CN113684031A - 一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法 - Google Patents

一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法 Download PDF

Info

Publication number
CN113684031A
CN113684031A CN202111096128.9A CN202111096128A CN113684031A CN 113684031 A CN113684031 A CN 113684031A CN 202111096128 A CN202111096128 A CN 202111096128A CN 113684031 A CN113684031 A CN 113684031A
Authority
CN
China
Prior art keywords
moo
nagd
nanocrystal
conversion
multifunctional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202111096128.9A
Other languages
English (en)
Other versions
CN113684031B (zh
Inventor
李安明
李昭涵
王志文
陈建军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou Normal University
Original Assignee
Zhengzhou Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou Normal University filed Critical Zhengzhou Normal University
Priority to CN202111096128.9A priority Critical patent/CN113684031B/zh
Publication of CN113684031A publication Critical patent/CN113684031A/zh
Application granted granted Critical
Publication of CN113684031B publication Critical patent/CN113684031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7776Vanadates; Chromates; Molybdates; Tungstates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Materials Engineering (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明涉及一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法。材料成分为掺杂有Yb3+和Tm3+的NaGd(MoO4)2纳米晶体NaGdxYbyTmz(MoO4)2。该纳米晶体材料通过无表面活性剂的乙醇‑水体系溶剂热方法合成。在980nm激光激发下,该纳米材料可以同时实现上转换可见光发光和光热转换,可以应用于光动力治疗、生物医学成像等领域。

Description

一种上转换光致发光与光热转换双功能纳米晶体材料及其合 成方法
技术领域
本发明属于光学功能纳米材料与技术领域,更具体地,涉及一种上转换发光和光热转换多功能纳米晶体材料及其制备方法。
背景技术
镧系掺杂离子的上转换发光在生物医学成像、诊断与治疗,光学超分辨成像,温度传感,指纹显现等许多领域都表现出较高的应用价值。但是关于上转换光致发光与光热转换双功能纳米晶体,报道较少。双金属钼酸盐是一类含氧酸盐无机材料。它们具有较高的物理化学稳定性、较低的体系声子能量,和较宽的吸收和发射截面积,因而常用作镧系发光的基质晶格材料。无机纳米晶体材料大多使用添加有表面活性剂的湿化学方法制备而成,但有机表面活性剂吸附在纳米晶体表面,较难去除,并影响其物理、化学性质。双金属钼酸盐由于较快的晶核生长速度,所以纳米晶体较难生长,少数关于双金属钼酸盐纳米晶体的文献报道也都是采用表面活性剂来抑制晶核生长([1]W.Bu,Z.Chen,F.Chen,J.Shi,Oleicacid/oleylamine cooperative-controlled crystallization mechanism formonodisperse tetragonal bipyramid NaLa(MoO4)2nanocrystals.The Journal ofPhysical Chemistry C,2009,113(28):12176-12185.[2]Y.Ding,J.Liu,M.Zeng,X.Wang,J.Shi,W.Wang,Y.Miao,X.Yu,Tunable morphologies,multicolor properties andapplications of RE3+doped NaY(MoO4)2nanocrystals via a facile ligand-assistedreprecipitation process.Dalton Transactions,2018,47(26):8697-8705.[3]A.Li,D.Xu,H.Lin,S.Yang,Y.Zhang,NaGd(MoO4)2nanocrystals with diverse morphologies:controlled synthesis,growth mechanism,photoluminescence and thermometricproperties.Scientific Reports,2016,6:31366.)。采用表面活性剂辅助的方法所制备的纳米材料,表面会吸附部分有机物且较难去除。表面的有机功能团形成对发光不利的表面猝灭中心,降低上转换光致发光强度,采用无表面活性剂的合成法则可望有效地避免该问题。
本发明提出一种无表面活性剂的乙醇/水体系溶剂热法,合成出了NaGdxYbyTmz(MoO4)2纳米晶体。该纳米晶体在980nm激光激发下,可以发射出人眼的可见蓝光发光,并同时具有光热能量转换的特性,从而可以作为光致发光与光热转换双功能纳米材料,用于荧光成像、光动力治疗等领域中。
发明内容
本发明提供了一种具备上转换发光和光热转换多功能纳米晶体新材料,该纳米晶体在980nm激光激发下,可以发射出人眼的可见光发光,并同时具有光热能量转换的特性。同时本发明提供了具备上转换发光和光热转换多功能纳米晶体新材料的制备方法,克服了现有技术中双金属钼酸盐类纳米晶体的合成需要使用表面活性剂抑制晶核生长,表面活性剂难以除去并影响晶体上转换发光性能的技术问题。在乙醇/水溶剂热体系中,通过控制乙醇的用量,可以获得形貌规整的平均粒径约150nm的NaGdxYbyTmz(MoO4)2纳米晶体;通过控制Tm3+掺杂浓度z,可以显著地调节纳米晶体材料的上转换发光强度;通过控制Yb3+的掺杂浓度y,可以调节纳米晶体材料的光热转换效率。
作为本发明的第一方面,本发明提供了一种同时具备上转换光致发光和光热转换多功能纳米晶体材料,其化学式为NaGdxYbyTmz(MoO4)2,其中x+y+z=1,且x,y,z均不为0。
优选地,本发明提供的一种同时具备上转换发光和光热转换多功能纳米晶体材料,其化学式为NaGdxYbyTmz(MoO4)2,其中x+y+z=1,且y=0.05-0.15,z=0.0001~0.005。
更优选地,本发明提供的一种同时具备上转换发光和光热转换多功能纳米晶体材料,其化学式为NaGdxYbyTmz(MoO4)2,其中x+y+z=1,且y=0.1~0.15,z=0.003,该纳米晶体材料形貌规整且平均粒径约150nm。
作为本发明的第二个方面,本发明提供了一种所述上转换发光和光热转换多功能纳米晶体材料的制备方法,包括如下步骤:
步骤1:一定量的Gd(NO3)3·6H2O,Yb(NO3)3·5H2O,Tm(NO3)3·6H2O添加到去离子水中,磁力搅拌至均匀溶解;
步骤2:逐滴加入无水乙醇,并持续磁力搅拌;
步骤3:逐滴加入含有一定量的Na2MoO4·2H2O的水溶液,继续搅拌2小时,形成前驱液;
步骤4:前驱液移入特氟龙内衬的不锈钢高压反应釜中,密封后放入180℃烘箱中加热12小时;
步骤5:冷却至室温后,通过离心和乙醇与去离子水交替洗涤的方式,收集反应釜中的沉淀物;
步骤6:洗净的沉淀产物放入烧杯,置于80℃的烘箱中烘干,即可得到本发明所述上转换发光和光热转换多功能纳米晶体材料NaGdxYbyTmz(MoO4)2,其中x+y+z=1,且x,y,z均不为0。
根据本发明前述的制备方法,Na2MoO4·2H2O,Gd(NO3)3·6H2O,Yb(NO3)3·5H2O,Tm(NO3)3·6H2O的投料摩尔比为2∶x∶y∶z,其中x,y,z如本文前述所定义。Tm3+掺杂浓度可以显著地调节纳米晶体材料的上转换发光强度;通过控制Yb3+的掺杂浓度,可以调节纳米晶体材料的光热转换效率。因此优选地,y=0.05~0.15,z=0.0001~0.005;更优选地,y=0.1~0.15,z=0.003。
根据本发明前述的制备方法,溶剂热过程中溶剂的极性会极大地影响产物的成核和生长速率,从而决定合成样品的形貌。在本发明中,无水乙醇的用量(体积)与所述前驱液体积的比例为1∶3~1∶4,优选为1∶3.2。Gd(NO3)3·6H2O与无水乙醇的投料比为1mmol∶(2~3)ml,优选为1mmol∶2.5ml。
作为本发明的第三个方面,本发明前述的纳米晶体材料同时具备上转换光致发光和光热转换特性,采用980nm半导体激光器照射NaGdxYbyTmz(MoO4)2纳米晶体样品,可以观察到蓝色发光,并可以利用光谱仪测试上转换发光光谱;采用红外热像仪可以获得纳米晶体的红外热像照片和温度。可见本发明的纳米晶体材料可以作为一种良好的光致发光和光热转换材料,可以进一步应用于荧光成像和光动力治疗中。
本发明具有如下的有益效果:
1.本发明提供了一种同时具备上转换发光和光热转换多功能纳米晶体材料,其化学式为NaGdxYbyTmz(MoO4)2,其中x+y+z=1,且x,y,z均不为0。采用980nm半导体激光器照射NaGdxYbyTmz(MoO4)2纳米晶体样品,可以观察到蓝色发光,并可以利用光谱仪测试上转换发光光谱;采用红外热像仪可以获得纳米晶体的红外热像照片和温度,表明本发明的纳米晶体材料可以作为一种良好的光致发光和光热转换材料。
2.本发明的制备方法克服了现有技术中双金属钼酸盐类纳米晶体的合成需要使用表面活性剂抑制晶核生长,表面活性剂难以除去并影响晶体上转换发光性能的缺陷。在乙醇/水溶剂热体系中,通过控制乙醇的用量,可以获得形貌规整的平均粒径约150nm的NaGdxYbyTmz(MoO4)2纳米晶体。通过控制Tm3+掺杂浓度y,可以显著地调节纳米晶体材料的上转换发光强度,通过控制Yb3+的掺杂浓度z,可以调节纳米晶体材料的光热转换效率,当y=0.1~0.15,z=0.003时,所述纳米晶体同时具有良好的上转换发光性能和光热转换性能。
附图说明
图1:不同乙醇用量下纳米晶体的粉末XRD图。
图2:不同乙醇用量下纳米晶体的SEM图。
图3:实施例1制备的纳米晶体的EDS面扫描图。
图4:实施例1制备的纳米晶体的TEM和HRTEM(SAED)图。
图5:980nm激光激发下实施例1制备的纳米晶体的上转换发射光谱图。
图6:980nm激光照射10秒时实施例1制备的纳米晶体样品的的红外热成像图。
图7:980nm激光照射10秒时实施例8制备的纳米晶体样品的的红外热成像图。
图8:980nm激光照射10秒钟时纳米晶体样品的温度变化曲线和光热转换斜率效率。
具体实施方式
以下结合具体实施例,对本发明作进一步地详述。在下文中,如无特殊说明,所使用的方法均为本领域常规方法,所使用的试剂均通过常规商业途径购买获得。其中,Gd(NO3)3·6H2O,Yb(NO3)3·5H2O,Tm(NO3)3.6H2O纯度均为99.99%;Na2MoO4·2H2O和无水乙醇为分析纯;所涉及的水溶液均采用去离子水配制。
实施例1 NaGd0.897Yb0.1Tm0.003(MoO4)2的制备
分别称取Gd(NO3)3·6H2O(5mmol),Yb(NO3)3·5H2O(0.5mmol),Tm(NO3)3·6H2O(0.15mmol)(纯度99.99%)添加到10ml去离子水中,磁力搅拌至均匀溶解;逐滴加入12.5ml无水乙醇,并持续磁力搅拌;逐滴加入含有10mmol Na2MoO4·2H2O(分析纯)的水溶液(去离子水配置),继续搅拌2小时,形成40ml的前驱液;前驱液移入总容积50ml的特氟龙内衬的不锈钢高压反应釜中,密封后放入180℃烘箱中加热12小时;冷却至室温后,通过离心和乙醇与去离子水交替洗涤的方式,收集反应釜中的沉淀物;洗净的沉淀产物放入烧杯,置于80℃的烘箱中烘干6小时,即可得到NaGd0.897Yb0.1Tm0.003(MoO4)2
实施例2-5乙醇用量对晶体生长的影响
替换无水乙醇用量为5ml,7.5ml,10ml和15ml,其余操作同实施例1。
如图1所示,本发明制备的NaGd0.897Yb0.1Tm0.003(MoO4)2纳米晶体与NaGd(MoO4)2(ICDD 25-0828)的标准衍射图一致,表明所有合成样品均为纯相NaGd(MoO4)2。由于镧系元素离子半径相似,活化剂Yb3+/Tm3+很容易取代Gd3+位点。实施例1在乙醇用量为12.5ml时合成的样品峰值比实施例2-5合成的样品峰值低,这意味着实施例1的样品具有较低的结晶度或较小的晶粒尺寸。
如图2所示,根据SEM图像显示,实施例1制备的NaGd0.897Yb0.1Tm0.003(MoO4)2纳米晶体为形态规整的纳米颗粒,其平均粒径为约150nm,在所有实施例中颗粒尺寸最小、粒径分布最为均匀。而实施例2、3则获得不规则形状的纳米片,实施例4,5则颗粒的尺寸不均匀。表明乙醇的用量在NaGd0.897Yb0.1Tm0.003(MoO4)2纳米晶体的形成中起关键的作用,当乙醇用量过少时,晶体生成受到的限制小,特别是在某些晶体取向上,因此获得片状晶体;当乙醇用量增多时,对晶核的成核和生长的抑制得到加强,从而得到纳米颗粒。
由图3可以看出,本发明的纳米晶体由Na,Mo,O,Gd,Yb,Tm元素组成,并且所有这些原子均匀分布在纳米晶体中。
由图4可以看出,TEM图像中显示纳米晶体具有相似的纳米颗粒形态,粒径约150nm,这与图2中SEM检测结果基本一致。在HRTEM图像中可以清楚地观察到纳米晶体的晶格条纹,表明NaGd0.897Yb0.1Tm0.003(MoO4)2的单晶性质。
实施例6-7 Tm3+掺杂浓度对纳米晶体上转换发光性质的影响。
替换Tm3+掺杂浓度,其余操作同实施例1,分别制备获得NaGd0.899Yb0.1Tm0.001(MoO4)2、NaGd0.895Yb0.1Tm0.005(MoO4)2
由图5可以看出,在980nm激发下,三种NaGdxYbyTmz(MoO4)2纳米晶体发出亮蓝色发光。在具有不同Tm3+掺杂浓度的三个样品中,NaGd0.897Yb0.1Tm0.003(MoO4)2纳米晶体表现出最强的发光。在所有三个样品的光谱中都发现了几个发射峰,其中796和807nm的发射带位于不可见的近红外区域。以约474nm为中心的蓝色发射带位于可见光区域,这可以解释样品发出明亮的蓝色发光。进一步替换Yb3+掺杂浓度获得NaGd0.847Yb0.15Tm0.003(MoO4)2(见下文实施例8)纳米晶体和NaGd0.947Yb0.05Tm0.003(MoO4)2,在980nm激发下,两种纳米晶体的发光强度均不如NaGd0.897Yb0.1Tm0.003(MoO4)2
光热转换性能测定
测试方法:将实施例1制备的NaGd0.897Yb0.1Tm0.003(MoO4)2纳米晶体置于透明石英玻璃板(JGS2)上,在室温下用连续波980nm激光束照射,石英玻璃板(JGS2)在约220nm-2500nm的宽波长范围内不吸收任何光,因此光热转换效应完全是由石英玻璃板上的纳米晶体对激光的吸收所引起的。
如图6所示,NaGd0.897Yb0.1Tm0.003(MoO4)2纳米晶体在980nm激光束以不同功率照射10秒的红外热成像图像,可以观察到样品的温度随着照射激光的功率增加而增加。
实施例8 Yb3+掺杂浓度对纳米晶体光热转换性质的影响
替换Yb3+掺杂浓度,其余操作同实施例1,制备获得NaGd0.847Yb0.15Tm0.003(MoO4)2纳米晶体。
如图7所示,NaGd0.847Yb0.15Tm0.003(MoO4)2纳米晶体在980nm激光束以不同功率照射10秒的红外热成像图像,可以观察到样品的温度随着照射激光的功率增加而增加,其光热转化效率较之NaGd0.897Yb0.1Tm0.003(MoO4)2纳米晶体更高。这是因为在较高的Yb3+掺杂浓度下,纳米晶体样品可以吸收更多的激发能量。图8表明,通过温度随激光功率的变化,经线性拟合作图,线性拟合曲线斜率代表温度随激光功率的变化率,可以表示光热转换的效率。NaGd0.897Yb0.1Tm0.003(MoO4)2纳米晶体和NaGd0.847Yb0.15Tm0.003(MoO4)2纳米晶体的10秒辐照时间的光热转换斜率效率分别为17.43℃/W和43.64℃/W。这与980nm激光被主晶格中的镧系元素敏化剂Yb3+吸收的事实一致,表明较高的Yb3+掺杂浓度(15%)的NaGd0.847Yb0.15Tm0.003(MoO4)2纳米晶体出现更高的光热转换效率。进一步地研究表明,在未掺杂Yb3+的情况下,NaGd0.997Tm0.003(MoO4)2纳米晶体不具有光热转换性能。

Claims (9)

1.一种多功能纳米晶体材料,其特征在于:其化学式为NaGdxYbyTmz(MoO4)2,其中x+y+z=1,且x,y,z均不为0。
2.根据权利要求1所述的多功能纳米晶体材料,其特征在于:y=0.05-0.15,z=0.0001~0.005。
3.根据权利要求1所述的多功能纳米晶体材料,其特征在于:y=0.1~0.15,z=0.003,该纳米晶体材料形貌规整且平均粒径约150nm。
4.根据权利要求1~3任意一项所述的多功能纳米晶体材料的制备方法,其特征在于,包括如下步骤:
步骤1:一定量的Gd(NO3)3·6H2O,Yb(NO3)3·5H2O,Tm(NO3)3·6H2O添加到去离子水中,磁力搅拌至均匀溶解;
步骤2:逐滴加入无水乙醇,并持续磁力搅拌;
步骤3:逐滴加入含有一定量的Na2MoO4·2H2O的水溶液,继续搅拌2小时,形成前驱液;
步骤4:前驱液移入特氟龙内衬的不锈钢高压反应釜中,密封后放入180℃烘箱中加热12小时;
步骤5:冷却至室温后,通过离心和乙醇与去离子水交替洗涤的方式,收集反应釜中的沉淀物;
步骤6:洗净的沉淀产物放入烧杯,置于80℃的烘箱中烘干,即可得到所述多功能纳米晶体材料NaGdxYbyTmz(MoO4)2,其中x+y+z=1,且x,y,z均不为0。
5.根据权利要求4所述的制备方法,其特征在于:Na2MoO4·2H2O,Gd(NO3)3·6H2O,Yb(NO3)3·5H2O,Tm(NO3)3·6H2O的投料摩尔比为2∶x∶y∶z,其中x,y,z如权利要求1~3任意一项所定义。
6.根据权利要求4所述的制备方法,其特征在于:乙醇的体积用量与所述前驱液体积的比例为1∶3~1∶4。
7.根据权利要求6所述的制备方法,其特征在于:乙醇的体积用量与所述前驱液体积的比例为1∶3.2 。
8.根据权利要求1~3任意一项所述的多功能纳米晶体材料的用途,其特征在于:用于上转换光致发光材料和/或光热转换材料。
9.根据权利要求8所述的用途,其特征在于,采用980nm半导体激光器照射NaGdxYbyTmz(MoO4)2纳米晶体样品,可以观察到人眼可见的蓝色发光;采用红外热像仪可以观察到样品的温度随着照射激光的功率增加而增加。
CN202111096128.9A 2021-09-16 2021-09-16 一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法 Active CN113684031B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202111096128.9A CN113684031B (zh) 2021-09-16 2021-09-16 一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111096128.9A CN113684031B (zh) 2021-09-16 2021-09-16 一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法

Publications (2)

Publication Number Publication Date
CN113684031A true CN113684031A (zh) 2021-11-23
CN113684031B CN113684031B (zh) 2023-03-03

Family

ID=78586917

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111096128.9A Active CN113684031B (zh) 2021-09-16 2021-09-16 一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法

Country Status (1)

Country Link
CN (1) CN113684031B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516653A (zh) * 2022-03-07 2022-05-20 郑州师范学院 一种多功能自敏化Yb基氟化物纳米晶体颗粒及其合成方法与应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107055614A (zh) * 2017-05-27 2017-08-18 武汉工程大学 一种钼酸铋钾纳米材料及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107055614A (zh) * 2017-05-27 2017-08-18 武汉工程大学 一种钼酸铋钾纳米材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ANMING LI等: "NaGd(MoO4)2 nanocrystals with diverse morphologies: controlled synthesis, growth mechanism, photoluminescence and thermometric properties", 《SCIENTIFIC REPORTS》 *
相苏原: "稀土掺杂钨酸钇钠荧光粉的上转换光谱性质及光热转换机理研究", 《中国优秀硕士学位论文全文数据库基础科学辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516653A (zh) * 2022-03-07 2022-05-20 郑州师范学院 一种多功能自敏化Yb基氟化物纳米晶体颗粒及其合成方法与应用
CN114516653B (zh) * 2022-03-07 2024-03-12 郑州师范学院 一种多功能自敏化Yb基氟化物纳米晶体颗粒及其合成方法与应用

Also Published As

Publication number Publication date
CN113684031B (zh) 2023-03-03

Similar Documents

Publication Publication Date Title
Kolesnikov et al. Morphology and doping concentration effect on the luminescence properties of SnO2: Eu3+ nanoparticles
Packiyaraj et al. Structural and photoluminescence studies of Eu3+ doped cubic Y2O3 nanophosphors
Wang et al. Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping
Krishnan et al. Recent advances in microwave synthesis for photoluminescence and photocatalysis
Srivastava et al. Remarkable enhancement of photoluminescence and persistent luminescence of NIR emitting ZnGa 2 O 4: Cr 3+ nanoparticles
Song et al. OH− ions-controlled synthesis and upconversion luminescence properties of NaYF4: Yb3+, Er3+ nanocrystals via oleic acid-assisted hydrothermal process
Huang Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF 3: Yb 3+/Ln 3+(Ln= Er, Tm, and Ho) upconversion nanoparticles
Hui et al. Effects of Eu3+-doping and annealing on structure and fluorescence of zirconia phosphors
Gu et al. Morphology controllable synthesis and luminescence properties of NaLa (WO4) 2: Eu microcrystals
Jain et al. Rare-earth-doped Y3Al5O12 (YAG) nanophosphors: synthesis, surface functionalization, and applications in thermoluminescence dosimetry and nanomedicine
CN114591741B (zh) 一种镧系离子掺杂的双钙钛矿纳米晶体、其制备方法及应用
Che et al. A facile aqueous strategy for the synthesis of high-brightness LaPO4: Eu nanocrystals via controlling the nucleation and growth process
Senthilselvan et al. EDTA functionalization of SrF 2: Yb, Er nanoparticles by hydrothermal synthesis: Intense red upconversion, NIR-to-NIR emission and luminescence nanothermometry characteristics
Namagal et al. Optical and magnetic properties of pure and Er, Yb-doped β-NaYF4 hexagonal plates for biomedical applications
Thirumalai et al. Controlled synthesis, formation mechanism and lumincence properties of novel 3-dimensional Gd 2 (MoO 4) 3: Eu 3+ nanostructures
Chen et al. Hydrothermal synthesis of Y 2 O 3: Eu 3+ nanorods and its growth mechanism and luminescence properties
CN113684031B (zh) 一种上转换光致发光与光热转换双功能纳米晶体材料及其合成方法
Wu et al. Controllable preparation and fluorescence property of spherical nano-phosphor YPO4: Eu3+
Wang et al. Phase-conversion synthesis of LaF3: Yb/RE (RE= Ho, Er) nanocrystals with Ln2 (OH) 4SO4· 2H2O type layered compound as a new template, phase/morphology evolution, and upconversion luminescence
Fu et al. Luminescence property and magnetic resonance imaging of Gd 2 O 3: Tb 3+ nanocrystals doped with Zn 2+, Li+
Cui et al. Comparison of two strategies for the synthesis of upconverting nanoparticles as biological labels
Gunaseelan et al. Reverse microemulsion synthesis of mixed α and β phase NaYF 4: Yb, Er nanoparticles: calcination induced phase formation, morphology, and upconversion emission
Shao et al. Hydrothermal synthesis of poly (acrylic acid)-functionalized α-(β-) NaYF4: Yb, Er up-conversion nano-/micro-phosphors
Kaczmarek et al. Nano-and microsized Eu 3+ and Tb 3+-doped lanthanide hydroxycarbonates and oxycarbonates. The influence of glucose and fructose as stabilizing ligands
Guo et al. Ionic liquid-based approach to monodisperse luminescent LaF3: Ce, Tb nanodiskettes: synthesis, structural and photoluminescent properties

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20211123

Assignee: Changsha Junshu Biotechnology Co.,Ltd.

Assignor: ZHENGZHOU NORMAL University

Contract record no.: X2024980008195

Denomination of invention: A dual functional nanocrystalline material with upconversion photoluminescence and photothermal conversion and its synthesis method

Granted publication date: 20230303

License type: Common License

Record date: 20240626

EE01 Entry into force of recordation of patent licensing contract