CN113578317B - 一种M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法及其应用 - Google Patents
一种M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法及其应用 Download PDFInfo
- Publication number
- CN113578317B CN113578317B CN202110733621.0A CN202110733621A CN113578317B CN 113578317 B CN113578317 B CN 113578317B CN 202110733621 A CN202110733621 A CN 202110733621A CN 113578317 B CN113578317 B CN 113578317B
- Authority
- CN
- China
- Prior art keywords
- hydrotalcite
- boron cluster
- noble metal
- based closed
- nano
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/48—Silver or gold
- B01J23/52—Gold
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/58—Platinum group metals with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/56—Platinum group metals
- B01J23/60—Platinum group metals with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/54—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/66—Silver or gold
- B01J23/68—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/688—Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with manganese, technetium or rhenium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8906—Iron and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8913—Cobalt and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/892—Nickel and noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/89—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
- B01J23/8926—Copper and noble metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/58—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of molecular oxygen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C37/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
- C07C37/60—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Catalysts (AREA)
Abstract
本发明涉及水滑石材料负载催化剂的技术领域,具体涉及一种M‑Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法及其应用,具体步骤如下:将碱溶解在水中,分别同时滴加可溶性钛盐和闭式硼簇MBxHx溶液,氮气保护下持续搅拌至反应完全,然后陈化,得到M‑Ti水滑石基闭式硼簇MBxHx;将M‑Ti水滑石基闭式硼簇MBxHx分散在水中,加入贵金属的可溶性盐,紫外光照射下、20~50℃下搅拌反应,过滤得到沉淀,经洗涤、干燥,得到所述M‑Ti水滑石基闭式硼簇MBxHx纳米级贵金属。本发明利用闭式硼簇还原性,原位在水滑石表面负载纳米贵金属颗粒,其贵金属由硼簇包裹,更加稳定,不易脱落。
Description
技术领域
本发明涉及水滑石材料负载催化剂的技术领域,具体涉及一种M-Ti水滑石基闭式硼簇 MBxHx纳米级贵金属的制备方法及其应用。
背景技术
水滑石是一种双金属氢氧化合物的层状无机材料,其具有层间离子可交换性和尺寸分布的可控性,在催化、吸附、降解、医药、杀菌等方面具有广泛的作用。根据不同的金属组合,水滑石具有不同的效果,其中含Ti的水滑石具有很好的光催化活性,其原因是Ti的禁带较宽,在紫外光激发下可以激发电子跃迁,同时根据水滑石的离子可交换性,还可引入不同的阴离子,对于光催化有一定的协同效果。
纳米金属材料是一种具有独特性质的金属材料,尤其是在电、光、磁等方面,纳米金属材料有着优异的性质。较于纳米非金属材料,纳米贵金属在一般情况下,不易发生氧化、变质失活等现象,其次贵金属具有更优异的催化活性和选择性,但贵金属材料较为昂贵,因此将贵金属的利用率最大化成为学者们的研究热点。目前,研究者们普遍将纳米贵金属材料负载在载体上,来实现纳米贵金属的回收利用,除此之外,纳米贵金属会和某些载体相互作用,改变其表面的性质,可提高催化效率。1912年,Alfred Stock等首次提出“硼烷”概念[Stock A. Hydrides of Boron and Silicon[M].Cornell University Press,1933.],硼烷中的闭式硼烷 (closo-boranes)也被成为闭式硼簇(closo-boron cluster),通式为[BnHn]2-,其特点是永久性带2 个单位的负电荷,由于其B元素的特殊性质,硼簇被广泛地用于超分子组装,硼中子俘获治疗(Boron Neutron Capture Therapy,简称BNCT)领域[Johnson L S,Yanch J C,Shortkroff S, Sledge C B.in:Cancer Neutron CaptureTherapy[M],p.183.Plenum,New York 1996]。近年来,研究人员逐渐发现硼簇还具有温和的还原性的特点,可以还原大多数的贵金属[专利号:ZL 201610955661.9.专利号:ZL201610959726.7]。
苯酚是制备双酚A、环氧树脂、苯胺等精细化工品的合成原料。除了可以从石油组分中提取之外,苯酚主要来源于有机合成,工业上常用的合成方法有异丙苯三步法,溴苯在碱水中水解等,其过程复杂、对环境不友好、成本高等缺点大大限制了其发展,目前通过苯一步氧化法得到苯酚逐渐成为研究热点,但也存在反应温度较高,催化剂难以回收等缺点。
发明内容
本发明的目的之一在于提供一种M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法,首次利用闭式硼簇还原性,原位在水滑石表面负载纳米贵金属颗粒,其贵金属由硼簇包裹,更加稳定,不易脱落。
本发明的目的之二在于提供一种M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的应用,首次利用闭式硼簇还原性,原位在水滑石表面负载纳米贵金属颗粒,其贵金属由硼簇包裹,更加稳定,不易脱落。
本发明实现目的之一所采用的方案是:一种M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法,具体步骤如下:
(1)将碱溶解在水中,分别同时滴加可溶性钛盐和闭式硼簇MBxHx溶液,氮气保护下搅拌至反应完全,然后在80~140℃下陈化24~72h后,经过滤、洗涤、干燥后,得到M-Ti水滑石基闭式硼簇MBxHx;
(2)将M-Ti水滑石基闭式硼簇MBxHx分散在水中,加入贵金属的可溶性盐,紫外光照射下、20~50℃下搅拌反应,过滤得到沉淀,经洗涤、干燥,得到所述M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属。
优选地,所述步骤(1)中,碱为NaOH、LiOH、KOH、尿素中的任意一种;可溶性钛盐为钛酸丁酯、硫酸钛、四氯化钛、氟钛酸钾中的任意一种。
优选地,所述步骤(1)中,闭式硼簇MBxHx中的M金属为二价过渡族非贵金属元素中的任意一种,X为6、8、10、12中的任意一种。
优选地,所述M金属为Mg、Zn、Co、Cu、Fe、Ni中的任意一种。
优选地,所述步骤(1)中,碱、可溶性钛盐和闭式硼簇MBxHx的质量比为20~10:1:5~3。
优选地,所述步骤(2)中,贵金属的可溶性盐为氯金酸盐、氯铂酸盐、氯亚铂酸盐、氯化盐、银氨溶液、氯钯酸盐、氯钌酸盐中的至少一种。
优选地,所述步骤(2)中,M-Ti水滑石基闭式硼簇MBxHx与贵金属的可溶性盐的质量比为10~50:1。
优选地,所述步骤(2)中,紫外光波段为200-400nm。
本发明实现目的之二所采用的方案是:一种所述的制备方法制备的M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的应用,将所述纳米贵金属作为催化剂应用在苯的氧化反应中,具体为:将苯、乙腈、M-Ti水滑石基闭式硼簇MBxHx纳米贵金属、氧化剂混匀,反应温度控制在10~45℃,在365-400m的紫外光下反应得到苯酚,其中苯、乙腈、M-Ti水滑石基闭式硼簇MBxHx纳米贵金属、氧化剂的质量比为1~5:10:0.1~0.5:1~5。
优选地,所述氧化剂为双氧水、氧气、空气中的任意一种;若氧化剂为空气或者氧气时,持续通入即可。
本发明具有以下优点和有益效果:
(1)本发明首次合成M-Ti水滑石基闭式硼簇MBxHx纳米贵金属催化剂,利用闭式硼簇还原性,原位在水滑石表面负载纳米贵金属颗粒,其贵金属由硼簇包裹,更加稳定,不易脱落。
(2)本发明采用M-Ti水滑石基闭式硼簇MBxHx纳米贵金属作为催化剂,对苯进行一步氧化得到苯酚,不仅有较高的转化率,而且可通过调控条件选择性得到苯酚和对苯二酚,反应温和,反应时间短,操作容易、环境良好,重复利用率高等优点,有助于苯一步法转化苯酚工业化生产。
附图说明
图1是实施例1所制备的Mg-Ti水滑石基硼簇MgB12H12傅里叶变换红外光谱学(FTIR) 图片;
图2是实施例12所制备的Zn-Ti水滑石基硼簇ZnB6H6纳米金催化剂X射线光电子能谱 (XPS)图片;
图3是实施例15所制备的Co-Ti水滑石基硼簇CoB10H10纳米Ag的X射线光电子能谱(XRD)图片;
图4是实施例5所制备的Mn-Ti水滑石基硼簇MnB12H12纳米金的透射电镜图(TEM)。
具体实施方式
为更好的理解本发明,下面的实施例是对本发明的进一步说明,但本发明的内容不仅仅局限于下面的实施例。
实施例1:
(1)将4.0003g尿素溶解在100mL水中,分别同时滴加0.2003g TiCl4和1.0011g闭式硼簇MgB12H12溶液;
(2)氮气保护下持续搅拌3h,140℃下,水热釜中陈化24h后,经过滤、洗涤、干燥后,得到2.8429g Mg-Ti水滑石基闭式硼簇MgB12H12,如图1所示,为本实施例制备的Mg-Ti水滑石基闭式硼簇MgB12H12的红外谱图,通过傅里叶变换红外光谱(FT-IR)可以看到水滑石和硼簇成功结合;
(3)将2.8001Mg-Ti水滑石基闭式硼簇MgB12H12分散在50mL水中,加入0.0558g 氯金酸钠,365nm紫外灯下20℃下搅拌反应5min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到2.8357g Mg-Ti水滑石基闭式硼簇MgB12H12纳米金催化剂;
(4)将3.1951g苯溶于10mL乙腈中,加入0.3179g Mg-Ti水滑石基闭式硼簇MgB12H12纳米金催化剂和3.1904g 30%双氧水,20℃下持续搅拌,并在365nm紫外灯下反应0.5h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为78.2%。
实施例2:
(1)将3.7416g尿素溶解在100mL水中,分别同时滴加0.2481g TiCl4和1.2469g闭式硼簇CoB12H12溶液;
(2)氮气保护下持续搅拌1h,120℃下,水热釜中陈化48h后,经过滤、洗涤、干燥后,得到3.2094g Co-Ti水滑石基闭式硼簇CoB12H12;
(3)将3.2001g Co-Ti水滑石基闭式硼簇CoB12H12分散在50mL水中,加入0.0798g氯钯酸钠,400nm紫外灯下35℃下搅拌反应10min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到3.2518g Co-Ti水滑石基闭式硼簇CoB12H12纳米钯催化剂;
(4)将4.0102g苯溶于10mL乙腈中,加入0.2004g Co-Ti水滑石基闭式硼簇CoB12H12纳米钯催化剂和3.9746g 30%双氧水,25℃下持续搅拌,并在365nm紫外灯下反应 1.5h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为80.0%。
实施例3:
(1)将2.8614g NaOH溶解在100mL水中,分别同时滴加0.1910g酞酸丁酯和0.7628g闭式硼簇MgB10H10溶液;
(2)氮气保护下持续搅拌2h,80℃下,水热釜中陈化72h后,经过滤、洗涤、干燥后,得到2.1778g Mg-Ti水滑石基闭式硼簇MgB10H10;
(3)将2.0005g Mg-Ti水滑石基闭式硼簇MgB10H10分散在50mL水中,加入0.0399g氯铂酸钠,200nm紫外灯下40℃下搅拌反应10min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到2.0341g Mg-Ti水滑石基闭式硼簇MgB10H10纳米铂催化剂;
(4)将1.9989g苯溶于10mL乙腈中,加入0.1975g Mg-Ti水滑石基闭式硼簇MgB10H10纳米铂催化剂和2.9891g 30%双氧水,30℃下持续搅拌,并在395nm紫外灯下反应 3h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为87.6%。
实施例4:
(1)将6.1847g尿素溶解在100mL水中,分别同时滴加0.61557g TiCl4和1.8289g闭式硼簇NiB10H10溶液;
(2)氮气保护下持续搅拌1.5h,140℃下,水热釜中陈化36h后,经过滤、洗涤、干燥后,得到4.9755g Ni-Ti水滑石基闭式硼簇NiB10H10;
(3)将4.9751g NiB10H10分散在50mL水中,加入0.2485g氯钌酸钠,280nm紫外灯下20℃下搅拌反应10min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到5.1008gNi-Ti水滑石基闭式硼簇NiB10H10纳米钌催化剂;
(4)将6.1274g苯溶于10mL乙腈中,加入0.2086g Ni-Ti水滑石基闭式硼簇NiB10H10纳米钌催化剂和9.1908g 30%双氧水,25℃下持续搅拌,并在395nm紫外灯下反应 3.5h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为84.4%。
实施例5:
(1)将1.8870g氢氧化钾溶解在100mL水中,分别同时滴加0.1255g TiCl4和0.5028g 闭式硼簇MnB12H12溶液;
(2)氮气保护下持续搅拌2h,80℃下,水热釜中陈化72h后,经过滤、洗涤、干燥后,得到1.4972g Mn-Ti水滑石基闭式硼簇MnB12H12;
(3)将1.4970g Mn-Ti水滑石基闭式硼簇MnB12H12分散在50mL水中,加入0.1480g氯钯金钠,385nm紫外灯下20℃下搅拌反应8min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到1.5081g Mn-Ti水滑石基闭式硼簇MnB12H12纳米金催化剂,如图4所示,为本实施例制备的Mn-Ti水滑石基闭式硼簇MnB12H12纳米金催化剂地TEM图,通过透射电镜(TEM)可以看到纳米金均匀负载在水滑石表面;
(4)将7.4297g苯溶于10mL乙腈中,加入0.7428g Mn-Ti水滑石基闭式硼簇MnB12H12纳米金催化剂和7.4300g 30%双氧水,45℃下持续搅拌,并在365nm紫外灯下反应 1h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为69.7%。
实施例6:
(1)将8.3304g尿素溶解在100mL水中,分别同时滴加0.83277g酞酸丁酯和4.0492g闭式硼簇CoB6H6溶液;
(2)氮气保护下持续搅拌3h,140℃下,水热釜中陈化36h后,经过滤、洗涤、干燥后,得到7.9105g Co-Ti水滑石基闭式硼簇CoB6H6;
(3)将7.9001g Co-Ti水滑石基闭式硼簇CoB6H6分散在50mL水中,加入0.5265g氯钯酸钾,365nm紫外灯下25℃下搅拌反应5min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到8.3941g Co-Ti水滑石基闭式硼簇CoB6H6纳米钯催化剂;
(4)将1.8341g苯溶于10mL乙腈中,加入0.0928g Co-Ti水滑石基闭式硼簇CoB6H6纳米钯催化剂和1.3751g 30%双氧水,25℃下持续搅拌,并在365nm紫外灯下反应 6h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为84.4%;对二苯酚的产率为10.7%。
实施例7:
(1)将2.0047g尿素溶解在100mL水中,分别同时滴加0.2001g TiCl4和0.8004g闭式硼簇MgB10H10溶液;
(2)氮气保护下持续搅拌1h,120℃下,水热釜中陈化24h后,经过滤、洗涤、干燥后,得到1.8834.g Mg-Ti水滑石基闭式硼簇MgB10H10;
(3)将1.8831g Mg-Ti水滑石基闭式硼簇MgB10H10分散在50mL水中,加入0.0625g银氨溶液,395nm紫外灯下30℃下搅拌反应10min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到1.9104g Mg-Ti水滑石基闭式硼簇MgB10H10纳米银催化剂;
(4)将3.7260g苯溶于10mL乙腈中,加入0.3725g Mg-Ti水滑石基闭式硼簇MgB10H10纳米银催化剂,25℃下持续搅拌并持续通入空气,395nm紫外灯下反应6h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为37.1%。
实施例8:
(1)将9.3628g尿素溶解在100mL水中,分别同时滴加0.6240g酞酸丁酯和3.1210g闭式硼簇NiB10H10溶液;
(2)氮气保护下持续搅拌2.5h,140℃下,水热釜中陈化72h后,经过滤、洗涤、干燥后,得到8.0081g Ni-Ti水滑石基闭式硼簇NiB10H10;
(3)将8.0001g Ni-Ti水滑石基闭式硼簇NiB10H10分散在50mL水中,加入0.3199g氯钯酸钾,395nm紫外灯下20℃下搅拌反应5min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到8.2185g Ni-Ti水滑石基闭式硼簇NiB10H10纳米钯催化剂;
(4)将10.7144g苯溶于10mL乙腈中,加入4.9985g Ni-Ti水滑石基闭式硼簇NiB10H10纳米钯催化剂,25℃下持续搅拌并持续通入氧气,365nm紫外灯下反应1.5h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为80.0%。
实施例9:
(1)将3.5439g氢氧化钾溶解在100mL水中,分别同时滴加0.2181g TiCl4和1.1147g 闭式硼簇CoB10H10溶液;
(2)氮气保护下持续搅拌3h,110℃下,水热釜中陈化36h后,经过滤、洗涤、干燥后,得到3.0919g Co-Ti水滑石基闭式硼簇CoB10H10;
(3)将3.0001g Co-Ti水滑石基闭式硼簇CoB10H10分散在50mL水中,加入0.0798g氯钯酸钾,365nm紫外灯下25℃下搅拌反应5min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到3.0559g Co-Ti水滑石基闭式硼簇CoB10H10纳米钯催化剂;
(4)将4.0094g苯溶于10mL乙腈中,加入0.2045g Co-Ti水滑石基闭式硼簇CoB10H10纳米钯催化剂和3.9916g 30%双氧水,25℃下持续搅拌,并在395nm紫外灯下反应 6h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为63.4%;对二苯酚的产率为30.1%。
实施例10:
(1)将5.1271g尿素溶解在100mL水中,分别同时滴加0.4887g TiCl4和1.8691g闭式硼簇CuB12H12溶液;
(2)氮气保护下持续搅拌1h,120℃下,水热釜中陈化24h后,经过滤、洗涤、干燥后,得到4.6814g Cu-Ti水滑石基闭式硼簇CuB12H12;
(3)将4.6506g Cu-Ti水滑石基闭式硼簇CuB12H12分散在50mL水中,加入0.4597g氯金酸钠,365nm紫外灯下25℃下搅拌反应5min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到4.9991g Cu-Ti水滑石基闭式硼簇CuB12H12纳米金催化剂;
(4)将6.4233g苯溶于10mL乙腈中,加入0.6394g Cu-Ti水滑石基闭式硼簇CuB12H12纳米金催化剂和2.1417g 30%双氧水,50℃下持续搅拌,并在365nm紫外灯下反应 3h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为65.2%。
实施例11:
(1)将2.8431g氢氧化锂溶解在100mL水中,分别同时滴加0.2793g酞酸丁酯和0.8379g 闭式硼簇FeB10H10溶液;
(2)氮气保护下持续搅拌3h,140℃下,水热釜中陈化72h后,经过滤、洗涤、干燥后,得到2.5071g Fe-Ti水滑石基闭式硼簇FeB10H10;
(3)将2.5000g Fe-Ti水滑石基闭式硼簇FeB10H10分散在50mL水中,加入0.0714g氯金酸钠,365nm紫外灯下30℃下搅拌反应8min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到2.5518g Fe-Ti水滑石基闭式硼簇FeB10H10纳米金催化剂;
(4)将6.1755g苯溶于10mL乙腈中,加入0.1544g Fe-Ti水滑石基闭式硼簇FeB10H10纳米金催化剂和7.7192g 30%双氧水,25℃下持续搅拌,并在365nm紫外灯下反应 3h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为68.6%。
实施例12:
(1)将8.9250g氢氧化钠溶解在100mL水中,分别同时滴加0.4463g酞酸丁酯和1.7847g 闭式硼簇ZnB6H6溶液;
(2)氮气保护下持续搅拌2.5h,140℃下,水热釜中陈化36h后,经过滤、洗涤、干燥后,得到7.8159g Zn-Ti水滑石基闭式硼簇ZnB6H6;
(3)将7.8001g Zn-Ti水滑石基闭式硼簇ZnB6H6分散在50mL水中,加入0.1729g氯金酸钠,395nm紫外灯下45℃下搅拌反应5min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到7.9103g Zn-Ti水滑石基闭式硼簇ZnB6H6纳米金催化剂,如图2所示,为本实施例制备的Zn-Ti水滑石基闭式硼簇ZnB6H6纳米金催化剂的X 射线光电子能谱图,通过X射线光电子能谱(XPS)可以看到金被还原成0价金;
(4)将1.0733g苯溶于10mL乙腈中,加入0.2601g Zn-Ti水滑石基闭式硼簇ZnB6H6纳米金催化剂,25℃下持续搅拌并持续通入空气,在365nm紫外灯下反应6h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为48.4%;对二苯酚的产率为7.3%。
实施例13:
(1)将5.5610g氢氧化锂溶解在100mL水中,分别同时滴加0.3707g TiCl4和1.1119g 闭式硼簇ZnB8H8溶液;
(2)氮气保护下持续搅拌1h,140℃下,水热釜中陈化24h后,经过滤、洗涤、干燥后,得到4.9881g Zn-Ti水滑石基闭式硼簇ZnB8H8;
(3)将4.9806g Zn-Ti水滑石基闭式硼簇ZnB8H8分散在50mL水中,加入0.0971g氯铂酸钾,390nm紫外灯下45℃下搅拌反应10min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到5.0094g Zn-Ti水滑石基闭式硼簇ZnB8H8纳米铂催化剂;
(4)将5.0448g苯溶于10mL乙腈中,加入0.6297g Zn-Ti水滑石基闭式硼簇ZnB8H8纳米铂催化剂,25℃下持续搅拌并持续通入氧气,365nm紫外灯下反应2h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为51.6%。
实施例14:
(1)将7.2410g尿素溶解在100mL水中,分别同时滴加0.6978g酞酸丁酯和2.0071g闭式硼簇NiB12H12溶液;
(2)氮气保护下持续搅拌2h,80℃下,水热釜中陈化54h后,经过滤、洗涤、干燥后,得到6.7151g Ni-Ti水滑石基闭式硼簇NiB12H12;
(3)将6.7003g Ni-Ti水滑石基闭式硼簇NiB12H12分散在50mL水中,加入0.3343g氯钯酸钠,365nm紫外灯下20℃下搅拌反应6min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到6.8337g Ni-Ti水滑石基闭式硼簇NiB12H12纳米钯催化剂;
(4)将2.2184g苯溶于10mL乙腈中,加入0.4491g Ni-Ti水滑石基闭式硼簇NiB12H12纳米钯催化剂和4.3936g 30%双氧水,50℃下持续搅拌,并在365nm紫外灯下反应6h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为27.3%;对二苯酚的产率为49.7%。
实施例15:
(1)将22.5177g尿素溶解在100mL水中,分别同时滴加1.502g TiCl4和7.5048g闭式硼簇CoB10H10溶液;
(2)氮气保护下持续搅拌3h,140℃下,水热釜中陈化72h后,经过滤、洗涤、干燥后,得到19.9517g Co-Ti水滑石基闭式硼簇CoB10H10;
(3)将19.9515g Co-Ti水滑石基闭式硼簇CoB10H10分散在50mL水中,加入0.6648g银氨溶液,395nm紫外灯下25℃下搅拌反应10min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到20.4761g Co-Ti水滑石基闭式硼簇CoB10H10纳米银催化剂,如图3所示为本实施例制备的Co-Ti水滑石基闭式硼簇CoB10H10纳米银催化剂的XRD图,通过X射线衍射仪(XRD)可以看出催化剂成功合成;
(4)将24.1182g苯溶于10mL乙腈中,加入2.4107g Co-Ti水滑石基闭式硼簇CoB10H10纳米银催化剂和24.0865g 30%双氧水,25℃下持续搅拌,并在365nm紫外灯下反应6h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为70.1%;对二苯酚的产率为8.8%。
实施例16:
(1)将3.7916g氢氧化钾溶解在100mL水中,分别同时滴加0.1896g TiCl4和0.5688g 闭式硼簇FeB12H12溶液;
(2)氮气保护下持续搅拌3h,120℃下,水热釜中陈化48h后,经过滤、洗涤、干燥后,得到3.3018g Fe-Ti水滑石基闭式硼簇FeB12H12;
(3)将3.3001g Fe-Ti水滑石基闭式硼簇FeB12H12分散在50mL水中,加入0.2201g氯金酸钠,395nm紫外灯下20℃下搅拌反应6min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到3.4877g Fe-Ti水滑石基闭式硼簇FeB12H12纳米金催化剂;
(4)将6.0614g苯溶于10mL乙腈中,加入0.7575g Fe-Ti水滑石基闭式硼簇FeB12H122纳米金催化剂,25℃下持续搅拌并连续通入氧气,365nm紫外灯下反应4h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为72.8%。
实施例17:
(1)将2.0011g尿素溶解在100mL水中,分别同时滴加0.1091g酞酸丁酯和0.4227g闭式硼簇CuB6H6溶液;
(2)氮气保护下持续搅拌3h,130℃下,水热釜中陈化24h后,经过滤、洗涤、干燥后,得到1.8047g Cu-Ti水滑石基闭式硼簇CuB6H6;
(3)将1.8038g Cu-Ti水滑石基闭式硼簇CuB6H6分散在50mL水中,加入0.0515g氯金酸钾,375nm紫外灯下35℃下搅拌反应7min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到1.8331g Cu-Ti水滑石基闭式硼簇CuB6H6纳米金催化剂;
(4)将1.0033g苯溶于10mL乙腈中,加入0.2991g Cu-Ti水滑石基闭式硼簇CuB6H6纳米金催化剂和3.9251g 30%双氧水,25℃下持续搅拌,并在365nm紫外灯下反应 6h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为63.4%;对二苯酚的产率为15.9%。
实施例18:
(1)将3.1015g尿素溶解在100mL水中,分别同时滴加0.2061g TiCl4和0.8267g闭式硼簇,MgB6H6溶液;
(2)氮气保护下持续搅拌2.5h,90℃下,水热釜中陈化40h后,经过滤、洗涤、干燥后,得到2.8815g Mg-Ti水滑石基闭式硼簇MgB6H6;
(3)将2.8801g Mg-Ti水滑石基闭式硼簇MgB6H6分散在50mL水中,加入0.1440g氯钯酸钾,375nm紫外灯下25℃下搅拌反应8min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到2.9970g Mg-Ti水滑石基闭式硼簇MgB6H6纳米钯催化剂;
(4)将5.1108g苯溶于10mL乙腈中,加入0.2551g C Mg-Ti水滑石基闭式硼簇MgB6H6纳米钯催化剂,25℃下持续搅拌并持续通入空气,并在395nm紫外灯下反应6h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为60.1%。
实施例19:
(1)将1.5052g尿素溶解在100mL水中,分别同时滴加0.1501g酞酸丁酯和0.7486g闭式硼簇FeB8H8溶液;
(2)氮气保护下持续搅拌2.5h,120℃下,水热釜中陈化60h后,经过滤、洗涤、干燥后,得到1.2566g Fe-Ti水滑石基闭式硼簇FeB8H8;
(3)将1.2560g Fe-Ti水滑石基闭式硼簇FeB8H8分散在50mL水中,加入0.0278g氯铂酸钠,395nm紫外灯下50℃下搅拌反应10min后,过滤得到沉淀,用乙醇,水反复洗涤,室温下烘干得到1.2703g Fe-Ti水滑石基闭式硼簇FeB8H8纳米铂催化剂;
(4)将1.8017g苯溶于10mL乙腈中,加入0.4494g Fe-Ti水滑石基闭式硼簇FeB8H8纳米铂催化剂和0.9971g 30%双氧水,25℃下持续搅拌,并在365nm紫外灯下反应 1.5h,离心取出催化剂,将上层清液用气相色谱检测得到苯酚的产率为79.4%。
实施例20:
制备Mg-Ti水滑石基闭式硼簇MgB12H12纳米金催化剂的方法同实施例1,不同之处为 Mg-Ti水滑石基闭式硼簇MgB12H12纳米金催化剂第二次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为75.9%;第三次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为73.7%;第四次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为70.8%;第五次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为67.5%。
实施例21:
制备Ni-Ti水滑石基闭式硼簇NiB10H10纳米钯催化剂的方法同实施例8,不同之处为Ni-Ti 水滑石基闭式硼簇NiB10H10纳米钯催化剂第二次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为78.4%;第三次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为75.8%;第四次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为73.1%;第五次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为71.5%。
实施例22:
制备Fe-Ti水滑石基闭式硼簇FeB8H8纳米铂催化剂的方法同实施例19,不同之处为Fe-Ti 水滑石基闭式硼簇FeB8H8纳米铂催化剂第二次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为76.9%;第三次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为75.2%;第四次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为74.3%;第五次重复利用,按照同样的比例加入苯、乙腈、氧化剂,通过气相色谱分析得到苯酚的转化率为73.1%。
以上列举的仅是本发明的具体实施例。显然本发明不限于以上实施例,还可以有许多变化。在功能高分子领域的普通技术人员能从本发明公开的内容直接导出或联想到的所有变化,如含Ti水滑石可以是三元水滑石,如MgZn-Ti水滑石、NiFe-Tis水滑石等,纳米贵金属可以是单一金属,也可以是多金属,如Mg-Ti水滑石同时还原Au和Pd,得到Mg-Ti水滑石Au-Pd 双纳米贵金属催化剂等,均应认为是本发明的保护范围。
Claims (9)
1.一种M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法,其特征在于,具体步骤如下:
(1)将碱溶解在水中,分别同时滴加可溶性钛盐和闭式硼簇MBxHx溶液,氮气保护下搅拌至反应完全,然后在80~140℃下陈化24~72h后,经过滤、洗涤、干燥后,得到M-Ti水滑石基闭式硼簇MBxHx;
(2)将M-Ti水滑石基闭式硼簇MBxHx分散在水中,加入贵金属的可溶性盐,紫外光照射下、20~50℃下搅拌反应,过滤得到沉淀,经洗涤、干燥,得到所述M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属;
所述步骤(1)中,闭式硼簇MBxHx中的M金属为二价过渡族非贵金属元素中的任意一种,X为6、8、10、12中的任意一种。
2.根据权利要求1所述的M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法,其特征在于:所述步骤(1)中,碱为NaOH、LiOH、KOH、尿素中的任意一种;可溶性钛盐为钛酸丁酯、硫酸钛、四氯化钛、氟钛酸钾中的任意一种。
3.根据权利要求1所述的M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法,其特征在于:所述M金属为Mg、Zn、Co、Cu、Fe、Ni中的任意一种。
4.根据权利要求1所述的M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法,其特征在于:所述步骤(1)中,碱、可溶性钛盐和闭式硼簇MBxHx的质量比为20~10:1: 5~ 3。
5.根据权利要求1所述的M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法,其特征在于:所述步骤(2)中,贵金属的可溶性盐为氯金酸盐、氯铂酸盐、氯亚铂酸盐、氯化盐、银氨溶液、氯钯酸盐、氯钌酸盐中的至少一种。
6.根据权利要求1所述的M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法,其特征在于:所述步骤(2)中,M-Ti水滑石基闭式硼簇MBxHx与贵金属的可溶性盐的质量比为10~50:1。
7.根据权利要求1所述的M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法,其特征在于:所述步骤(2)中,紫外光波段为200-400nm。
8.一种如权利要求1-7中任一项所述的制备方法制备的M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的应用,其特征在于:将所述纳米贵金属作为催化剂应用在苯的氧化反应中,具体为:将苯、乙腈、M-Ti水滑石基闭式硼簇MBxHx纳米贵金属、氧化剂混匀,反应温度控制在10~45℃,在365-400m的紫外光下反应得到苯酚,其中苯、乙腈、M-Ti水滑石基闭式硼簇MBxHx纳米贵金属、氧化剂的质量比为1~5:10:0.1~0.5:1~5。
9.根据权利要求8所述的M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的应用,其特征在于:所述氧化剂为双氧水、氧气、空气中的任意一种;若氧化剂为空气或者氧气时,持续通入即可。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110733621.0A CN113578317B (zh) | 2021-06-30 | 2021-06-30 | 一种M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法及其应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110733621.0A CN113578317B (zh) | 2021-06-30 | 2021-06-30 | 一种M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法及其应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113578317A CN113578317A (zh) | 2021-11-02 |
CN113578317B true CN113578317B (zh) | 2022-07-05 |
Family
ID=78245206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110733621.0A Active CN113578317B (zh) | 2021-06-30 | 2021-06-30 | 一种M-Ti水滑石基闭式硼簇MBxHx纳米级贵金属的制备方法及其应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113578317B (zh) |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101848856A (zh) * | 2007-11-02 | 2010-09-29 | 塞门库普公司 | 簇硼的制造方法 |
WO2017143348A2 (en) * | 2016-02-18 | 2017-08-24 | The Regents Of The University Of California | Novel three-dimensional boron-rich clusters |
CN107983341B (zh) * | 2016-10-27 | 2019-11-26 | 武汉大学 | 吸附有硼簇化合物的贵金属纳米颗粒及其制备方法和应用 |
US11214636B2 (en) * | 2017-06-19 | 2022-01-04 | Mcmaster University | Rigid non-cyclopentadienyl group 4 transition metal and rare earth metal catalysts for olefin polymerization |
CN108465472B (zh) * | 2018-03-26 | 2020-09-04 | 北京化工大学 | 一种水滑石负载钯基合金催化剂及其制备方法 |
CN108912159A (zh) * | 2018-08-27 | 2018-11-30 | 河南师范大学 | 一种新型硼簇笼状Mn[B12H11X]化合物及其制备方法 |
CN109731571B (zh) * | 2019-02-26 | 2020-07-10 | 武汉大学 | 一种用于高选择催化甲烷转化为乙醇的催化剂及其制备方法和用途 |
CN112592709B (zh) * | 2020-12-15 | 2021-12-28 | 武汉大学 | 一种基于硼簇阴离子光致变色材料的制备方法 |
-
2021
- 2021-06-30 CN CN202110733621.0A patent/CN113578317B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113578317A (zh) | 2021-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hong et al. | Recent progress of transition metal phosphides for photocatalytic hydrogen evolution | |
Yang et al. | Highly efficient photocatalytic hydrogen evolution and simultaneous formaldehyde degradation over Z-scheme ZnIn2S4-NiO/BiVO4 hierarchical heterojunction under visible light irradiation | |
CN105668632B (zh) | 一种变价金属催化及掺杂的钨青铜纳米短棒粒子及其制备方法 | |
Kunthakudee et al. | Light-assisted synthesis of Au/TiO2 nanoparticles for H2 production by photocatalytic water splitting | |
Tahir et al. | Well-designed 3D/2D/2D WO3/Bt/g-C3N4 Z-scheme heterojunction for tailoring photocatalytic CO2 methanation with 2D-layered bentonite-clay as the electron moderator under visible light | |
She et al. | Spatially separated bifunctional cocatalysts decorated on hollow-structured TiO2 for enhanced photocatalytic hydrogen generation | |
CN101791565A (zh) | 一种TiO2@石墨相氮化碳异质结复合光催化剂及其制备方法 | |
CN108745382B (zh) | 一种NiCd双非贵金属修饰的CdS可见光催化剂的制备方法及其应用 | |
Wang et al. | Zero-dimensional/two-dimensional Au25 (Cys) 18 nanoclusters/g-C3N4 nanosheets composites for enhanced photocatalytic hydrogen production under visible light | |
CN110586117B (zh) | 一种Co3O4/CuMoO4复合物及其制备方法和应用 | |
Liu et al. | Boosting electron kinetics of anatase TiO2 with carbon nanosheet for efficient photo-reforming of xylose into biomass-derived organic acids | |
Yang et al. | Fabrication of CuCo2S4 yolk-shell spheres embedded with S-scheme V2O5-deposited on wrinkled g-C3N4 for effective promotion of levofloxacin photodegradation | |
Nair et al. | Converting cellulose nanocrystals into photocatalysts by functionalisation with titanium dioxide nanorods and gold nanocrystals | |
She et al. | Spatially separated bimetallic cocatalysts on hollow-structured TiO 2 for photocatalytic hydrogen generation | |
Liu et al. | CoNi bimetallic alloy cocatalyst-modified TiO2 nanoflowers with enhanced photocatalytic hydrogen evolution | |
Shi et al. | Cellulose template designed porous ZnO based catalysts with different valence copper for solar photocatalytic CO2 conversion | |
Zhao et al. | Effective cocatalyst Pt/PtO nanodots on La2O3 microspheres for degradation of methyl orange | |
Chen et al. | Facile synthesis of AgBr@ ZIF-8 hybrid photocatalysts for degradation of Rhodamine B | |
Zhang et al. | Efficient charge separation of photo-Fenton catalyst: Core-shell CdS/Fe3O4@ N-doped C for enhanced photodegradation performance | |
Jiao et al. | Multi-channel charge transfer of hierarchical TiO2 nanosheets encapsulated MIL-125 (Ti) hollow nanodisks sensitized by ZnSe for efficient CO2 photoreduction | |
CN108525651B (zh) | 一种具有高光催化活性的还原二氧化钛制备方法 | |
CN108579738B (zh) | 一种金纳米颗粒/二氧化钛纳米花复合材料及其制备方法与应用 | |
CN105148918B (zh) | 一种Co-B/Ni-B非晶纳米球复合合金催化剂的制备方法及其应用 | |
He et al. | MOFs-derived TiO2 composite ZnIn2S4 to construct Z-scheme heterojunction for efficient photocatalytic hydrogen evolution under visible light | |
Wu et al. | Enhanced photocatalytic activity of ZnO microflowers by a trace amount of Ti3C2 MXene |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |