYF4基荧光纳米颗粒及其制备方法
CN106010527A (zh) * 2016-05-26 2016-10-12 中国科学院宁波材料技术与工程研究所 一种基于钼酸镱基质的高效上转换荧光纳米材料及其制备方法和应用
CN106318392A (zh) * 2015-06-26 2017-01-11 东北林业大学 一种同时具备上/下转换荧光和光热性能的稀土纳米材料
CN107286924A (zh) * 2017-06-13 2017-10-24 复旦大学 红外光激发红绿蓝三色正交荧光发射的上转换纳米晶体材料及其制备方法
CN112794358A (zh) * 2021-01-14 2021-05-14 南方科技大学 稀土掺杂氟化钇钠核壳结构纳米材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391874A (zh) * 2011-09-21 2012-03-28 中国科学院上海硅酸盐研究所 具有双重作用的NaYF4基荧光纳米颗粒及其制备方法
CN106318392A (zh) * 2015-06-26 2017-01-11 东北林业大学 一种同时具备上/下转换荧光和光热性能的稀土纳米材料
CN106010527A (zh) * 2016-05-26 2016-10-12 中国科学院宁波材料技术与工程研究所 一种基于钼酸镱基质的高效上转换荧光纳米材料及其制备方法和应用
CN107286924A (zh) * 2017-06-13 2017-10-24 复旦大学 红外光激发红绿蓝三色正交荧光发射的上转换纳米晶体材料及其制备方法
CN112794358A (zh) * 2021-01-14 2021-05-14 南方科技大学 稀土掺杂氟化钇钠核壳结构纳米材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Hao Lin et al..Simultaneous size and luminescence control of NaYF4:Yb3+/RE3+(RE = Tm, Ho) microcrystals via Li+ doping.《Optical Materials》.2015,第45卷第229-234页. *
Si Wu et al..Near-Infrared-Sensitive Materials Based on Upconverting Nanoparticles.《Adv. Mater.》.2015,第28卷第1208-1226页. *

Also Published As

Publication number Publication date
CN113604212A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
Li et al. Influence of the TGA modification on upconversion luminescence of hexagonal-phase NaYF4: Yb3+, Er3+ nanoparticles
He et al. Preparation and up-conversion luminescence of hollow La2O3: Ln (Ln= Yb/Er, Yb/Ho) microspheres
Wang et al. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals
Yin et al. Colloidal synthesis and blue based multicolor upconversion emissions of size and composition controlled monodisperse hexagonal NaYF 4: Yb, Tm nanocrystals
CN107033905A (zh) 一种稀土掺杂氟化镱锂纳米材料及其制备方法与应用
Wang et al. Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping
Li et al. Facile microemulsion route to coat carbonized glucose on upconversion nanocrystals as high luminescence and biocompatible cell-imaging probes
Zhang et al. Monodisperse lanthanide oxyfluorides LnOF (Ln= Y, La, Pr–Tm): morphology controlled synthesis, up-conversion luminescence and in vitro cell imaging
Yang et al. Synthesis of Li 1− x Na x YF 4: Yb 3+/Ln 3+(0≤ x≤ 0.3, Ln= Er, Tm, Ho) nanocrystals with multicolor up-conversion luminescence properties for in vitro cell imaging
Manigandan et al. Synthesis, growth and photoluminescence behaviour of Gd 2 O 2 SO 4: Eu 3+ nanophosphors: the effect of temperature on the structural, morphological and optical properties
CN110408377B (zh) 一种稀土掺杂NaCeF4近红外荧光纳米探针及其制备方法和生物应用
CN109266346A (zh) 一类稀土离子掺杂的钨酸复盐上转换超细纳米发光材料及其制备和应用
CN111234556A (zh) 近红外花菁染料敏化上转换发光纳米探针及其构建方法
Thirumalai et al. Controlled synthesis, formation mechanism and lumincence properties of novel 3-dimensional Gd 2 (MoO 4) 3: Eu 3+ nanostructures
CN114591741B (zh) 一种镧系离子掺杂的双钙钛矿纳米晶体、其制备方法及应用
Rao et al. Sub-10 nm BaLaF 5: Mn/Yb/Er nanoprobes for dual-modal synergistic in vivo upconversion luminescence and X-ray bioimaging
Cui et al. Comparison of two strategies for the synthesis of upconverting nanoparticles as biological labels
Li et al. Hydro-thermal synthesis of PEGylated Mn2+ dopant controlled NaYF4: Yb/Er up-conversion nano-particles for multi-color tuning
CN113604212B (zh) 一种高荧光强度的上、下转换稀土掺杂纳米材料及其制备方法
KR100644968B1 (ko) 생체적합성 실리콘 나노입자의 제조 방법
CN103241760A (zh) 稀土掺杂氟化钪钠纳米材料及其制备与应用
CN115651633A (zh) 一种x射线激发荧光成像的造影剂及其制备方法和应用
Zi et al. Facile Synthesis of Yb3+‐and Er3+‐Codoped LiGdF4 Colloidal Nanocrystals with High‐Quality Upconversion Luminescence
CN113684031A (zh) 一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法
Trifanova et al. Synthesis and Characterization of NaYF4: Yb3+: Er3+/NaYF4 Upconversion Nanophosphors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant