CN113574751A - 垂直腔面发射激光器件 - Google Patents

垂直腔面发射激光器件 Download PDF

Info

Publication number
CN113574751A
CN113574751A CN202080021446.6A CN202080021446A CN113574751A CN 113574751 A CN113574751 A CN 113574751A CN 202080021446 A CN202080021446 A CN 202080021446A CN 113574751 A CN113574751 A CN 113574751A
Authority
CN
China
Prior art keywords
layer
laser device
emitting laser
cavity surface
surface emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080021446.6A
Other languages
English (en)
Inventor
朴城柱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seoul Viosys Co Ltd
Original Assignee
Seoul Viosys Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seoul Viosys Co Ltd filed Critical Seoul Viosys Co Ltd
Publication of CN113574751A publication Critical patent/CN113574751A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3086Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure doping of the active layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/232Fuel valves; Draining valves or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/213Heat transfer, e.g. cooling by the provision of a heat exchanger within the cooling circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/30Control parameters, e.g. input parameters
    • F05D2270/306Mass flow
    • F05D2270/3062Mass flow of the auxiliary fluid for heating or cooling purposes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04254Electrodes, e.g. characterised by the structure characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • H01S5/04257Electrodes, e.g. characterised by the structure characterised by the configuration having positive and negative electrodes on the same side of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/18347Mesa comprising active layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18361Structure of the reflectors, e.g. hybrid mirrors
    • H01S5/18369Structure of the reflectors, e.g. hybrid mirrors based on dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2081Methods of obtaining the confinement using special etching techniques
    • H01S5/209Methods of obtaining the confinement using special etching techniques special etch stop layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3054Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure p-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34313Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • H01S5/34366Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers based on InGa(Al)AS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Semiconductor Lasers (AREA)
  • Geometry (AREA)
  • Led Devices (AREA)

Abstract

一实施例的垂直腔面发射激光器件,包括:下镜;上镜,布置于所述下镜上方;活性区域,布置于所述下镜和所述上镜之间;下n型覆层,布置于所述活性区域和所述下镜之间;上n型覆层,布置于所述活性区域和所述上镜之间;高浓度掺杂的p型半导体层,布置于所述活性区域和所述上n型覆层之间;以及高浓度掺杂的n型半导体层,布置于所述高浓度掺杂的p型半导体层和所述上n型覆层之间而与所述高浓度掺杂的p型半导体层形成隧道接合。

Description

垂直腔面发射激光器件
技术领域
本公开涉及一种垂直腔面发射激光器件,更详细地涉及一种高效率及低阻抗的垂直腔面发射激光器件。
背景技术
垂直腔面发射激光器件应用于短/中距离通信用光源。尤其,垂直腔面发射激光器由于具有高光纤耦合效率(fiber-coupling efficiency)、低激光制造费用、低安装费用及低电耗(low electrical power consumption)且能够形成二维阵列(two-dimensionalarray)的特性,作为下一代光通信及信号处理用光源,其使用正在扩大。
垂直腔面发射激光器件与边缘发射型(edge type)激光器件不同,电流向垂直于基板面的方向流动,因此需要限制电流流动的区域窄。为此,使用利用带制成激光器区域或注入离子形成绝缘区域来限定激光器区域的方法,进而主要使用形成氧化膜而限定电流通过区域即光孔(ape rture)的方法。
另一方面,垂直腔面发射激光器件在n型接触层与p型接触层之间具备活性区域。若在n型接触层及p型接触层形成电极而注入电流,则在活性区域产生光。在活性区域产生的光在下镜和上镜之间放大而通过任一镜面向外部射出。由此,激光束会通过在下镜和上镜之间布置的各种半导体层。
但是,具备n型接触层的n型半导体区域和具备p型接触层的p型半导体区域因导电型差异,在活性区域产生的热量不能均匀发散。尤其,一般来说p型半导体区域具有比n型半导体区域低的传导率,因此通过p型半导体区域的散热不好。因此,在应主要通过p型半导体区域散热的激光器结构中散热可能成为问题。
进而,掺杂在p型半导体区域中的p型掺杂比n型掺杂更积极吸收光,因此p型半导体区域引起的光损失大。进而,一般来说电极和p型接触层之间的接触阻抗比电极和n型接触层之间的接触阻抗相当高,因此增加激光器件的正向电压。
发明内容
本公开的实施例提供一种能够减少接触阻抗的垂直腔面发射激光器件。
本公开的实施例提供一种能够减少在下镜和上镜之间因p型掺杂而发生的光损失的垂直腔面发射激光器件。
本公开的实施例提供一种基于p型半导体区域的散热性能得到改善的垂直腔面发射激光器件。
本公开的一实施例的垂直腔面发射激光器件包括:下镜;上镜,布置于所述下镜上方;活性区域,布置于所述下镜和所述上镜之间;下n型覆层,布置于所述活性区域和所述下镜之间;上n型覆层,布置于所述活性区域和所述上镜之间;高浓度掺杂的p型半导体层,布置于所述活性区域和所述上n型覆层之间;以及高浓度掺杂的n型半导体层,布置于所述高浓度掺杂的p型半导体层和所述上n型覆层之间而与所述高浓度掺杂的p型半导体层形成隧道接合。
能够提供一种垂直腔面发射激光器件,通过利用隧道接合,能够使用n型接触层代替p型接触层,从而能够提高散热性能,减少光损失及阻抗。
附图说明
图1是用于说明本公开的一实施例的垂直腔面发射激光器件的概要俯视图。
图2是沿着图1的截取线A-A截取的概要截面图。
图3至图9是用于说明制造本公开的一实施例的垂直腔面发射激光器件的方法的概要截面图。
图10是用于说明本公开的另一实施例的垂直腔面发射激光器件的概要截面图。
具体实施方式
以下,参照所附的图详细说明本公开的实施例。为了使本公开的构思能够充分传达给本公开所属技术领域的通常技术人员,以下介绍的实施例示例性提供。因此,本公开不限于以下说明的实施例,也可以以其它方式具体化。而且,在附图中,为了方便起见,构成要件的宽度、长度、厚度等也可能夸张呈现。另外,当记载为一个构成要件在其它构成要件的“上方”或“上”时,不仅包括各部分“直接”在其它部分“上方”或“直接”在其它部分“上”的情况,还包括在各构成要件和其它构成要件之间还介有其它构成要件的情况。贯穿整个说明书,相同的附图标记表示相同的构成要件。
本公开的一实施例的垂直腔面发射激光器件包括:下镜;上镜,布置于所述下镜上方;活性区域,布置于所述下镜和所述上镜之间;下n型覆层,布置于所述活性区域和所述下镜之间;上n型覆层,布置于所述活性区域和所述上镜之间;高浓度掺杂的p型半导体层,布置于所述活性区域和所述上n型覆层之间;以及高浓度掺杂的n型半导体层,布置于所述高浓度掺杂的p型半导体层和所述上n型覆层之间而与所述高浓度掺杂的p型半导体层形成隧道接合。
利用隧道接合的同时使用n型覆层代替p型覆层,因此能够提高激光器件的散热性能,能够减少p型覆层引起的光损失及阻抗。
在本说明书中,“高浓度掺杂”意指n型或p型杂质掺杂浓度为1E19/cm3以上的掺杂,以p++或n++表示。
另一方面,可以是,所述高浓度掺杂的p型半导体层包括p++InAlAs或p++InAlGaAs。
进而,可以是,所述高浓度掺杂的n型半导体层包括n++InP、n++InA lGaAs或n++InAlAs。
可以是,所述高浓度掺杂的n型半导体层及所述高浓度掺杂的p型半导体层分别具有2E19/cm3至5E19/cm3范围内的掺杂浓度。
可以是,所述垂直腔面发射激光器件还包括布置于所述活性区域和所述高浓度掺杂的p型半导体层之间的蚀刻阻挡层。在湿式蚀刻所述高浓度掺杂的p型半导体层的期间,蚀刻阻挡层保护活性区域。
可以是,所述蚀刻阻挡层包括p型InP。
另一方面,可以是,所述活性区域包括障壁层及布置于所述障壁层之间的阱层,所述障壁层及所述阱层包括InAlGaAs系列的半导体。
可以是,所述垂直腔面发射激光器件还包括相接于所述活性区域而布置于所述活性区域两侧的InAlGaAs系列的间隔层。通过所述间隔层,能够形成SCH(separateconfinement heterostructure:分离局限式异质结构)。
可以是,所述下n型覆层及所述上n型覆层分别包括n型接触层。
可以是,所述n型接触层包括具有5E18/cm3至1E19/cm3范围内的掺杂浓度的n+InP。
进而,可以是,所述垂直腔面发射激光器件还包括分别接触于所述下n型覆层及所述上n型覆层的下欧姆接触层及上欧姆接触层。
可以是,所述下欧姆接触层及所述上欧姆接触层包括AuGe。
由于下欧姆接触层及上欧姆接触层包括AuGe,这些欧姆接触层能够在同一工艺中一起形成,从而能够简化制造工艺。
另一方面,所述垂直腔面发射激光器件还包括绝缘层,所述绝缘层局部性位于所述上n型覆层和所述上欧姆接触层之间而将所述上欧姆接触层的外侧边缘与所述上n型覆层隔开。
通过将绝缘层布置于所述上欧姆接触层的外侧边缘之下,能够提高激光器件的电稳定性。
另一方面,可以是,所述下镜是反复层叠InAlAs和InAlGaAs而形成的分布式布拉格反射器,所述上镜是反复层叠具有彼此不同折射率的电介质层而形成的分布式布拉格反射器。
在一实施例中,可以是,所述垂直腔面发射激光器件包括:环状的沟槽,使所述下n型覆层暴露;以及台面,被所述沟槽围绕,所述台面包括所述活性区域、所述高浓度掺杂的p型半导体层、所述高浓度掺杂的n型半导体层以及所述上n型覆层,所述上镜在所述台面上布置于所述上n型覆层上。
进而,可以是,所述垂直腔面发射激光器件还包括:上欧姆接触层,沿着所述上镜周围布置成环状而欧姆接触于所述上n型覆层;以及下欧姆接触层,欧姆接触于通过所述沟槽暴露的所述下n型覆层。另外,所述激光器件还包括覆盖所述上镜的金属反射层。
此外,可以是,所述垂直腔面发射激光器件还包括分别电接通于所述下欧姆接触层及所述金属反射层的第一电极焊盘及第二电极焊盘。
可以是,所述垂直腔面发射激光器件还包括上绝缘层,所述上绝缘层覆盖所述沟槽的侧壁及底面,并且具有使所述下欧姆接触层及所述金属反射层暴露的开口部,所述第一电极焊盘及所述第二电极焊盘布置于所述上绝缘层上,并通过所述开口部分别电接通于所述下欧姆接触层及所述金属反射层。
另一方面,可以是,所述垂直腔面发射激光器件还包括布置于所述下镜之下的InP基板,通过所述InP基板发出激光束。
图1是用于说明本公开的一实施例的垂直腔面发射激光器件的概要俯视图,图2是沿着图1的截取线A-A截取的概要截面图。
参照图1及图2,上述激光器件可以包括基板21、缓冲层23、下镜25、下n型覆层27、下间隔层29、活性区域31、上间隔层33、蚀刻阻挡层35、高浓度掺杂的p型半导体层37、高浓度掺杂的n型半导体层39、上n型覆层41、下绝缘层43、下欧姆接触层45a、上欧姆接触层45b、上镜47、金属反射层49、上绝缘层51、第一电极焊盘53a、第二电极焊盘53b及防反射层55。
基板21支承激光器件。基板21作为能够使在活性区域31产生的光透过的透明基板,例如可以是InP基板。基板21可以是半绝缘性(semi-insulating)基板,为此,可以反向掺杂Fe。基板21例如可以具有约100um至150um范围内的厚度。
缓冲层23覆盖基板21表面而提高在其之上生长的半导体层的结晶性。缓冲层23例如可以由未掺杂的InP形成。缓冲层23提高在InP基板21上形成的InAlGaAs及InAlAs等化合物半导体的结晶性。
下镜25可以由将折射率彼此不同的化合物半导体层交替层叠的分布式布拉格反射器(DBR)形成。各半导体层可以大致以在各半导体层内的振荡波长的1/4的厚度形成。
为了使结晶性良好且防止光损失,这些化合物半导体层可以不掺杂而形成。下镜25例如可以由InyAlxGa1-x-yAs/InzAlwGa1-w-yAs(0<x<1,0<y<1,0<z<1,0<w<1)形成。在一实施例中,为了容易形成下镜25,可以恒定In的组成比,调整Al和Ga的组成比来交替形成折射率彼此不同的层。例如,可以将In0.52Al0.15Ga0.33As和In0.52Al0.48As交替层叠而形成下镜25。
另一方面,为了提高下镜25的反射率,下镜25的第一及最后层选择与下镜25相接的层折射率差相对高的层。例如,在缓冲层23及下n型覆层27由InP(折射率:约3.170)形成的情况下,可以是折射率比InAlAs相对高的InAlGaAs层布置于反射镜25的第一及最后层。
下n型覆层27包括n型接触层。n型接触层形成下n型覆层27的上面。另一方面,下n型覆层27可以还包括位于下镜25和n型接触层之间的低浓度掺杂层。下n型覆层27可以由n型杂质,例如Si掺杂的InP形成。n型接触层可以具有例如5E18/cm3~1E19/cm3的掺杂浓度,低浓度掺杂层可以具有1E18/cm3~2E18/cm3的掺杂浓度。下n型覆层27可以以在活性区域31产生的光的波长的1/4的整数倍形成,例如可以以2.5λ形成。
另一方面,活性区域31布置于下n型覆层27上。活性区域31可以由单量子阱结构或多量子阱结构形成,并包括障壁层和至少一个阱层。活性区域31例如可以由具备7个阱层的多量子阱结构形成。障壁层及阱层可以无需掺杂地由InAlGaAs系列的化合物半导体形成。另外,可以是障壁层拉伸变形,阱层压缩变形。
另一方面,下间隔层29及上间隔层33可以分别布置于活性区域31的顶面及底面。下间隔层29及上间隔层33可以由InAlGaAs系列的化合物半导体形成,为了形成SCH(separate confinement heterostructure:分离局限式异质结构)而采用。
当湿式蚀刻高浓度掺杂的p型半导体层37时,蚀刻阻挡层35防止活性区域31受损。蚀刻阻挡层35例如可以由p型InP形成,可以以约1E18/cm3~2E18/cm3的浓度掺杂。作为p型杂质,例如可以使用Zn。
高浓度掺杂的p型半导体层37布置于蚀刻阻挡层35上。高浓度掺杂的p型半导体层37作为p型杂质例如可以包含碳(C),例如可以具有2E19/cm3~5E19/cm3的掺杂浓度。高浓度掺杂的p型半导体层37可以形成用于限制电流流动的光孔37a,因此,也可以称为光孔形成层。为了形成光孔37a,高浓度掺杂的p型半导体层37可以包含例如p++InAlAs或p++InAlGaAs。
另一方面,高浓度掺杂的n型半导体层39隧道接合于高浓度掺杂的p型半导体层37。由此,可以形成具备高浓度掺杂的n型半导体层39和高浓度掺杂的p型半导体层37的隧道接合层40。例如,高浓度掺杂的n型半导体层39可以包含n++InP。高浓度掺杂的n型半导体层39可以包含n++InAlGaAs或n++InAlAs,对此参照图10在后面再说明。高浓度掺杂的n型半导体层39作为n型杂质可以包含例如Si,例如可以具有2E19/cm3~5E19/cm3的掺杂浓度。
上n型覆层41可以包括n型接触层。n型接触层可以具有例如5E18/cm3~1E19/cm3的Si掺杂浓度。另一方面,上n型覆层41可以在n型接触层和高浓度掺杂的n型半导体层37之间具有低浓度掺杂层,低浓度掺杂层例如可以具有1E18/cm3~2E18/cm3的Si掺杂浓度。上n型覆层41可以以在活性区域31产生的光的波长的1/4的整数倍形成,例如可以以2.75λ形成。
另一方面,可以形成通过上n型覆层41、高浓度掺杂的n型半导体层39、高浓度掺杂的p型半导体层37、蚀刻阻挡层35、间隔层33、29及活性区域31而使下n型覆层27暴露的沟槽T。沟槽T可以以围绕台面M的环状形成。
在台面M内,高浓度掺杂的p型半导体层37的侧面凹陷而形成光孔37a。光孔37a具有比蚀刻阻挡层35窄的面积,进而,可以具有比高浓度掺杂的n型半导体层37窄的面积。
高浓度掺杂的p型半导体层37凹陷而形成的气隙可以用下绝缘层43填充。即,下绝缘层43围绕光孔37a而使电流限定于光孔37a流动。
如图2所示,活性区域31及/或间隔层29、33也可以凹陷,下绝缘层43可以还填充活性区域31及/或间隔层29、33的凹陷的区域。只是,活性区域31及/或间隔层29、33的凹陷调整为小于高浓度掺杂的p型半导体层37。
下绝缘层43可以使用原子层沉积技术而形成,例如,可以由Al2O3或AlN等形成。如图2所示,下绝缘层43可以覆盖台面M的整个侧壁,但不限于此,也可以形成为使台面M的侧壁暴露。
下欧姆接触层45a可以布置于通过沟槽T暴露的下n型覆层27上。下欧姆接触层45a可以欧姆接触于下n型覆层27。如图1所示,下欧姆接触层45a以沿着台面M周围开放的环状形成。
另一方面,上欧姆接触层45b在台面M上欧姆接触于上n型覆层41。上欧姆接触层45b可以以环状布置。进而,如图2所示,上述上欧姆接触层45b的外侧边缘可以被下绝缘层43与上n型覆层41隔开。由此,可以防止上欧姆接触层45b在进行热处理期间向台面M的侧面移动而发生电短路。
下欧姆接触层45a及上欧姆接触层45b可以以彼此不同金属层形成。在本实施例中,下覆层27及上覆层41全部是n型半导体层,因此下欧姆接触层45a及上欧姆接触层45b可以是相同的接触层,例如包含AuGe。例如,下欧姆接触层45a及上欧姆接触层45b可以由AuGe/Ni/Au形成。
上镜47布置于台面M上。上镜47可以形成在被上欧姆接触层45b围绕的区域内。尤其,上镜47覆盖光孔37a而反射通过光孔37a入射的光。
上镜47可以由半导体或电介质的DBR形成。上镜47例如可以由In AlGaAs系列的半导体层、InP和InAlGaAs系列的半导体层、钛氧化膜和硅氧化膜、硅和硅氧化膜、硅和钛氧化膜等形成。
上镜47具有比下镜25更高的反射率,因此,在上镜47和下镜25之间产生的激光L如在图2中箭头所示那样通过下镜25向外部发出。
另一方面,金属反射层49覆盖上镜47而增加上镜47的反射率。金属反射层49例如可以由Ti/Au形成。金属反射层49可以电接通于上欧姆接触层45b。
上绝缘层51覆盖上n型覆层41,覆盖沟槽T内壁。上绝缘层51可以还覆盖下欧姆接触层45a。只是,上绝缘层51可以具有使下欧姆接触层45a暴露的开口部51a。进而,上绝缘层51可以使金属反射层49暴露,以便允许电接通于下欧姆接触层45a。
第一电极焊盘53a及第二电极焊盘53b布置于上绝缘层51上。第一电极焊盘53a可以电接通于通过开口部51a暴露的下欧姆接触层45a,第二电极焊盘53b可以电接通于上欧姆接触层45b。如图所示,第二电极焊盘53b可以接通于金属反射层49而电接通于上欧姆接触层45b,但不限于此,第二电极焊盘53b也可以直接接通于上欧姆接触层45b。
另一方面,防反射层55形成于基板21的底面。当激光L通过基板21发出时,防反射层55防止激光L在基板21的表面反射。
根据本实施例,利用高浓度掺杂的p型半导体层37和高浓度掺杂的n型半导体层39形成隧道接合层40,从而可以由n型半导体层形成上覆层41。因此,可以将下n型覆层27及上n型覆层41以相同导电型的相同材料形成,从而能够提高散热效率。
进而,可以使用n型接触层代替以往的p型接触层,从而能够防止因p型半导体产生的光损失,能够减少阻抗。
图3至图9是用于说明制造本公开的一实施例的垂直腔面发射激光器件的方法的概要截面图。
首先,参照图3,在基板21上形成缓冲层23、下镜25、下n型覆层27、下间隔层29、活性区域31、上间隔层33、蚀刻阻挡层35、高浓度掺杂的p型半导体层37、高浓度掺杂的n型半导体层39及上n型覆层41。这些层例如可以利用金属有机化学气相生长法而依次形成。
基板21可以是半绝缘InP基板,缓冲层23可以由脉冲噪声防护InP形成。另一方面,下n型覆层27包括n型接触层,上n型覆层41还包括n型接触层。另外,高浓度掺杂的p型半导体层37和高浓度掺杂的n型半导体层39形成隧道接合层40。关于各个层,与前面说明的相同,因此为了避免重复,省略详细的说明。
参照图4,通过上n型覆层41、高浓度掺杂的n型半导体层39、高浓度掺杂的p型半导体层37、蚀刻阻挡层35、间隔层33、29及活性区域31形成使下n型覆层27暴露的沟槽T。沟槽T可以以围绕台面M的环状形成。
参照图5,利用湿式蚀刻技术来蚀刻高浓度掺杂的p型半导体层37的侧面。由此,高浓度掺杂的p型半导体层37从沟槽T凹陷而形成被气隙37b围绕的光孔37a。
在进行湿式蚀刻期间,间隔层29、33及活性区域31的侧面也可以凹陷。只是,间隔层29、33及活性区域31凹陷得少于高浓度掺杂的p型半导体层37。
参照图6,使用原子层沉积(ALD)技术而形成下绝缘层43。例如,在150℃至400℃的温度下,Al2O3或AlN等的绝缘层可以用原子层沉积技术沉积。下绝缘层43可以填充凹陷的区域,并覆盖沟槽T的底面及侧壁和上n型覆层41的上面。下绝缘层43还填充气隙37b而围绕光孔37a。
接着,利用光刻及蚀刻技术去除形成于上n型覆层41及下n型覆层27上的下绝缘层43。由此,下绝缘层43可以填充高浓度掺杂的p型半导体层37的凹陷区域,并覆盖台面M的侧壁。进而,下绝缘层43的一部分可以沿着台面M的边缘,局部性覆盖上n型覆层41的上面。
参照图7,在台面M上形成上镜47。上镜47可以具有折射率彼此不同的层交替层叠的结构。例如,可以利用半导体层或电介质层形成上镜47。
另一方面,在通过沟槽T暴露的下n型覆层27及暴露于上镜47周围的上n型覆层41上分别形成下欧姆接触层45a及上欧姆接触层45b。在本实施例中,下欧姆接触层45a及上欧姆接触层45b可以在同一工艺中由相同材料一起形成。
下欧姆接触层45a可以以围绕台面M的开放环状形成。上欧姆接触层45b可以以围绕上镜47的环状形成,外侧边缘可以位于下绝缘层43上。
在本实施例中,说明为先形成上镜47再形成欧姆接触层45a、45b,但也可以先形成欧姆接触层45a、45b再形成上镜47。在其它实施例中,上镜47也可以在形成沟槽T之前先形成于上n型覆层41上。
另一方面,金属反射层49形成于上镜47上。金属反射层49可以由对在活性区域31产生的光进行反射的金属层形成,例如由Ti/Au形成。
参照图8,形成上绝缘层51。上绝缘层51可以以覆盖上n型覆层41、金属反射层49及沟槽T的内壁及底面的方式形成。之后,可以利用光刻及蚀刻技术,图案化上绝缘层51,以使下欧姆接触层45a及金属反射层49暴露。如图8所示,可以在下欧姆接触层45a上形成开口部51a,可以暴露金属反射层47的至少一部分。
参照图9,在上绝缘层51上形成第一电极焊盘53a及第二电极焊盘53b。可以是第一电极焊盘53a通过开口部51a电接通于下欧姆接触层45a,第二电极焊盘53b电接通于金属反射层49。第一电极焊盘53a及第二电极焊盘53b例如可以由Ti/Pt/Au形成。
另一方面,可以研磨基板21下表面而减少基板21的厚度后,形成防反射层55。
之后,基板21可以分割成单体元件单位,由此,完成如图1所示那样的激光器件100。
图10是用于说明本公开的另一实施例的垂直腔面发射激光器件的概要截面图。
参照图10,本实施例的激光器件与参照图1及图2说明的激光器件100大致相似,但区别在于高浓度掺杂的n型半导体层39与高浓度掺杂的p型半导体层37相似地凹陷而形成光孔37a。
高浓度掺杂的n型半导体层39也可以与高浓度掺杂的p型半导体层37相似地包括包含As的半导体,例如n++InAlGaAs或n++InAlAs,因此,可以在湿式蚀刻高浓度掺杂的p型半导体层37的期间一起蚀刻。
高浓度掺杂的n型半导体层39及高浓度掺杂的p型半导体层37的凹陷区域可以用下绝缘层43填充。
根据本实施例,可以增加光孔37a的高度,因此能够使电流更集中于光孔37a区域。

Claims (20)

1.一种垂直腔面发射激光器件,其特征在于,包括:
下镜;
上镜,布置于所述下镜上方;
活性区域,布置于所述下镜和所述上镜之间;
下n型覆层,布置于所述活性区域和所述下镜之间;
上n型覆层,布置于所述活性区域和所述上镜之间;
高浓度掺杂的p型半导体层,布置于所述活性区域和所述上n型覆层之间;以及
高浓度掺杂的n型半导体层,布置于所述高浓度掺杂的p型半导体层和所述上n型覆层之间而与所述高浓度掺杂的p型半导体层形成隧道接合。
2.根据权利要求1所述的垂直腔面发射激光器件,其特征在于,
所述高浓度掺杂的p型半导体层包括p++InAlAs或p++InAlGaAs。
3.根据权利要求2所述的垂直腔面发射激光器件,其特征在于,
所述高浓度掺杂的n型半导体层包括n++InP、n++InAlGaAs或n++InAl As。
4.根据权利要求3所述的垂直腔面发射激光器件,其特征在于,
所述高浓度掺杂的n型半导体层及所述高浓度掺杂的p型半导体层分别具有2E19/cm3至5E19/cm3范围内的掺杂浓度。
5.根据权利要求2所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件还包括布置于所述活性区域和所述高浓度掺杂的p型半导体层之间的蚀刻阻挡层。
6.根据权利要求5所述的垂直腔面发射激光器件,其特征在于,
所述蚀刻阻挡层包括p型InP。
7.根据权利要求1所述的垂直腔面发射激光器件,其特征在于,
所述活性区域包括障壁层及布置于所述障壁层之间的阱层,所述障壁层及所述阱层包括InAlGaAs系列的半导体。
8.根据权利要求7所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件还包括相接于所述活性区域而布置于所述活性区域两侧的InAlGaAs系列的间隔层。
9.根据权利要求1所述的垂直腔面发射激光器件,其特征在于,
所述下n型覆层及所述上n型覆层分别包括n型接触层。
10.根据权利要求9所述的垂直腔面发射激光器件,其特征在于,
所述n型接触层包括具有5E18/cm3至1E19/cm3范围内的掺杂浓度的n+InP。
11.根据权利要求9所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件还包括分别接触于所述下n型覆层及所述上n型覆层的下欧姆接触层及上欧姆接触层。
12.根据权利要求11所述的垂直腔面发射激光器件,其特征在于,
所述下欧姆接触层及所述上欧姆接触层包括AuGe。
13.根据权利要求11所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件还包括绝缘层,所述绝缘层局部性位于所述上n型覆层和所述上欧姆接触层之间而将所述上欧姆接触层的外侧边缘与所述上n型覆层隔开。
14.根据权利要求1所述的垂直腔面发射激光器件,其特征在于,
所述下镜是反复层叠InAlAs和InAlGaAs而形成的分布式布拉格反射器,所述上镜是反复层叠具有彼此不同折射率的电介质层而形成的分布式布拉格反射器。
15.根据权利要求1所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件包括:
环状的沟槽,使所述下n型覆层暴露;以及
台面,被所述沟槽围绕,
所述台面包括所述活性区域、所述高浓度掺杂的p型半导体层、所述高浓度掺杂的n型半导体层以及所述上n型覆层,
所述上镜在所述台面上布置于所述上n型覆层上。
16.根据权利要求15所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件还包括:
上欧姆接触层,沿着所述上镜周围布置成环状而欧姆接触于所述上n型覆层;以及
下欧姆接触层,欧姆接触于通过所述沟槽暴露的所述下n型覆层。
17.根据权利要求16所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件还包括覆盖所述上镜的金属反射层。
18.根据权利要求17所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件还包括分别电接通于所述下欧姆接触层及所述金属反射层的第一电极焊盘及第二电极焊盘。
19.根据权利要求18所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件还包括上绝缘层,所述上绝缘层覆盖所述沟槽的侧壁及底面,并且具有使所述下欧姆接触层及所述金属反射层暴露的开口部,
所述第一电极焊盘及所述第二电极焊盘布置于所述上绝缘层上,并通过所述开口部分别电接通于所述下欧姆接触层及所述金属反射层。
20.根据权利要求1所述的垂直腔面发射激光器件,其特征在于,
所述垂直腔面发射激光器件还包括布置于所述下镜之下的InP基板,
通过所述InP基板发出激光束。
CN202080021446.6A 2019-03-20 2020-03-18 垂直腔面发射激光器件 Pending CN113574751A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201962820967P 2019-03-20 2019-03-20
US62/820,967 2019-03-20
US16/820,486 2020-03-16
US16/820,486 US11441484B2 (en) 2019-03-20 2020-03-16 Vertical-cavity surface-emitting laser device
PCT/KR2020/003704 WO2020190025A1 (ko) 2019-03-20 2020-03-18 수직 공동 표면 방출 레이저 소자

Publications (1)

Publication Number Publication Date
CN113574751A true CN113574751A (zh) 2021-10-29

Family

ID=72519314

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202020342032.0U Active CN211929898U (zh) 2019-03-20 2020-03-18 垂直腔面发射激光器件
CN202080021446.6A Pending CN113574751A (zh) 2019-03-20 2020-03-18 垂直腔面发射激光器件

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202020342032.0U Active CN211929898U (zh) 2019-03-20 2020-03-18 垂直腔面发射激光器件

Country Status (6)

Country Link
US (1) US11441484B2 (zh)
EP (1) EP3940902A4 (zh)
JP (1) JP2022526723A (zh)
KR (1) KR20210130136A (zh)
CN (2) CN211929898U (zh)
WO (1) WO2020190025A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102631207B1 (ko) * 2022-10-14 2024-01-31 하나옵트로닉스 주식회사 공통 애노드 구조를 갖는 vcsel 및 vcsel 어레이

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11441484B2 (en) * 2019-03-20 2022-09-13 Seoul Viosys Co., Ltd. Vertical-cavity surface-emitting laser device
US11581705B2 (en) * 2019-04-08 2023-02-14 Lumentum Operations Llc Vertical-cavity surface-emitting laser with dense epi-side contacts
EP3883073B1 (en) * 2020-03-20 2022-09-07 TRUMPF Photonic Components GmbH Method of forming an electrical metal contact and method of producing a vertical cavity surface emitting laser
JPWO2022220088A1 (zh) * 2021-04-14 2022-10-20

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515308B1 (en) * 2001-12-21 2003-02-04 Xerox Corporation Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
KR20030047421A (ko) * 2001-12-10 2003-06-18 (주)옵토웨이 수직 공진형 표면 발광 레이저 및 그의 제조방법
JP2003324251A (ja) * 2002-04-30 2003-11-14 Ricoh Co Ltd 面発光半導体レーザ素子の製造方法および面発光半導体レーザ素子および光伝送システム
CN1524328A (zh) * 2001-03-15 2004-08-25 ��ɣ��̬�ۺϼ������Ϲ�˾ 垂直腔表面发射激光器及其制造方法
KR100484490B1 (ko) * 2002-11-11 2005-04-20 한국전자통신연구원 장파장 수직 공진 표면방출 레이저 및 그 제작방법
CN211929898U (zh) * 2019-03-20 2020-11-13 首尔伟傲世有限公司 垂直腔面发射激光器件

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2001286620A1 (en) 2000-08-22 2002-03-04 The Regents Of The University Of California Aigaassb/inp distributed bragg reflector
US20050253222A1 (en) * 2004-05-17 2005-11-17 Caneau Catherine G Semiconductor devices on misoriented substrates
US20060013276A1 (en) 2004-07-15 2006-01-19 Mchugo Scott A VCSEL having an air gap and protective coating
JP2007288089A (ja) * 2006-04-20 2007-11-01 Opnext Japan Inc 光素子および光モジュール
US7680162B2 (en) * 2006-12-06 2010-03-16 Electronics And Telecommunications Research Institute Long wavelength vertical cavity surface emitting laser device and method of fabricating the same
US7957447B2 (en) 2007-11-20 2011-06-07 Fuji Xerox Co., Ltd. VCSEL array device and method for manufacturing the VCSEL array device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1524328A (zh) * 2001-03-15 2004-08-25 ��ɣ��̬�ۺϼ������Ϲ�˾ 垂直腔表面发射激光器及其制造方法
KR20030047421A (ko) * 2001-12-10 2003-06-18 (주)옵토웨이 수직 공진형 표면 발광 레이저 및 그의 제조방법
US6515308B1 (en) * 2001-12-21 2003-02-04 Xerox Corporation Nitride-based VCSEL or light emitting diode with p-n tunnel junction current injection
JP2003324251A (ja) * 2002-04-30 2003-11-14 Ricoh Co Ltd 面発光半導体レーザ素子の製造方法および面発光半導体レーザ素子および光伝送システム
KR100484490B1 (ko) * 2002-11-11 2005-04-20 한국전자통신연구원 장파장 수직 공진 표면방출 레이저 및 그 제작방법
CN211929898U (zh) * 2019-03-20 2020-11-13 首尔伟傲世有限公司 垂直腔面发射激光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102631207B1 (ko) * 2022-10-14 2024-01-31 하나옵트로닉스 주식회사 공통 애노드 구조를 갖는 vcsel 및 vcsel 어레이

Also Published As

Publication number Publication date
CN211929898U (zh) 2020-11-13
JP2022526723A (ja) 2022-05-26
US20200303904A1 (en) 2020-09-24
EP3940902A4 (en) 2023-01-11
US11441484B2 (en) 2022-09-13
EP3940902A1 (en) 2022-01-19
KR20210130136A (ko) 2021-10-29
WO2020190025A1 (ko) 2020-09-24

Similar Documents

Publication Publication Date Title
CN211929898U (zh) 垂直腔面发射激光器件
JP3748807B2 (ja) 電気光学的特性が改善された半導体光放出装置及びその製造方法
KR100341946B1 (ko) 패턴화미러수직공동표면방출레이저및그제조방법
US5513202A (en) Vertical-cavity surface-emitting semiconductor laser
JP4359345B2 (ja) 不動態化垂直空洞面発光レーザ
US7638792B2 (en) Tunnel junction light emitting device
JP5029254B2 (ja) 面発光レーザ
CA2477541A1 (en) Hybrid vertical cavity laser with buried interface
US6754245B2 (en) GaN series surface-emitting laser diode having spacer for effective diffusion of holes between p-type electrode and active layer, and method for manufacturing the same
US11843223B2 (en) Semiconductor light-emitting device and method for manufacturing semiconductor light-emitting device
JP2014508420A (ja) 半導体量子カスケードレーザのファセットに隣接するp型分離領域
JPH06314854A (ja) 面型発光素子とその製造方法
KR20190088803A (ko) 반도체 레이저 장치 및 그 제조 방법
US20070153856A1 (en) Semiconductor laser device
WO2017212887A1 (ja) 垂直共振器面発光レーザ
KR100381985B1 (ko) 수직공동표면방출레이저(vcsel)및그제조방법
US20060209914A1 (en) Semiconductor device and manufacturing method thereof
JP4224981B2 (ja) 面発光半導体レーザ素子およびその製造方法
JP2000164982A (ja) 面発光レーザ
EP1207598B1 (en) Surface emitting semiconductor laser
JPWO2007135772A1 (ja) 発光素子
US20230096932A1 (en) Surface emitting laser
US7809041B2 (en) Surface emitting semiconductor laser
CN113745960A (zh) 一种光子晶体面发射激光器及其制作方法
US20220131344A1 (en) Semiconductor optical device and method of manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination