CN113571406A - 一种液相硒化制备硒硫化锑薄膜的方法 - Google Patents

一种液相硒化制备硒硫化锑薄膜的方法 Download PDF

Info

Publication number
CN113571406A
CN113571406A CN202110843501.6A CN202110843501A CN113571406A CN 113571406 A CN113571406 A CN 113571406A CN 202110843501 A CN202110843501 A CN 202110843501A CN 113571406 A CN113571406 A CN 113571406A
Authority
CN
China
Prior art keywords
film
selenium
liquid
heating
phase selenization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110843501.6A
Other languages
English (en)
Other versions
CN113571406B (zh
Inventor
陈桂林
姚丽铨
陈水源
黄志高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujian Normal University
Original Assignee
Fujian Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujian Normal University filed Critical Fujian Normal University
Priority to CN202110843501.6A priority Critical patent/CN113571406B/zh
Publication of CN113571406A publication Critical patent/CN113571406A/zh
Application granted granted Critical
Publication of CN113571406B publication Critical patent/CN113571406B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种液相硒化制备硒硫化锑薄膜的方法。该方法是在清洗干净的FTO衬底上沉积CdS后,采用水热原位生长法沉积Sb2S3前驱薄膜;将固态硒粉加热溶解于油胺中,形成硒‑油胺溶液;然后将Sb2S3前驱薄膜淹没在硒溶液中,置于高压反应釜中,加温进行离子交换退火,最终得到Sb2(S,Se)3薄膜。本发明方法具有硒化退火工艺简单、制备设备便宜、硒粉原材料利用率高、绿色环保、反应活性高等优点,适用于大规模的工业生产。

Description

一种液相硒化制备硒硫化锑薄膜的方法
技术领域
本发明涉及太阳能电池材料领域,具体涉及一种液相硒化制备Sb2(S,Se)3薄膜的方法。
背景技术
随着世界经济的快速发展,人类对能源的需求日渐增长,同时传统化石能源的大量消耗也带来严峻的环境污染问题。因此,寻求一种清洁可再生的新型能源成为当下社会的主要任务。在众多可再生能源中,太阳能具有来源普遍、安全无污染、长期可再生等优点,是一种较为合适的替代性能源,利用太阳能电池最为直接有效地方式是光伏发电,即太阳能电池。太阳能电池种类众多,其中化合物薄膜太阳能电池具有成本低廉、材料消耗低和可柔性等优点,已有铜铟镓硒、碲化镉等成熟薄膜太阳能电池,也有新兴铜锌锡硫、硫化亚锡、硒硫化锑和氧化亚铜等薄膜器件。其中硒硫化锑(Sb2(S,Se)3)具有适合的带隙可调(1.1~1.7eV)、较高的吸收系数(105cm-1)、理论转换效率高和原料来源丰富等优点。
目前,制备硒硫混合的Sb2(S,Se)3薄膜的方法主要包括原位一步生长硒硫共存的化合物薄膜,以及硒化Sb2S3薄膜的方法。而后者是通过先生长Sb2S3前驱薄膜后再进行硒后处理,实现硒取代硫的过程。该过程大原子硒取代硫原子,可实现薄膜的致密化,提高薄膜质量;同时S/Se比例的调控有望实现Sb2(S,Se)3薄膜带隙的调控,且硒化过程中硒由表及里的扩散有利于构建梯度能带结构,有助于改善载流子在电池中的传输。当前,常见硒化Sb2S3薄膜的特点是采用固态硒粉,加热形成硒蒸汽后使其与Sb2S3薄膜反应生成Sb2(S,Se)3薄膜。经对现有技术文献专利检索发现,采用固态硒粉作为硒源对Sb2S3薄膜进行硒化退火方面的专利未见报道。同时,经过检索现有文献发现,当前采用固体硒粉硒化制备Sb2(S,Se)3薄膜,均是将样品与硒粉置于真空或者惰性氛围内进行退火。如采用热喷涂在FTO/CdS衬底上沉积Sb2S3薄膜后,将其与硒粉一同放置在管式炉中350℃进行退后,获得硒硫共混的Sb2(S,Se)3薄膜(Solar RRL 2018,1800346);再如利用化学水浴法先生长Sb2S3薄膜,随后在氩气载气的带动下,将固态硒粉加热所形成地硒蒸汽传输至Sb2S3薄膜表面,使二者进行反应形成Sb2(S,Se)3薄膜(Electrochimica Acta,2018,290,457-464)。然而,现有固态硒粉硫化退火技术均涉及真空或者惰性气氛(氮气或氩气),对退火设备的要求极高、成本较为昂贵,不利于Sb2(S,Se)3薄膜的大规模化生产;同时,中温300-450℃下硒蒸汽主要以长链原子团为主,反应活性低。且蒸汽体系复杂,可重复性差。因此,本发明专注于此问题,采用操作简单、可在空气中退火的液相硒化法对Sb2S3薄膜进行硒化退火,并制备出均匀、高质量的Sb2(S,Se)3薄膜。
发明内容
本发明的目的在于提供一种液相硒化制备硒硫化锑薄膜的方法,以液态的硒-油胺为硒源,将Sb2S3前驱薄膜置于其中进行加热反应获得Sb2(S,Se)3薄膜的方法。本发明是将固态硒粉预先溶解于油胺溶剂形成含硒的前驱溶液,随后将Sb2S3前驱薄膜浸泡在该前驱溶液中,经过低温热处理获得Sb2(S,Se)3薄膜。该方法具有退火工艺简单、设备不复杂、原料成本低廉、材料利用率高、反应活性高等优点,适用于大规模的工业生产。
为实现本发明的目的所采用的技术方案是:
一种液相硒化制备硒硫化锑薄膜的方法,包括以下步骤:
步骤一:在清洗干净的FTO玻璃上采用化学水浴沉积CdS薄膜后,利用水热原位生长法在其上面生长Sb2S3前驱薄膜;
步骤二:将固态硒粉分散于油胺中后,加热溶解获得离子态硒溶液;
步骤三:将上述Sb2S3前驱薄膜与离子态硒溶液放置于高压反应釜中,加热进行离子交换,最终硒化获得所述的Sb2(S,Se)3薄膜。
步骤一所述的FTO玻璃的清洗方法是将FTO玻璃衬底依次浸入普通洗涤剂、丙酮、乙醇、去离子水中,进行超声清洗。
步骤一所述Sb2S3前驱薄膜的厚度为760~800nm。
步骤二所述的离子态硒溶液的硒浓度为0.1~30mg/ml。
步骤二所述的加热溶解温度为180~220℃,溶解时间为120min~300min。
步骤三所述加热是从室温开始升温,升温速率5℃/min,最终保持在200~350℃,保温15min~120min。
本发明的原理是:
1)将Sb2S3前驱薄膜完全浸泡在含硒的油胺溶液中,随后加热可使空气逃逸离开反应体系,使后续的离子交换过程与外界环境隔绝,在这个过程中无需使用真空泵或惰性气氛制造无氧、无水环境。
2)固态硒预先溶解在油胺后可获得离子态的硒溶液,随后加热过程中硒离子可与薄膜中的硫进行交换,可在较为温和的条件下获得高质量Sb2(S,Se)3薄膜。
本发明具有以下突出有益效果:本发明提出了一种利用低成本、制备过程简单的液相硒化得到Sb2(S,Se)3薄膜的方法。现有其它制备Sb2(S,Se)3薄膜的硒化退火方法通常采用固体硒粉为硒源,需要在高真空环境或者惰性气氛下进行,过程复杂、反应活性低、所需设备昂贵。因此本发明采用了简单的硒-油胺溶液中硒化,获得了太阳能电池吸收层Sb2(S,Se)3薄膜。具体有益效果有如下几点:1)本发明首次在液相中对Sb2S3前驱体进行硒化退火得到Sb2(S,Se)3薄膜;2)液相硒化有两方面的益处:其一,在于硒化退火装置无需昂贵的高真空设备;其二,液相中的硒离子比气相反应中的硒原子团活性高。
附图说明
图1为实施例1制备的Sb2(S,Se)3薄膜的XRD图。
图2为实施例1制备Sb2(S,Se)3薄膜的SEM图。
具体实施方式
为了对本发明有更好的理解,现以实施例的方式对本发明做进一步的说明。
以下实施例中硒粉以及油胺采购于上海阿拉丁生化科技股份有限公司,其余所涉及到的化学试剂均采购于国药集团化学试剂公司,衬底所涉及到的FTO玻璃采购于辽宁优选有限公司。
实施例1
一种液相硒化制备硒硫化锑薄膜的方法,包括以下步骤:
1、将FTO玻璃衬底依次浸入普通洗涤剂、丙酮、乙醇、去离子水中,进行超声清洗,然后采用CBD在其表面生长80nm厚的CdS薄膜。配制30mM酒石酸锑钾和144mM硫代硫酸钠的混合溶液,在120℃下进行12h的水热生长获得780nm的Sb2S3前驱薄膜。
2、将0.1g硒粉分散于60ml油胺中后,加热至200℃使硒完全溶解获得离子态硒溶液。
3、将在步骤一得到的Sb2S3前驱薄膜浸泡在步骤二得到的硒溶液中,并放置于高压反应釜中,从室温开始升温,升温速率5℃/min,最终保持在280℃,保温60min进行离子交换,随后缓慢冷却到室温后,得到Sb2(S,Se)3薄膜。
利用XRD对本实施例制备的薄膜进行测试,从图1可以看出,所获得的薄膜为硒硫共混的Sb2(S,Se)3薄膜;利用SEM对本实施例制备的薄膜进行测试,从图2可以看出,所获得的Sb2(S,Se)3薄膜为致密平整、均匀性高。
实施例2
一种液相硒化制备硒硫化锑薄膜的方法,包括以下步骤:
1、将FTO玻璃衬底依次浸入普通洗涤剂、丙酮、乙醇、去离子水中,进行超声清洗,然后采用CBD在其表面生长80nm厚的CdS薄膜。配制30mM酒石酸锑钾和144mM硫代硫酸钠的混合溶液,在120℃下进行12h的水热生长获得780nm的Sb2S3前驱薄膜。
2、将0.5g硒粉分散于60ml油胺中后,加热至200℃使硒完全溶解获得离子态硒溶液。
3、将在步骤一得到的Sb2S3前驱薄膜浸泡在步骤二得到的硒溶液,并放置于高压反应釜中,从室温开始升温,升温速率5℃/min,最终保持在280℃,保温30min进行离子交换,随后缓慢冷却到室温后,得到Sb2(S,Se)3薄膜。
实施例3
一种液相硒化制备硒硫化锑薄膜的方法,包括以下步骤:
1、将FTO玻璃衬底依次浸入普通洗涤剂、丙酮、乙醇、去离子水中,进行超声清洗,然后采用CBD在其表面生长80nm厚的CdS薄膜。配制30mM酒石酸锑钾和144mM硫代硫酸钠的混合溶液,在120℃下进行12h的水热生长获得780nm的Sb2S3前驱薄膜。
2、将0.25g硒粉分散于60ml油胺中后,加热至200℃使硒完全溶解获得离子态硒溶液。
3、将在步骤一得到的Sb2S3前驱薄膜浸泡在步骤二得到的硒溶液,并放置于高压反应釜中,从室温开始升温,升温速率5℃/min,最终保持在300℃,保温25min进行离子交换,随后缓慢冷却到室温后,得到Sb2(S,Se)3薄膜。

Claims (7)

1.一种液相硒化制备Sb2(S,Se)3薄膜的方法,其特征在于,包括以下步骤:
步骤一:在清洗干净的FTO玻璃上采用化学水浴沉积CdS薄膜后,利用水热原位生长法在其上生长Sb2S3前驱薄膜;
步骤二:将固态硒粉分散于油胺中后,加热溶解获得离子态硒溶液;
步骤三:将上述Sb2S3前驱薄膜与离子态硒溶液放置于高压反应釜中,加热进行离子交换,最终硒化获得所述的Sb2(S,Se)3薄膜。
2.根据权利要求1所述的一种液相硒化制备Sb2(S,Se)3薄膜的方法,其特征在于,步骤一所述的FTO玻璃的清洗方法是将FTO玻璃衬底依次浸入普通洗涤剂、丙酮、乙醇、去离子水中,进行超声清洗。
3.根据权利要求1所述的一种液相硒化制备Sb2(S,Se)3薄膜的方法,其特征在于,步骤一所述Sb2S3前驱薄膜的厚度为760~800nm。
4.根据权利要求1所述的一种液相硒化制备Sb2(S,Se)3薄膜的方法,其特征在于,步骤二所述的离子态硒溶液的硒浓度为0.1~30mg/ml。
5.根据权利要求1所述的一种液相硒化制备Sb2(S,Se)3薄膜的方法,其特征在于,步骤二所述的加热溶解温度为180~220℃,溶解时间为120min~300min。
6.根据权利要求1所述的一种液相硒化制备Sb2(S,Se)3薄膜的方法,其特征在于,步骤三所述的离子交换温度范围为200~350℃,离子交换时间为15min~120min。
7.根据权利要求6所述的一种液相硒化制备Sb2(S,Se)3薄膜的方法,其特征在于,步骤三所述加热是从室温开始升温,升温速率5℃/min,最终保持在200~350℃,保温15min~120min。
CN202110843501.6A 2021-07-26 2021-07-26 一种液相硒化制备硒硫化锑薄膜的方法 Active CN113571406B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110843501.6A CN113571406B (zh) 2021-07-26 2021-07-26 一种液相硒化制备硒硫化锑薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110843501.6A CN113571406B (zh) 2021-07-26 2021-07-26 一种液相硒化制备硒硫化锑薄膜的方法

Publications (2)

Publication Number Publication Date
CN113571406A true CN113571406A (zh) 2021-10-29
CN113571406B CN113571406B (zh) 2023-06-27

Family

ID=78167267

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110843501.6A Active CN113571406B (zh) 2021-07-26 2021-07-26 一种液相硒化制备硒硫化锑薄膜的方法

Country Status (1)

Country Link
CN (1) CN113571406B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86101108A (zh) * 1986-02-20 1986-09-10 锡矿山矿务局 锑精矿制取焦锑酸钠的湿法工艺
CN101471394A (zh) * 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
TW201300322A (zh) * 2011-06-28 2013-01-01 Shanghai Inst Ceramics 銅銦鎵硫硒薄膜太陽電池光吸收層的製備方法
CN105932114A (zh) * 2016-07-19 2016-09-07 福建师范大学 基于水浴和后硒化制备太阳能电池吸收层薄膜的方法
CN107611013A (zh) * 2017-09-01 2018-01-19 苏州云舒新材料科技有限公司 一种ZnS太阳能电池薄膜材料的制备方法
CN111320395A (zh) * 2020-03-03 2020-06-23 中国科学技术大学 一种硒硫化锑薄膜的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86101108A (zh) * 1986-02-20 1986-09-10 锡矿山矿务局 锑精矿制取焦锑酸钠的湿法工艺
CN101471394A (zh) * 2007-12-29 2009-07-01 中国科学院上海硅酸盐研究所 铜铟镓硫硒薄膜太阳电池光吸收层的制备方法
TW201300322A (zh) * 2011-06-28 2013-01-01 Shanghai Inst Ceramics 銅銦鎵硫硒薄膜太陽電池光吸收層的製備方法
CN105932114A (zh) * 2016-07-19 2016-09-07 福建师范大学 基于水浴和后硒化制备太阳能电池吸收层薄膜的方法
CN107611013A (zh) * 2017-09-01 2018-01-19 苏州云舒新材料科技有限公司 一种ZnS太阳能电池薄膜材料的制备方法
CN111320395A (zh) * 2020-03-03 2020-06-23 中国科学技术大学 一种硒硫化锑薄膜的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
TAO CHEN: "Solution Processed Antimony Sulfide-Selenide [Sb<inf>2</inf>(S,Se)<inf>3</inf>] for High Efficiency Solar Cells", SEMICOND. PROCESS, vol. 40, no. 570, pages 1 - 2 *
江晨辉: "溶液法制备硒硫化锑太阳能电池最新研究进展(英文)", 中国科学技术大学学报, vol. 50, no. 11, pages 1384 - 1393 *
陈桂林: "水热及后硒化法制备低成本Sb2(S,Se)3薄膜太阳能电池", 第六届新型太阳能电池材料科学与技术学术研讨会论文集, pages 301 *

Also Published As

Publication number Publication date
CN113571406B (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN102034898B (zh) 一种太阳电池用铜铟硫光电薄膜材料的制备方法
CN106917068B (zh) 基于磁控溅射和后硒化制备太阳能电池吸收层Sb2Se3薄膜的方法
CN102642874B (zh) 一种二硫化亚铁半导体薄膜的制备方法
CN105932114A (zh) 基于水浴和后硒化制备太阳能电池吸收层薄膜的方法
CN113078225A (zh) 一种铜锌锡硫硒半透明太阳能电池器件及其制备方法
CN103762257B (zh) 铜锌锡硫吸收层薄膜及铜锌锡硫太阳能电池的制备方法
CN113078239B (zh) 一种硒化锑薄膜太阳电池及其制备方法
CN113372012A (zh) 一种掺杂金属元素提高无机无铅CsSnI3钙钛矿稳定性的方法
CN108461556A (zh) 制备高效czts太阳能电池的前驱体溶液及其电池制备与应用
CN102270699A (zh) 无镉铜铟镓硒薄膜太阳能电池及其硫化锌缓冲层薄膜的制备方法
CN112968067A (zh) 一种基于Bi掺杂硫锑银的无机薄膜太阳能电池及其制备方法
CN109817735B (zh) 溶液法制备高效铜铟硒和铜铟镓硒薄膜太阳能电池
CN102153288A (zh) 一种择尤取向硫化二铜薄膜的制备方法
CN105161572B (zh) 一种铜锌锡硫太阳电池吸收层的墨水多层涂敷制备方法
CN107134507B (zh) 具有梯度成分太阳能电池吸收层铜铟硫硒薄膜的制备方法
CN102214737A (zh) 太阳能电池用化合物薄膜的制备方法
CN109545659B (zh) 一种锡锑硫薄膜的化学浴制备方法
CN112259620A (zh) 一种Sb2Se3薄膜太阳能电池及其制备方法
CN106531845A (zh) 化学水浴制备太阳能电池吸收层CuInS2薄膜的方法
CN105895735A (zh) 氧化锌靶溅射制备铜锌锡硫薄膜太阳电池的方法
CN113571406B (zh) 一种液相硒化制备硒硫化锑薄膜的方法
CN105552166A (zh) 一种硝酸盐体系两步法制备铜铟硒光电薄膜的方法
CN105489672A (zh) 一种氯化物体系两步法制备铜铟硒光电薄膜的方法
CN112837997B (zh) 一种ZnCdS薄膜的制备方法及铜锌锡硫硒太阳电池的制备方法
CN112225468B (zh) 电沉积法与溶胶凝胶法相结合制备czts吸收层的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant