CN113600971B - 一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺 - Google Patents

一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺 Download PDF

Info

Publication number
CN113600971B
CN113600971B CN202110909399.5A CN202110909399A CN113600971B CN 113600971 B CN113600971 B CN 113600971B CN 202110909399 A CN202110909399 A CN 202110909399A CN 113600971 B CN113600971 B CN 113600971B
Authority
CN
China
Prior art keywords
welding
groove
controlled
workpiece
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110909399.5A
Other languages
English (en)
Other versions
CN113600971A (zh
Inventor
刘波
崔玉伟
苏美荣
彭莹莹
张佳宦
邢磊
赵洪玉
刘延龙
王春龙
李红
赵红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Hongguang Boiler General Factory Co ltd
Original Assignee
Harbin Hongguang Boiler General Factory Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Hongguang Boiler General Factory Co ltd filed Critical Harbin Hongguang Boiler General Factory Co ltd
Priority to CN202110909399.5A priority Critical patent/CN113600971B/zh
Publication of CN113600971A publication Critical patent/CN113600971A/zh
Application granted granted Critical
Publication of CN113600971B publication Critical patent/CN113600971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/02Seam welding; Backing means; Inserts
    • B23K9/028Seam welding; Backing means; Inserts for curved planar seams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/18Submerged-arc welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/235Preliminary treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding In General (AREA)

Abstract

一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺,涉及一种环缝焊接工艺。本发明是为了解决现有的埋弧焊对于直径Φ219mm、壁厚20~55mm的电站锅炉联箱及管道进行焊接容易产生击穿的问题,无法通过埋弧自动焊的方法精准、快速的完成环缝焊接的问题。本发明通过焊接坡口加工、焊接坡口表面清理、工件坡口对接、焊前预热、氩弧焊封底、手工电弧焊填充增厚、埋弧焊和焊后后热或消氢处理这八个工序解决了传统电站锅炉联箱及管道Φ219×20~55mm这一规格环缝焊接过程中存在的一系列问题,提高了焊接质量及焊接效率。本发明主要用于焊接电站锅炉上厚壁的联箱及管道。

Description

一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺
技术领域
本发明涉及一种环缝焊接工艺,尤其涉及一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺。
背景技术
电站锅炉上的联箱和管道(下面统称为工件)是电站锅炉的重要组成部分,而电站锅炉上的联箱及管道的环缝焊接质量,直接影响锅炉的质量以及锅炉的安全稳定运行。环缝焊接方法有焊条电弧焊(SMAW)、埋弧焊(SAW)、钨极气体保护焊(GTAW)等,其中埋弧焊为环缝常用的焊接方法。
埋弧焊(SAW)是一种电弧在焊剂层下燃烧进行焊接的方法,具有焊接一致性好、精准性高、生产效率高、焊接质量稳定以及无弧光辐射等优异特性,被广泛应用于管道的环缝焊接过程中。然而埋弧焊在实际操作过程中存在着难以对各种规格的集箱、管道进行全部焊接,且面对较小规格的母材焊接时易产生击穿的可能性,特别是针对常用的焊丝直径为3.2mm,母材规格为直径219mm,壁厚20~55mm的电站锅炉联箱及管道,无法实现通过埋弧自动焊的方法精准、快速的完成电站锅炉联箱及管道的环缝焊接,此项技术成为焊接领域技术人员急需攻克的一项难题,制约着焊接技术的持续发展,因此,为打破现有的技术壁垒,开发出一种电站锅炉用联箱及管道的环缝焊接工艺是极其关键和重要的。
发明内容
本发明需要解决的技术问题是:现有的埋弧焊对于直径219mm、壁厚20~55mm电站锅炉的联箱及管道进行焊接容易产生击穿的问题,无法通过埋弧自动焊的方法精准、快速的完成环缝焊接;进而提供一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺。
本发明为解决上述技术问题采用的技术方案是:
所述的一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺,工艺流程具体如下:
S1、焊接坡口处理:将待焊接的两个工件相对的端面处进行UV坡口加工;
所述的焊接坡口包括V形坡口1、U形坡口2和钝边3,V形坡口1处于U形坡口2的正上方,U形坡口2处于钝边3的正上方,V形坡口1的坡底与U形坡口2的坡口连接,U形坡口2的坡底与钝边3的上端口连接,V形坡口1与U形坡口2组成UV坡口;
S2、焊接坡口表面清理:利用砂轮机和钢丝刷将焊接坡口表面及向焊接坡口两侧外延20mm的区域内的残留污物进行清除,并运用火焰加热的方式将焊接坡口表面的油污和水分进行烘干,以保证焊接坡口表面的清洁度;
S3、工件坡口对接:使两工件对齐,保证两工件之间的钝边处的竖直面平行,且两工件竖直面之间的间隙控制在2~3mm;
S4、焊前预热:通过火焰或履带加热器对焊接工件焊接坡口两侧外延100~150mm的区域内进行预热并保温,直到此工件焊接完成,焊接时层间温度控制在300℃内;
S5、GTAW封底:对工件的钝边进行封底焊接;
S6、SMAW分道填充:对封底后的UV坡口底部进行分道填充,填充2道,焊条规格采用Φ3.2或Φ4.0的焊条;
S7、SAW焊接:利用SAW焊接设备及转胎设备,焊丝的规格选用Φ3.2;经起弧工序、中间焊接操作工序及盖面工序完成工件焊接,且焊接时保证层间温度控制在300℃内;
S8、焊后后热或消氢:对焊后有延迟裂纹倾向的材料,焊接过程中断和焊接完成后,工件按要求立即进行后热或消氢处理并保温,保温后自然冷却。
进一步的,所述的S1中,加工后的V形坡口处的坡面的坡度为10°,U形坡口处的弧形坡面的半径为5mm,钝边的竖直面的高度为2~2.5mm。
进一步的,所述的S4中,预热温度为100~250℃并保温,直到此工件焊接结束前工件所保持的温度不低于100~250℃。
进一步的,所述的S5中,封底厚度不低于3mm并保证背面的焊接质量,Φ2.4氩弧焊丝电流控制在120~150A,电压控制在24~25V,焊接速度为8~11mm/s。
进一步的,所述的S6中,填充厚度不低于4mm。
进一步的,所述的S6中,当焊条规格选用Φ3.2的焊条时,电流110~120A,电压20~24V,焊接速度13~18mm/s;当焊条规格选用Φ4.0的焊条时,电流155~165A,电压22~26V,焊接速度15~20mm/s。
进一步的,所述的S7中,SAW焊接过程如下:
S7.1、起弧工序:对填充后的UV坡口底部进行两道SAW分道填充,电流控制在280~290A,电压控制在28~32V,焊接速度为11~15mm/s;
S7.2、中间焊接操作工序:对UV坡口中间部分采用逐层分道填充,直至填充至盖面工序前2道为止;其中,对于第1~2道的焊接,电流控制在280~300A,电压控制在28~32V,焊接速度为11~13mm/s,对于第3~4道的焊接,电流控制在300~350A,电压控制在32~34V,焊接速度为10~13mm/s,对于第5~8道的焊接,电流控制在350~380A,电压控制在32~35V,焊接速度为11~15mm/s,对于第9~18道的焊接,电流控制在380~450A,电压控制在32~35V,焊接速度为12~15mm/s;对于后续的焊接,电流控制在400~450A,电压控制在32~36V,焊接速度为12~15mm/s;
S7.3、盖面工序:对UV坡口最后2道填充,电流控制在450~480A,电压控制在34~36V,焊接速度为12~15mm/s。
进一步的,所述的S8中,当工件需要进行后热处理时,工件的焊后后热温度范围为200~250℃,工件后热保温时间为1~2h。
进一步的,所述的S8中,当工件需要进行消氢处理时,工件的消氢温度范围为300~400℃,消氢时间为2~3h。
本发明与现有技术相比产生的有益效果是:
1、本发明通过氩弧焊封底、手工电弧焊填充增厚和埋弧焊的最终填充盖面,解决了传统联箱及电站锅炉管道Φ219×20~55mm这一规格环缝焊接过程中存在的一系列问题,提高了焊接质量及焊接效率。
2、本发明通过氩弧焊封底后,运用手工电弧焊填充,以增加坡口底部的厚度,避免了因氩弧焊封底过薄造成后续埋弧焊焊接过程中产生击穿的问题。
3、本发明采用埋弧焊进行层层焊接,自动化程度较高,减轻了焊接操作人员的劳动强度,避免了手工电弧焊焊接接头过多产生内部缺陷,有效提高焊接质量,提高生产效率,除此之外它没有弧光辐射,极大的降低了对工作人员的身体危害,保证了操作的安全性。
4、本发明的埋弧焊操作过程中进行合理的层间温度控制,可有效降低焊接材料的内应力,避免焊接过程中裂纹等缺陷的产生,可有效保证材料的使用性能。
5、本发明中对焊后有延迟裂纹倾向材料通过后热或消氢处理,消除了焊缝存在的氢,有效解决了焊缝产生裂纹的危险。
附图说明
图1电站锅炉用联箱及管道环缝焊接工艺流程图;
图2为UV坡口示意图:
图3为氩弧焊封底示意图;
图4为手工电弧焊填充示意图;
图5为埋弧焊焊接示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图和实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
所述的一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺,工艺流程具体如下:
S1、焊接坡口处理:将待焊接的两个工件相对的端面处进行UV坡口加工,加工后的V形坡口处的坡面的坡度为10°,U形坡口处的弧形坡面的半径为5mm,钝边的竖直面的高度为2~2.5mm,通过上述设置方便了焊枪及机头能够正常操作,以保证焊件的焊缝后续能够均匀全部的焊透熔合;
如图2所示,所述的焊接坡口包括V形坡口1、U形坡口2和钝边3,V形坡口1处于U形坡口2的正上方,U形坡口2处于钝边3的正上方,V形坡口1的坡底与U形坡口2的坡口连接,U形坡口2的坡底与钝边3的上端口连接,V形坡口1与U形坡口2组成UV坡口;
S2、焊接坡口表面清理:利用砂轮机和钢丝刷将焊接坡口表面及向焊接坡口两侧外延20mm的区域内的铁锈等残留污物进行清除,并运用火焰加热的方式将焊接坡口表面的油污和水分进行烘干,以保证焊接坡口表面的清洁程度;
S3、工件坡口对接:使两工件对齐,保证两工件之间的钝边处的竖直面平行,且两工件竖直面之间的间隙控制在2~3mm;
S4、焊前预热:通过火焰或履带加热器对焊接工件焊接坡口两侧外延100~150mm的区域内进行预热,预热温度为100~250℃并保温,直到此工件焊接结束前工件所保持的温度处于100~250℃之间,且层间温度控制在300℃内;
S5、GTAW封底:如图3所示,对工件的钝边进行封底焊接,封底厚度不低于3mm并保证背面的焊接质量,Φ2.4氩弧焊丝电流控制在120~150A,电压控制在24~25V,焊接速度为8~11mm/s;
S6、SMAW分道填充:对封底后的UV坡口底部进行分道填充(焊接),以增加焊接坡口的坡底厚度,填充2道(如图4中所示),填充厚度不低于4mm,避免后续SAW焊接过程中产生击穿的问题,焊条规格采用Φ3.2或Φ4.0的焊条;当焊条规格选用Φ3.2的焊条时,电流110~120A,电压20~24V,焊接速度13~18mm/s;当焊条规格选用Φ4.0的焊条时,电流155~165A,电压22~26V,焊接速度15~20mm/s;
S7、SAW焊接:利用SAW焊接设备及转胎设备,焊丝的规格选用Φ3.0或Φ3.2的焊丝,经起弧工序、中间焊接操作工序及盖面工序完成工件焊接,且焊接时保证层间温度控制在300℃内,可有效降低焊接材料的内应力,避免焊接过程中裂纹等缺陷的产生,可有效保证材料的使用性能;
S7.1、起弧工序:对填充后的UV坡口底部进行两道SAW分道填充,电流控制在280~290A,电压控制在28~32V,焊接速度为11~15mm/s;
S7.2、中间焊接操作工序:对UV坡口中间部分采用逐层分道填充,直至填充至盖面工序前2道为止;其中,对于第1~2道的焊接,电流控制在280~300A,电压控制在28~32V,焊接速度为11~13mm/s,对于第3~4道的焊接,电流控制在300~350A,电压控制在32~34V,焊接速度为10~13mm/s,对于第5~8道的焊接,电流控制在350~380A,电压控制在32~35V,焊接速度为11~15mm/s,对于第9~18道的焊接,电流控制在380~450A,电压控制在32~35V,焊接速度为12~15mm/s;对于后续的焊接,电流控制在400~450A,电压控制在32~36V,焊接速度为12~15mm/s;
S7.3、盖面工序:对UV坡口最后2道填充,电流控制在450~480A,电压控制在34~36V,焊接速度为12~15mm/s;
S8、焊后后热或消氢:对焊后有延迟裂纹倾向的材料,焊接完成后,工件按要求进行后热或消氢处理,当工件需要进行后热处理时,工件的后热温度范围为200~250℃,工件后热保温时间为1~2h;
当工件需要进行消氢处理时,消氢温度范围为300~400℃,,消氢时间为2~3h;随后自然冷却,消除焊缝的氢,避免裂纹等缺陷的产生,最终完成联箱及管道环缝的焊接,提高了焊接质量及焊接效率。
本发明通过氩弧焊封底后,运用手工电弧焊填充,以增加坡口底部的厚度,避免了传统联箱及电站锅炉管道Φ219×20~55mm这一规格环缝焊接过程中,因氩弧焊封底过薄造成后续埋弧焊焊接过程中产生击穿的问题;采用埋弧焊进行层层焊接,自动化程度较高,减轻了焊接操作人员的劳动强度,避免了手工电弧焊焊接接头过多产生内部缺陷,有效提高焊接质量,提高生产效率,除此之外它没有弧光辐射,极大的降低了对工作人员的身体危害,保证了操作的安全性。
实施例1:下面以母材为12Cr1MoVG、规格为直径219mm、管壁厚度45mm的管道为例,对该发明的环缝焊接工艺进行详细说明,所述工艺流程具体如下:
S1、焊接坡口处理:将待焊接的两个管道相对的端面处进行UV坡口加工,加工后的V形坡口处的坡面的坡度为10°,U形坡口处的弧形坡面的半径为5mm,钝边的竖直面的高度为2.5mm;
S2、焊接坡口表面清理:利用砂轮机和钢丝刷将焊接坡口表面及向焊接坡口两侧外延20mm的区域内的铁锈等残留污物进行清除,并运用火焰加热的方式将焊接坡口表面的油污和水分进行烘干;
S3、工件坡口对接:使两工件对齐,保证两工件之间的钝边处的竖直面平行,且两工件竖直面之间的间隙控制在3mm;
S4、焊前预热:通过火焰或履带加热器对焊接工件焊接坡口两侧外延100~150mm的区域内进行预热,预热温度为200~250℃并保温,直到此工件焊接结束前工件所保持的温度不低于200℃,且层间温度控制在300℃内;
S5、GTAW封底:如图3所示,对工件的根部进行封底焊接,封底厚度不低于3mm并保证背面的焊接质量,Φ2.4氩弧焊丝ER55-B2-MnV电流控制在120~150A,电压控制在24~25V,焊接速度为8~11mm/s;
S6、SMAW分道填充:对封底后的UV坡口底部进行分道填充,以增加焊接坡口的坡底厚度,填充2道(如图4中的所示),填充厚度为5mm,焊条规格采用Φ3.2的R317焊条,电流110~120A,电压20~24V,焊接速度13~18mm/s;
S7、SAW焊接:利用SAW焊接设备及转胎设备,焊丝的规格选用Φ3.2的焊丝H08CrMoV配合焊剂HJ350,经起弧工序、中间焊接操作工序及盖面工序完成工件焊接,且焊接时保证层间温度控制在250~300℃,有效保证焊件的使用性能;
S7.1、起弧工序:对填充后的UV坡口底部进行两道SAW分道填充,电流控制在280~290A,电压控制在28~32V,焊接速度为11~15mm/s;
S7.2、中间焊接操作工序:对UV坡口中间部分采用逐层分道填充,直至填充至盖面工序前2道为止;其中,对于第1~2道的焊接,电流控制在280~300A,电压控制在28~32V,焊接速度为11~13mm/s,对于第3~4道的焊接,电流控制在300~350A,电压控制在32~34V,焊接速度为10~13mm/s,对于第5~8道的焊接,电流控制在350~380A,电压控制在32~35V,焊接速度为11~15mm/s,对于第9~18道的焊接,电流控制在380~450A,电压控制在32~35V,焊接速度为12~15mm/s;对于后续的焊接,电流控制在400~450A,电压控制在32~36V,焊接速度为12~15mm/s;
S7.3、盖面工序:对UV坡口最后2道填充,电流控制在450~480A,电压控制在34~36V,焊接速度为12~15mm/s;
S8、焊后后热处理:焊接完成后,工件的后热温度控制在200~250℃,保温1~2h,随后自然冷却,消除焊缝的氢,避免裂纹等缺陷的产生,最终完成联箱及管道环缝的焊接。
以上内容是结合具体的优选实施方式对本发明所做的进一步详细说明,不能认定本发明的具体实施只限于这些说明。对于具有本发明所属领域基础知识的人员来讲,可以很容易对本发明进行变更和修改,这些变更和修改都应当视为属于本发明所提交的权利要求书确定的专利保护范围。

Claims (5)

1.一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺,其特征在于:焊接工艺流程具体如下:
S1、焊接坡口处理:将待焊接的两个工件相对的端面处进行UV坡口加工;
所述的焊接坡口包括V形坡口(1)、U形坡口(2)和钝边(3),V形坡口(1)处于U形坡口(2)的正上方,U形坡口(2)处于钝边(3)的正上方, V形坡口(1)的坡底与U形坡口(2)的坡口连接,U形坡口(2)的坡底与钝边(3)的上端口连接,V形坡口(1)与U形坡口(2)组成UV坡口;
S2、焊接坡口表面清理:利用砂轮机和钢丝刷将焊接坡口表面及向焊接坡口两侧外延20mm的区域内的残留污物进行清除,并运用火焰加热的方式将焊接坡口表面的油污和水分进行烘干,以保证焊接坡口表面的清洁度;
S3、工件坡口对接:使两工件对齐,保证两工件之间的钝边处的竖直面平行,且两工件竖直面之间的间隙控制在2~3mm;
S4、焊前预热:通过火焰或履带加热器对焊接工件焊接坡口两侧外延100~150mm的区域内进行预热并保温,直到此工件焊接完成,焊接时层间温度控制在300℃内;
S5、GTAW封底:对工件的钝边进行封底焊接;
S6、SMAW分道填充:对封底后的UV坡口底部进行分道填充,填充2道,焊条规格采用Φ3.2mm或Φ4.0mm的焊条;
S6中填充厚度为5mm;
S7、SAW焊接:利用SAW焊接设备及转胎设备,焊丝的规格选用Φ3.2mm;经起弧工序、中间焊接操作工序及盖面工序完成工件焊接,且焊接时保证层间温度控制在300℃内;SAW焊接过程如下:
S7.1、起弧工序:对填充后的UV坡口底部进行两道SAW分道填充,电流控制在280~290A,电压控制在28~32V,焊接速度为11~15mm/s;
S7.2、中间焊接操作工序:对UV坡口中间部分采用逐层分道填充,直至填充至盖面工序前2道为止;其中,对于第1~2道的焊接,电流控制在280~300A,电压控制在28~32V,焊接速度为11~13mm/s,对于第3~4道的焊接,电流控制在300~350A,电压控制在32~34V,焊接速度为10~13mm/s,对于第5~8道的焊接,电流控制在350~380A,电压控制在32~35V,焊接速度为11~15 mm/s,对于第9~18道的焊接,电流控制在380~450A,电压控制在32~35V,焊接速度为12~15mm/s;对于后续的焊接,电流控制在400~450 A,电压控制在32~36V,焊接速度为12~15mm/s;
S7.3、盖面工序:对UV坡口最后2道填充,电流控制在450~480A,电压控制在34~36V,焊接速度为12~15mm/s;
S8、焊后后热或消氢:对焊后有延迟裂纹倾向的材料,焊接过程中断和焊接完成后,工件按要求立即进行后热或消氢处理并保温,保温后自然冷却;
所述的S8中,工件的焊后后热温度范围为200~250℃,工件后热保温时间为1~2h;
所述的S8中,工件的消氢温度范围为300~400℃,消氢时间为2~3h。
2.根据权利要求1所述的一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺,其特征在于:所述的S1中,加工后的V形坡口处的坡面的坡度为10º,U形坡口处的弧形坡面的半径为5mm,钝边的竖直面的高度为2~2.5mm。
3.根据权利要求2所述的一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺,其特征在于:所述的S4中,预热温度为100~250℃并保温,直到此工件焊接结束前工件所保持的温度处于100~250℃之间。
4.根据权利要求3所述的一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺,其特征在于:所述的S5中,封底厚度不低于3mm并保证背面的焊接质量,Φ2.4mm氩弧焊丝电流控制在120~150A,电压控制在24~25V,焊接速度为8~11mm/s。
5.根据权利要求4所述的一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺,其特征在于:所述的S6中,当焊条规格选用Φ3.2mm的焊条时,电流110~120A,电压20~24V,焊接速度13~18mm/s;当焊条规格选用Φ4.0mm的焊条时,电流155~165A,电压22~26V,焊接速度15~20mm/s。
CN202110909399.5A 2021-08-09 2021-08-09 一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺 Active CN113600971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110909399.5A CN113600971B (zh) 2021-08-09 2021-08-09 一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110909399.5A CN113600971B (zh) 2021-08-09 2021-08-09 一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺

Publications (2)

Publication Number Publication Date
CN113600971A CN113600971A (zh) 2021-11-05
CN113600971B true CN113600971B (zh) 2022-09-30

Family

ID=78307738

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110909399.5A Active CN113600971B (zh) 2021-08-09 2021-08-09 一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺

Country Status (1)

Country Link
CN (1) CN113600971B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115070252B (zh) * 2022-06-22 2023-11-03 四川航天长征装备制造有限公司 一种锁底焊接接头

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58377A (ja) * 1981-06-24 1983-01-05 Kawasaki Steel Corp 厚肉鋼材の多電極深溶込みア−ク溶接法
CN103752994A (zh) * 2013-12-31 2014-04-30 盐城市锅炉制造有限公司 薄壁集箱的环缝焊接工艺
CN205085526U (zh) * 2015-11-11 2016-03-16 上海振华重工(集团)股份有限公司 筒体焊接坡口
CN107617803A (zh) * 2016-07-14 2018-01-23 中国核工业第五建设有限公司 核电钢制安全壳环缝埋弧自动横焊工艺
CN106624288A (zh) * 2016-10-19 2017-05-10 杭州锅炉集团股份有限公司 一种集箱管道的焊接方法

Also Published As

Publication number Publication date
CN113600971A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN105127566B (zh) 大厚度碳钢‑不锈钢复合板的全焊透焊接方法
CN105195872A (zh) 一种管线钢双面埋弧免清根焊接工艺
CN105458476B (zh) 核电站核岛主蒸汽或主给水管道的焊接方法
CN105665898A (zh) 一种珠光体耐热钢复合板埋弧自动焊焊接方法
CN107442891A (zh) 一种中厚板体纵、环缝焊接接头及焊接工艺
CN113600971B (zh) 一种用于电站锅炉上厚壁的联箱及管道的环缝焊接工艺
CN102398105A (zh) X80钢级埋弧自动焊管件整体调质处理的工艺方法
CN102744553A (zh) 一种厚壁埋弧焊管焊缝横向裂纹的返修方法
CN108544055B (zh) 用于气缸盖燃烧室凹槽内58%镍基合金的全自动堆焊方法
CN105750717B (zh) 一种用于连接板与筒体之间的焊接工艺
CN110560894A (zh) 一种不同保护气体双面同时保护的高氮钢复合焊接方法
CN110802366B (zh) 一种铝合金异型结构件钻孔补焊方法
CN106270935A (zh) 一种离心复合轧辊轴表面缺陷的焊补方法
CN105618904A (zh) 一种大型厚壁油缸的窄间隙埋弧焊坡口结构及装焊方法
CN111570971A (zh) 舱壁下墩与双层底的高应力区域全熔透角焊缝的焊接方法
CN105583499A (zh) 金属粉芯焊丝管道环焊缝全自动焊接的方法
CN110449698A (zh) 一种6-16mm钢板焊接方法
CN106514029A (zh) 长管端部堆焊的方法
CN110977099A (zh) 钢结构桁架管柱对接方法
CN116551127A (zh) 苯酚丙酮tp2205双相管道焊接施工方法
CN111215830A (zh) 一种厚度大于200mm高压中碳铸钢油缸缸体裂纹修复方法
CN110340613A (zh) 一种修复铝合金型材表面缺陷的方法
CN103752994A (zh) 薄壁集箱的环缝焊接工艺
CN104493341A (zh) 屏蔽电机定子屏蔽套与下法兰焊接方法及其所使用的设备
CN117259913A (zh) 一种用窄间隙全位置tig自动焊工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant