CN113564179A - 水稻nat8基因及其编码蛋白在提高植物产量育种中的应用 - Google Patents

水稻nat8基因及其编码蛋白在提高植物产量育种中的应用 Download PDF

Info

Publication number
CN113564179A
CN113564179A CN202110835887.6A CN202110835887A CN113564179A CN 113564179 A CN113564179 A CN 113564179A CN 202110835887 A CN202110835887 A CN 202110835887A CN 113564179 A CN113564179 A CN 113564179A
Authority
CN
China
Prior art keywords
nat8
gene
rice
gly
phe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110835887.6A
Other languages
English (en)
Other versions
CN113564179B (zh
Inventor
储成才
唐九友
梁燕
张志华
张从合
严志
方玉
王慧
申广勒
李潜龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Zhongke Quanyin Molecular Breeding Technology Co Ltd
Anhui Win All Hi Tech Seed Co ltd
Institute of Genetics and Developmental Biology of CAS
Original Assignee
Shanghai Zhongke Quanyin Molecular Breeding Technology Co Ltd
Anhui Win All Hi Tech Seed Co ltd
Institute of Genetics and Developmental Biology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Zhongke Quanyin Molecular Breeding Technology Co Ltd, Anhui Win All Hi Tech Seed Co ltd, Institute of Genetics and Developmental Biology of CAS filed Critical Shanghai Zhongke Quanyin Molecular Breeding Technology Co Ltd
Priority to CN202110835887.6A priority Critical patent/CN113564179B/zh
Publication of CN113564179A publication Critical patent/CN113564179A/zh
Application granted granted Critical
Publication of CN113564179B publication Critical patent/CN113564179B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Virology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

本发明公开了水稻NAT8基因及其编码蛋白在提高植物产量育种中的应用。本发明用氯酸盐处理水稻品种Kasalath与日本晴(Nip)构建的单片段代换系,结合图位克隆技术鉴定到一个新的氮利用效率调控基因NAT8,该基因编码一个质膜定位的碱基/抗坏血酸转运蛋白。通过对该基因进行生理生化及遗传学研究,为水稻中NAT家族的研究提供切入点,有助于阐明水稻中碱基代谢物的转运和再利用调控机制;也有助于更深入解析植物体内不同类型氮源在吸收转运上的协同机制,此外,新的氮肥高效利用位点的发掘也为培育氮高效利用品种提供更多遗传资源和理论依据。

Description

水稻NAT8基因及其编码蛋白在提高植物产量育种中的应用
技术领域
本发明涉及生物技术领域,具体涉及一种水稻NAT8基因及其编码蛋 白在提高植物产量育种中的应用。
背景技术
氮是植物需求量最大的矿质元素,也是农业生产的主要决定因素之一。 氮肥的施用极大地增加了作物产量,但也带来了诸如高耗能、高投入、重 污染等负面影响。水稻(Oryza sativa L.)是全球主要粮食作物之一,水稻不同 亚种间在氮肥利用效率上存在很大差异,克隆并利用控制亚种间氮肥利用 效率差异的主效基因,改良水稻氮肥利用效率是解决上述问题的有效途径。
氯酸盐是硝酸盐的结构类似物,植物可以利用硝酸盐系统转运和同化 氯酸盐,且当氯酸盐被还原为亚氯酸盐后,会对植物产生毒害作用。因而 氯酸盐敏感性可作为鉴定硝酸盐吸收同化能力的指示剂。Aus是亚洲栽培稻 中具有多种耐逆性的一个亚群。Kasalath是Aus亚群的一个代表品种,对氯 酸盐有极强的敏感性。
在长期进化过程中,植物形成了利用多种氮的能力。土壤中供植物利 用的氮可以分为无机氮和有机氮两种。铵盐和硝酸盐是土壤中主要的无机 氮源,蛋白质、氨基酸、小肽、核酸碱基及其衍生物是主要的有机氮源。 因为土壤性质(如质地、pH值、水分、微生物种类等)的差异,土壤中的氮 在不同时间不同位置上有很大差异。为应对外界环境中不同氮源含量的变 化以及植物自身不同发育阶段对各种氮需求量的不同,植物进化出多种调 节氮吸收利用的机制。
目前对植物无机氮源(硝酸盐、铵盐)的研究取得很大进展,尤其是硝酸 盐,对有机氮的代谢转运也有较大进展,尤其对氨基酸代谢转运研究。然 而,植物如何调节碱基或核苷类氮源的利用的研究报道相对较少。水稻中, 针对5个核苷碱基转运蛋白家族的功能研究开展极少,其中NAT家族目前 尚未有功能的水稻基因报道。
发明内容
本发明为了解决上述问题,提供了一种水稻NAT8基因及其编码蛋白 在提高植物产量育种中的应用。
本发明通过以下技术方案来实现上述目的:
一种水稻NAT8基因,所述水稻NAT8基因的基因组核苷酸序列如SEQ ID NO:3或SEQID NO:4所示,水稻NAT8基因的CDS核苷酸序列如 SEQ ID NO:5或SEQ ID NO:6所示。
进一步改进在于,该基因的编码蛋白的氨基酸序列如SEQ ID NO:1 或SEQ ID NO:2所示。
本发明还提供了一种上述基因的敲除载体,所述敲除载体为包含SEQ ID NO:3或SEQ ID NO:5的NAT8基因的gDNA片段的CRISPR/Cas9载 体。
本发明还提供了一种如上述基因在提高植物产量育种中的应用。
进一步改进在于,所述提高植物产量的方法为:将含有SEQ ID NO:3 或SEQ IDNO:5所示的NAT8基因的植株进行NAT8基因敲除,获得缺失 体植株。
进一步改进在于,所述植物为水稻。
进一步改进在于,所述应用为通过提高植物的氮利用效率来提高植物 产量育种。
进一步改进在于,所述氮利用效率提高体现在如下方面中的至少一种: 氯酸盐敏感性、硝酸盐吸收转运能力、有效分蘖数、单株产量、小区产量。
本发明的有益效果在于:用氯酸盐处理Kasalath与氯酸盐不敏感材料 日本晴(Nip)构建的单片段代换系,结合图位克隆技术我们鉴定到一个新的 氮利用效率调控基因NAT8,该基因编码一个质膜定位的碱基/抗坏血酸转 运蛋白。通过对该基因进行生理生化及遗传学研究,为水稻中NAT家族的 研究提供切入点,有助于阐明水稻中碱基代谢物的转运和再利用调控机制; 也有助于更深入解析植物体内不同类型氮源在吸收转运上的协同机制,此 外,新的氮肥高效利用位点的发掘也为培育氮高效利用品种提供更多遗传 资源和理论依据。
附图说明
图1为不同亚种及日本晴(Nip)与CSSSLNAT8间氯酸盐敏感性差异表型 结果图;
图2为NAT8基因的图位克隆结果图;图中,图2A和图2B是利用BC7F2 进行QTL分析和定位图,图2A黑线上方的字母和数字代表筛选标记,图 2B是91kb范围内预测的基因,黑色方块代表编码表达蛋白的基因,其它 箭头代表的基因如下方标注名称,箭头指示基因表达的方向,图2C是本发 明克隆的NAT8基因的结构示意图,灰色方块代表外显子,白色方块和白 色箭头分别代表5'UTR和3'UTR,黑色箭头指示单核苷酸多态性(SNP)的位 置及差异类型。
图3为NAT8敲除突变体和近等基因系对氯酸盐的敏感性分析结果图; (A)和(B)是野生型(Nip)与NAT8突变体对氯酸盐敏感性的表型差异,(B)是 (A)图中方框的放大图片,(C)是3个NAT8s突变体基因组的突变类型,(D) 和(E)是NAT8近等基因系的姊妹系N8N和N8K对氯酸盐敏感性差异表型, (D)是(E)图中方框的放大图片,(F)是鉴定N8N和N8K的筛选标记,M1至 NK8是筛选标记的位置,“N”指含Nip型基因片段,“K”指含Kasalath型基 因片段;
图4为NAT8敲除突变体和近等基因系对15NO3 -吸收的差异分析结果 图;
图5为不同氮浓度条件下野生型和NAT8s田间农艺性状统计结果图;
图6为近等基因系N8N和N8K田间农艺性状结果图。
具体实施方式
下面结合附图对本申请作进一步详细描述,有必要在此指出的是,以 下具体实施方式只用于对本申请进行进一步的说明,不能理解为对本申请 保护范围的限制,该领域的技术人员可以根据上述申请内容对本申请做出 一些非本质的改进和调整。
下述实施例中,如无特殊说明,均为常规方法。
下述实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径 得到。
水稻品种日本晴和Kasalath:记载于“S.Y.Lin,T.Sasaki,M.Yano (1998).Mapping quantitative trait loci controlling seed dormancy and heading datein rice,Oryza sativa L.,using backcross inbred lines.Theor Appl Genet 96:997-1003.”一文的“Nipponbare”和“Kasalath”,公开可从申请人处获得, 仅可用于重复本发明实验使用。
爪蟾卵母细胞(Xenopus oocyte):记载于“Suhong Xu,Feng Cheng,Juan Liang,et al.Maternal xNorrin,a Canonical Wnt Signaling Agonist and TGF-βAntagonist,Controls Early Neuroectoderm Specification in Xenopus.PloSBiology,2012.”一文,公众可从申请人处获得,仅可用于重复本发明实验。
pGEMHE载体:记载于Kun Liu and Sheng Luan(2001)Internal Aluminum Blockof Plant Inward K+Channels.Plant Cell,13:1453–1465”一 文,公众可从申请人处获得,仅可用于重复本发明实验。
农杆菌(Agrobacterium tumefaciens)株系AGL1、GV3101记载于文献: Wang W,HuB,Yuan D,LiuY,Che R,Hu Y,Ou S,Zhang Z, Wang H,Li H,Jiang Z,Zhang Z,Gao X,QiuY,Meng X,Liu Y, Bai Y,Liang Y,Wang Y,Zhang L,Li L,Mergen S,Jing H,Li J, andChu C(2018)Expression of the nitrate transporter OsNRT1.1A/OsNPF6.3 confershigh yield and early maturation in rice.Plant Cell,30(3):638-651中, 公众可从中国科学院遗传与发育生物学研究所获得,该载体只可重复本发 明的相关实验所用,不可作为其它用途使用。
下述实施例中水稻是按照如下方法栽培得到的:
(1)短期水培苗:用自来水浸泡水稻种子,在37℃培养箱中避光催芽 3天左右,播种于去底的96孔PCR板,置于水稻培养箱培养,培养水稻幼 苗用改良的Kimura B营养液,基础配方是0.365mM(NH4)2SO4,0.18mM KH2PO4,0.183mM KNO3,0.0914mM K2SO4,0.363mM Ca(NO3)2·4H2O, 0.548mM MgSO4·7H2O,1.2mM Na2SiO3·9H2O,20μΜFeSO4-EDTA (FeSO4·7H2O 5.56g/L,Na2-EDTA·2H2O 7.445g/L)),0.079μΜ(NH4)6 Mo7O24·4H2O,46.2μΜH3BO3,0.32μΜCuSO4·5H2O,9.15μΜMnCl2·4H2O, 0.765μΜZnSO4·7H2O),在不同的实验中,略有改变,主要是铵盐和硝酸盐 的使用浓度有所改变,其中Ca(NO3)2·4H2O用等浓度的CaCl2替代,将 (NH4)2SO4替换为NH4Cl,其它成分没有变化。为使说明书相对简单明了, 在相关的实验操作中会备注有改变的成分,而省略其它的成分。
(2)水稻材料的田间栽培:用自来水浸泡水稻种子,在37℃培养箱中 避光催芽3天左右,然后将露白的种子播在苗床上进行育秧,到4叶期时 将水稻秧苗移栽入水田。
实施例1:基因的发现
Aus亚种对氯酸盐的敏感性显著高于粳稻亚种,也高于籼稻亚种,Aus 亚种中OsNRT1.1B SNP1位点的碱基与粳稻的一样(图1A,B,C),这意 味着,在Aus亚种中还有其他氯酸盐敏感的基因。用氯酸盐处理粳稻品种 日本晴(Nip)与Aus品种Kasalath构建的染色体单片段代换系,发现了除 OsNRT1.1B所在位置外的对氯酸盐的敏感性强于轮回亲本日本晴的染色体 单片段代换系CSSSLNAT8(图1D)。
1、NAT8基因的初步定位
为了分离NAT8基因,本发明首先利用单片段代换系和日本晴构建定 位群体。进而,利用该分离群体的BC7F2个体进行QTL分析和定位。定位 结果表明,NAT8初步定位在第8染色体上,处于NK1和NK8两个标记之 间,物理距离约1.3Mb(图2A)。
2、NAT8基因的精细定位
为了进一步缩小目的基因的界定区域,从BC7F2分离群体中,选取了 1240个株型近于Kasalath的单株进行了精细定位。同时,利用已经公布的 93-11和日本晴在定位区间内籼粳稻亚种间基因组序列,寻找差异位点,开 发新的STS和SSR标记。然后用新的分子标记对这些交换单株继续进行筛 选,最终,目的基因被精确定位在分子标记NK10和NK12之间约91kb的 范围之内(图2B)。
3、候选基因的鉴定和序列分析
序列表中,序列SEQ ID NO:1为NAT8-日本晴型蛋白序列,序列SEQ ID NO:2为NAT8-Kasalath型蛋白序列,序列SEQ ID NO:3为NAT8-日 本晴型基因组序列,序列SEQ IDNO:4为NAT8-kasalath型基因组序列, 序列SEQ ID NO:5为NAT8-日本晴型CDS序列,序列SEQ ID NO:6为 NAT8-kasalath型CDS序列。
对该91kb区域进行候选基因预测并在日本晴和Kasalath间进行测序比 对。结果发现,在Kasalath材料中,基因NAT8(LOC_Os08g32500)在日本 晴和Kasalath的编码区有5个SNPs(图2C)。蛋白序列比对发现,164位氨 基酸发生错义突变,p.164位日本晴是亮氨酸(Leu,L),Kasalath是苯丙氨 酸(Phe,F),即这5个SNPs只有第1个外显子490位碱基的改变(c.490C>T) 使两种基因编码的氨基酸发生改变。
综合以上信息,将该基因确定为候选基因。在MSU数据库 (http://rice.plantbiology.msu.edu/cgi-bin/gbrowse/rice/#search)中注释该候选基 因编码一个NAT家族的碱基/抗坏血酸转运蛋白。将该基因与已有研究的 NAT类转运蛋白的氨基酸序列比对,确认该基因含有NAT家族典型的基序 即Q-H基序和[Q/E/P]-N-X-G-X-X-X-X-T-[R/K/G]基序。
实施例2、NAT8功能缺失突变体的获得及其检测
一、水稻NAT8功能缺失突变体的获得
1、gRNA的设计
利用序列SEQ ID NO:3作为参考序列,在NAT8编码区设计gRNA靶 点序列即:5’-GGATTTGGCCTCTATGAGCT-3’,该序列为序列3第 2144-2163位核苷酸序列,其反向互补序列为 5’-AGCTCATAGAGGCCAAATCC-3’,根据杭州百格生物技术公司的试剂盒 ((Cat#BGK03)说明书要求在gRNA靶点序和反向互补序列的5’端或5’端和 3’端加相应的接头,最终获得的引物序列分别为NAT8-F/NAT8-R,具体引 物序列如下:
NAT8-F:5’-tgtgtgGGATTTGGCCTCTATGAGCT-3’;
NAT8-R:5’-aaacAGCTCATAGAGGCCAAATCCca-3’;
上面引物序列小写字母即为添加的接头序列。
2、敲除载体的构建
(1)将引物对NAT8-F/NAT8-R变性、退火得到NAT8-F/R的二聚体产 物,具体操作是:将合成的引物序列加水溶解至10μM,用10μL反应体 系:NAT8-F 0.5μL,NAT8-R 0.5μL,BufferAneal 9μL,混匀,在PCR仪 中采用梯度降温的方法:95℃5min;90℃1min;85℃1min;然后以5℃/min 降到25℃;
(2)将NAT8-F/R二聚体产物构建到CRISPR/Cas载体中,具体操作是: 5μL反应体系:CRISPR/Cas 1μL,NAT8-F/R二聚体0.5μL,Enzyme Mix 0.5 μL,H2O 3μL,混匀,室温反应1小时,即得到NAT8 CRISPR/Cas9敲除 载体。构建过程中用的载体和试剂均来自杭州百格生物技术公司的试剂盒 (Cat#BGK03)。
3、水稻NAT8突变体的获得
将步骤2获得的NAT8 CRISPR/Cas9敲除载体通过热击法转入农杆菌(Agrobacterium tumefaciens)菌株AGL1,筛选获得含有NAT8 CRISPR/Cas9 的重组农杆菌菌株,通过农杆菌介导法用含有NAT8 CRISPR/Cas9的重组 农杆菌侵染日本晴愈伤组织,最终获得T0代转基因水稻,具体转化和筛选 方法参见文献“易自立,曹守云,王力,何锶洁,储成才,唐祚舜,周朴华, 田文忠。提高农杆菌转化水稻频率的研究.遗传学报,2001,28(4):3552-358” 一文。
二、水稻NAT8突变体的鉴定
通过PCR和测序检测步骤3获得的T0代转基因水稻。具体步骤如下: 提取步骤3获得的T0代转基因水稻基因组DNA。在设计的gRNA靶点序 列前后约300bp范围内设计PCR扩增引物sNAT8-F/sNAT8-R,用 sNAT8-F/sNAT8-R对检测序列进行扩增,用sNAT8-F对获得的产物进行测 序。sNAT8-F/sNAT8-R的具体序列如下:
sNAT8-F:CCGCACTAGCTGTATCTAAGCA(序列3第2948-2969位核 苷酸序列)
sNAT8-R:TGACTTTCAGCAACCACAGC(序列3第3556-3575位核苷 酸序列的反向互补序列)
通过转基因后代阳性鉴定和基因测序检测,鉴定到多种类型的突变体 植株,选择来源独立且突变类型不同的敲除株系,通过连续自交,鉴定选 择纯合后代,选择其中的三个突变株系nat8-2、nat8-3、nat8-4做后续的研 究。与野生型水稻日本晴的基因组DNA相比,NAT8突变株系nat8-2在NAT8 基因的第5个外显子发生2个碱基的缺失突变,该缺失突变位于序列3第 3352-3353位,导致NAT8翻译提前终止,使NAT8功能丧失或减弱。
NAT8突变株系nat8-3在NAT8基因的第5个外显子发生21个碱基的 缺失突变,该缺失突变位于序列3第3338-3358位,导致NAT8蛋白序列发 生7个氨基酸的缺失,使NAT8功能丧失或减弱。
NAT8突变株系nat8-4在NAT8基因的第5个外显子发生1个碱基的缺 失突变,该缺失突变位于序列3第3351位,导致NAT8翻译提前终止,使 NAT8功能丧失或减弱。
三、NAT8敲除突变体对氯酸盐敏感性检测
因为NAT8是利用氯酸盐毒性筛选法克隆到的基因,为验证该基因的正 确性,本发明的发明人用氯酸盐处理NAT8敲除突变体株系nat8-2、nat8-3、 nat8-4。具体操作是:首先将野生型日本晴(Nip)和NAT8敲除突变体株系幼 苗在改良的KimuraB营养液(0.25mM(NH4)2SO4,0.12mM KNO3,0.25mM Ca(NO3)2)中培养至水稻苗高10cm左右,在原有木村营养液中加入终浓度 为0.1mM的氯酸钾处理液(具体浓度根据水稻苗的长势略作调整)培养处理 水稻苗,每天更换含氯酸钾的营养液,直到出现氯酸盐毒害表型(前期叶片 上出现锈色斑点,后期叶片会干枯),一般3天左右出现锈色斑点。
处理结果显示敲除突变体NAT8s对氯酸盐的敏感性均强于野生型日本 晴,表现为敲除突变体叶片上锈色斑点显著多于日本晴(图3A,B,C), 敲除突变体与野生型间有差异,暗示克隆到的基因正确。
四、水稻NAT8敲除突变体对硝酸盐吸收转运能力的检测
NAT8敲除突变体与野生型日本晴间对氯酸盐敏感性有差异,氯酸盐是 硝酸的结构类似物,为验证NAT8对硝酸盐的吸收转运有何影响,本发明的 发明人进行了15N示踪的硝酸盐吸收转运实验。首先将野生型日本晴和NAT8 敲除突变体在改良的KimuraB营养液(0.5mM NH4Cl,0.5mM KNO3)中培养 4天,接着用低氮Kimura B营养液(0.1mM(NH4)2SO4,0.1mM KNO3)培养1 天,然后做15N吸收,在吸收前,先在低氮KimuraB营养液培养2小时,之后用0.1mM CaSO4清洗根部1分钟;用去离子水清洗根部1分钟,接着将水稻 苗转入含2mMK15NO3的低氮KimuraB营养液中培养6小时,之后用0.1mM CaSO4清洗根部1分钟;用去离子水清洗根部1分钟,分地上部分和地下部分 取材,将材料放在5mL离心管中,开盖置于65℃烘箱中3天左右烘干样品, 用细胞破碎仪振荡破碎(转速约900stroke/min),直至样品呈粉末状,用稳定 同位素质谱分析仪(Thermo Finnigal DELTAplus XP Bremen Germany,植物所,植200301196)测定样品的15N含量量(具体方法参见“Kun-Hsiang Liu, Chi-Ying Huang,Yi-Fang Tsay,et al.CHL1 Is a Dual-Affinity Nitrate Transporter of ArabidopsisInvolved in Multiple Phases of Nitrate Uptake.The Plant Cell,1999”一文)。实验设4次重复,测定结果取均值。通过计算NAT8 敲除突变体地上部和根中15N的含量均显著高于野生型日本晴,说明敲除突 变体中硝酸盐的吸收量高于日本晴(图4A)。
五、水稻NAT8突变体的分蘖检测
在高氮和低氮条件下(低氮:不施用氮肥,高氮:施用氮肥量为2kg/100 m2),对NAT8突变体和野生型日本晴进行分蘖数统计,每个材料设置3个 重复小区,每个小区统计20个单株。不同年份田间统计结果如图5所示, NAT8突变体分蘖数都高于野生型日本晴,尤其在高氮田中,2018年在高氮 条件下,与日本晴相比,NAT8-2平均分蘖数从12个增到14.9个,NAT8-3 平均分蘖数从12个增到14个;低氮条件下与日本晴相比,NAT8-2平均分 蘖数从5.4个增到5.9个,NAT8-3平均分蘖数从5.4个增到6.1个(图5A)。 2019年在高氮条件下,与日本晴相比,NAT8-2平均分蘖数从9.7个增到10.7 个,NAT8-3平均分蘖数从9.7个增到10.4;低氮条件下与日本晴相比,NAT8-2 平均分蘖数从4.8个增到5.5个,NAT8-3平均分蘖数从4.8个增到5.2个(图 5B)。
实施例3、NAT8近等基因系的获得与鉴定
一、NAT8近等基因系的获得
在用分子标记鉴定与日本晴回交的染色体单片段代换系过程中,选择 来自于同一个株系,在NK10和NK12两个分子标记之间含有不同基因片段 的材料定为NAT8近等基因系姊妹系,其中在NK10和NK12两个分子标记 之间是Kasalath型基因片段(含Kasalath单倍型的NAT8)的株系命名为N8K, 在NK10和NK12两个分子标记之间是日本晴型基因片段(含日本晴单倍型 的NAT8)的株系命名为N8N,N8N和N8K即为NAT8近等基因系材料。
二、NAT8近等基因系对氯酸盐敏感性检测
为验证该基因的正确性,本发明的发明人用氯酸盐处理NAT8近等基因 系,具体操作同实施例2中氯酸盐处理NAT8敲除突变体株系的方法。
观察到NAT8近等基因系姊妹系对氯酸盐的敏感性也有差异,表现为 N8K(含Kasalath单倍型的NAT8)对氯酸盐的敏感性强于N8N(含日本晴单倍 型的NAT8N)(图3D,E,F)。敲除株系与野生型间以及近等基因系间对 氯酸盐敏感性都有差异,暗示该图位克隆的基因正确。
三、水稻NAT8近等基因系对硝酸盐吸收转运能力的检测
NAT8近等基因系对氯酸盐敏感性有差异,为明确NAT8两种基因型水 稻对硝酸盐的吸收转运有何影响,本发明的发明人进行了15N示踪的硝酸盐 吸收转运实验。具体操作同实施例2中NAT8敲除突变体株系15N示踪的硝 酸盐吸收转运实验的方法。
通过计算NAT8近等基因系姊妹系N8K地上部和根中15N的含量均显著高 于N8N,说明两种单倍型的NAT8对硝酸盐吸收有差异,且含Kasalath单倍型 的NAT8K中硝酸盐的吸收量高于含日本晴单倍型的NAT8N(图4B)。
四、水稻NAT8近等基因系田间农艺性状检测
在高氮和低氮条件下(低氮:不施用氮肥,高氮:施用氮肥量为2kg/100 m2),对NAT8近等基因系的一些农艺性状,包括有效分蘖数、单株产量、 小区产量进行统计,田间统计结果显示,在高氮试验小区,近等基因系N8K的分蘖数和产量都显著高于N8N,在高氮条件下,平均分蘖数N8N有10.3 个,N8K有11.3个;单株产量N8N是25.6g,N8K是27.8g;小区产量N8N是1.28kg,N8K是1.39kg(图6A,B);而在低氮试验小区,N8K分蘖数 和产量略高于N8N,低氮条件下,平均分蘖数N8N有4.6个,N8K有4.9个, 单株产量N8N是14.46g,N8K是14.51g,小区产量N8N是0.723kg,N8K是0.726kg(图6C,D)。每个材料设置3个重复小区,有效分蘖数每个小 区统计29个以上的单株,单株产量每个小区统计14个以上的单株,小区 产量是3个小区的平均值。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和 详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是, 对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以 做出若干变形和改进,这些都属于本发明的保护范围。
序列表
<110> 安徽荃银高科种业股份有限公司,中国科学院遗传与发育生物学研究所
<120> 水稻NAT8基因及其编码蛋白在提高植物产量育种中的应用
<141> 2021-07-23
<160> 6
<170> SIPOSequenceListing 1.0
<210> 1
<211> 533
<212> PRT
<213> 水稻(Oryza sativa Linn)
<400> 1
Met Ala Gly Gly Gly Ala Ala Pro Pro Pro Lys Gln Glu Glu Leu Gln
1 5 10 15
Pro His Gln Val Lys Asp Gln Leu Pro Ser Val Ser Tyr Cys Ile Thr
20 25 30
Ser Pro Pro Pro Trp Pro Glu Ala Val Ile Leu Gly Phe Gln His Tyr
35 40 45
Ile Val Met Leu Gly Thr Ser Val Ile Ile Pro Ser Ala Leu Val Pro
50 55 60
Gln Met Gly Gly Gly Asn Glu Glu Lys Ala Arg Val Ile Gln Thr Leu
65 70 75 80
Leu Phe Val Ala Gly Ile Asn Thr Leu Cys Gln Ser Phe Phe Gly Thr
85 90 95
Arg Leu Pro Ala Val Met Gly Gly Ser Tyr Thr Ile Val Ala Pro Thr
100 105 110
Ile Ser Ile Ile Leu Ala Gly Arg Tyr Ser Asn Glu Ala Asp Pro His
115 120 125
Glu Lys Phe Leu Arg Thr Met Arg Gly Thr Gln Gly Ala Leu Ile Ile
130 135 140
Ala Ser Thr Ile Gln Ile Ile Leu Gly Phe Ser Gly Leu Trp Arg Asn
145 150 155 160
Val Val Arg Leu Leu Ser Pro Leu Ser Ala Val Pro Leu Ile Ser Leu
165 170 175
Ala Gly Phe Gly Leu Tyr Glu Leu Gly Phe Pro Gly Val Ala Lys Cys
180 185 190
Val Glu Ile Gly Leu Pro Glu Ile Ile Leu Leu Leu Val Phe Ser Gln
195 200 205
Tyr Leu Pro His Val Ile His Val Ala Lys Pro Val Phe Asp Arg Phe
210 215 220
Ala Val Ile Phe Thr Ile Ala Ile Val Trp Leu Tyr Ala Tyr Ile Leu
225 230 235 240
Thr Ala Ser Gly Ala Tyr Lys Asn Ala Arg Pro Lys Thr Gln Val His
245 250 255
Cys Arg Val Asp Arg Ser Gly Ile Ile Ser Gly Ala Pro Trp Ile Arg
260 265 270
Val Pro Phe Pro Phe Gln Trp Gly Ala Pro Thr Phe Asp Ala Gly Glu
275 280 285
Ser Phe Ala Met Met Met Ala Ser Phe Val Ala Leu Val Glu Ser Thr
290 295 300
Gly Thr Phe Ile Ala Val Ser Arg Tyr Ala Ser Ala Thr Met Ile Pro
305 310 315 320
Pro Ser Val Leu Gly Arg Gly Ile Gly Trp Gln Gly Ile Gly Thr Leu
325 330 335
Ile Gly Ala Phe Phe Gly Thr Ala Asn Gly Thr Ala Val Ser Val Glu
340 345 350
Asn Ala Gly Leu Leu Ala Leu Thr His Val Gly Ser Arg Arg Val Val
355 360 365
Gln Ile Ser Ala Gly Phe Met Ile Phe Phe Ser Ile Leu Gly Lys Phe
370 375 380
Gly Ala Ile Phe Ala Ser Ile Pro Leu Pro Ile Phe Ala Ala Leu Tyr
385 390 395 400
Cys Ile Phe Phe Ala Tyr Ile Gly Ala Cys Gly Leu Ser Phe Leu Gln
405 410 415
Phe Cys Asn Leu Asn Ser Phe Arg Thr Lys Phe Ile Val Gly Phe Ser
420 425 430
Phe Phe Met Gly Leu Ser Val Pro Gln Tyr Phe Asn Glu Tyr Thr Ser
435 440 445
Val Ala Gly Tyr Gly Pro Val His Thr Gly Ala Arg Trp Phe Asn Asp
450 455 460
Met Ile Asn Val Pro Phe Ala Ser Lys Pro Phe Val Ala Gly Leu Ile
465 470 475 480
Ala Tyr Phe Leu Asp Asn Thr Ile Gln Arg Arg Asp Asn Gly Val Arg
485 490 495
Arg Asp Arg Gly Tyr His Trp Trp Asp Lys Phe Arg Ser Phe Lys Thr
500 505 510
Asp Thr Arg Ser Glu Glu Phe Tyr Ser Leu Pro Phe Asn Leu Asn Lys
515 520 525
Phe Phe Pro Ser Val
530
<210> 2
<211> 533
<212> PRT
<213> 水稻(Oryza sativa Linn)
<400> 2
Met Ala Gly Gly Gly Ala Ala Pro Pro Pro Lys Gln Glu Glu Leu Gln
1 5 10 15
Pro His Gln Val Lys Asp Gln Leu Pro Ser Val Ser Tyr Cys Ile Thr
20 25 30
Ser Pro Pro Pro Trp Pro Glu Ala Val Ile Leu Gly Phe Gln His Tyr
35 40 45
Ile Val Met Leu Gly Thr Ser Val Ile Ile Pro Ser Ala Leu Val Pro
50 55 60
Gln Met Gly Gly Gly Asn Glu Glu Lys Ala Arg Val Ile Gln Thr Leu
65 70 75 80
Leu Phe Val Ala Gly Ile Asn Thr Leu Cys Gln Ser Phe Phe Gly Thr
85 90 95
Arg Leu Pro Ala Val Met Gly Gly Ser Tyr Thr Ile Val Ala Pro Thr
100 105 110
Ile Ser Ile Ile Leu Ala Gly Arg Tyr Ser Asn Glu Ala Asp Pro His
115 120 125
Glu Lys Phe Leu Arg Thr Met Arg Gly Thr Gln Gly Ala Leu Ile Ile
130 135 140
Ala Ser Thr Ile Gln Ile Ile Leu Gly Phe Ser Gly Leu Trp Arg Asn
145 150 155 160
Val Val Arg Phe Leu Ser Pro Leu Ser Ala Val Pro Leu Ile Ser Leu
165 170 175
Ala Gly Phe Gly Leu Tyr Glu Leu Gly Phe Pro Gly Val Ala Lys Cys
180 185 190
Val Glu Ile Gly Leu Pro Glu Ile Ile Leu Leu Leu Val Phe Ser Gln
195 200 205
Tyr Leu Pro His Val Ile His Val Ala Lys Pro Val Phe Asp Arg Phe
210 215 220
Ala Val Ile Phe Thr Ile Ala Ile Val Trp Leu Tyr Ala Tyr Ile Leu
225 230 235 240
Thr Ala Ser Gly Ala Tyr Lys Asn Ala Arg Pro Lys Thr Gln Val His
245 250 255
Cys Arg Val Asp Arg Ser Gly Ile Ile Ser Gly Ala Pro Trp Ile Arg
260 265 270
Val Pro Phe Pro Phe Gln Trp Gly Ala Pro Thr Phe Asp Ala Gly Glu
275 280 285
Ser Phe Ala Met Met Met Ala Ser Phe Val Ala Leu Val Glu Ser Thr
290 295 300
Gly Thr Phe Ile Ala Val Ser Arg Tyr Ala Ser Ala Thr Met Ile Pro
305 310 315 320
Pro Ser Val Leu Gly Arg Gly Ile Gly Trp Gln Gly Ile Gly Thr Leu
325 330 335
Ile Gly Ala Phe Phe Gly Thr Ala Asn Gly Thr Ala Val Ser Val Glu
340 345 350
Asn Ala Gly Leu Leu Ala Leu Thr His Val Gly Ser Arg Arg Val Val
355 360 365
Gln Ile Ser Ala Gly Phe Met Ile Phe Phe Ser Ile Leu Gly Lys Phe
370 375 380
Gly Ala Ile Phe Ala Ser Ile Pro Leu Pro Ile Phe Ala Ala Leu Tyr
385 390 395 400
Cys Ile Phe Phe Ala Tyr Ile Gly Ala Cys Gly Leu Ser Phe Leu Gln
405 410 415
Phe Cys Asn Leu Asn Ser Phe Arg Thr Lys Phe Ile Val Gly Phe Ser
420 425 430
Phe Phe Met Gly Leu Ser Val Pro Gln Tyr Phe Asn Glu Tyr Thr Ser
435 440 445
Val Ala Gly Tyr Gly Pro Val His Thr Gly Ala Arg Trp Phe Asn Asp
450 455 460
Met Ile Asn Val Pro Phe Ala Ser Lys Pro Phe Val Ala Gly Leu Ile
465 470 475 480
Ala Tyr Phe Leu Asp Asn Thr Ile Gln Arg Arg Asp Asn Gly Val Arg
485 490 495
Arg Asp Arg Gly Tyr His Trp Trp Asp Lys Phe Arg Ser Phe Lys Thr
500 505 510
Asp Thr Arg Ser Glu Glu Phe Tyr Ser Leu Pro Phe Asn Leu Asn Lys
515 520 525
Phe Phe Pro Ser Val
530
<210> 3
<211> 5670
<212> DNA
<213> 水稻(Oryza sativa Linn)
<400> 3
gccgcctctc ccgtcgccgg cgtccaccgc cgcccctctc tctccctctc tcccattgcc 60
gcctatcgct gtcctctccg gcatcctcca cctcgtgccg tcgccggtca ggggcgccag 120
atccggcacc gtagtgggcg gatctgagct ccacgcggcc agatcgggga ggatacagtg 180
gcagcgccgg cggtagcggg cacggcgcca gcggtggcga gcaaggtgtc agcgaagaag 240
gccgggcaag gcgcacggtg gccgtcgtcg ccgtcgtccc cgagcgcgat gaccaccacc 300
acgacgtcgt ccttgtgctc ctcggcggcg agcacgggcg cctcaagccg tctccgcccg 360
tcgccgtcgc ctctctcttc tctctctctc tctctcgctc tcgttgtcac gctgccggtg 420
aggggcaaca tggggaagca atgggggagg aggtggggac ggggcatcgg gtcaccccaa 480
tgcgtagccc cgatggagta gctcaggaaa agtgagctga ggagcccgga gccactcgtc 540
ccccgcgtgg gggtcgcacc tccctcccag gggacgaccc gacgacggaa gttggatgcc 600
atttgcgagg ctactctcca ggggcacgca ttgttgatgg ccttagtggc taactttatc 660
aaatcacaat tgtgataagt tgtggcttat cacagaatta tgtttataga tccttatcca 720
cattacaagc ttaggccttg tttagatccc tagcaaaatt ttacaccctg tcacatcaaa 780
tgtttgaaca catgcatgta atattaaata tagatgaaaa aaataactaa ttacacagat 840
tgtgtgtaaa ttgtgagatg aatcttttaa gcctaattgc gccatgattt gacaatgtgg 900
tgttacaata aatatttgct aatgacggat tgattaggct taataaagtc gtctcgcggt 960
ttacaggtgg attctgtaat ttgtcttgtt attaaactac gtttaatact ttaaatatgt 1020
gcacgtatat ccaatgtgac acgacgaaac ttcaaccact agatctaaac acaaccttgg 1080
ttaaaaactt gaatcaatga caaggaagtc catgtgtcta aaaagtttga caagagacta 1140
ttgtgacaat gaaccaaata gttatttaaa aagttgtgac atactcctag ctaaccttaa 1200
atataatact actccctcca tttcacaata taagattttc tagcattgct tatatacata 1260
tagatgttaa tgaatctata tacatataga tagttaatga atctaaatac atatatatat 1320
atatgaatat gaccaatgat agaaagtctt acattgtgaa acggaggaag tacctccgtc 1380
ccaaaatgtt acaatattta gttatgaatc tagacatatt catagctaaa aatgtttata 1440
ttttgggacg gagggagtat accgaagata tcaaccaaac agacccgaag atatcaacca 1500
aacagacccg aacttcttcc cattgtggaa tttgcaatct tttttcctct ctctgccatc 1560
tcctttacgg tggtgggaaa aagataacaa cttgggaaga ggagcggagg gcgcgttttt 1620
cgcggaggcg gtggcgcaaa ggcgaaactc cgatcccatg gccagagaaa aaaagcattg 1680
ctggtagcga gagaaaagaa gggaaacata aaagagggag gaaaagctca aagcattgta 1740
gattccttcg acccaggtag tagctgctag ctgcgagtgt gttgcattgc attgcactgc 1800
tgctgcttca ctccactgcg cactgggagg agtagtagta gaaagcaaga agcagcagct 1860
gtagctgtct ccctttcttt tcatcctcct ttgttcttgc tcctctttgc acgcaaagaa 1920
tcggtagccg cctttgtttg ctgctctctg aaatctctct gagttttgtg ctttcactgc 1980
actgttctgg ttcttggact ccctgttctt ggttcctgca tttcttttct tttttgcctt 2040
tgtttgtccc atttttgttg ggttcttgga ggtggtggag gatggccgga ggaggggcgg 2100
cgccgccgcc gaagcaggag gagttgcagc ctcaccaggt gaaggaccag ctgcccagcg 2160
tgtcctactg catcaccagc ccaccgccat ggcgtacgtc tcttaatttc ttcttctctg 2220
attctctctc tatatcacca aggccatctt tgccttttga ttttgatggc ggagctgcta 2280
atcatccact gtactttgtg gcatttatgt tctcttagcc gtatagattt gcagcattga 2340
tgatgtcgat gtcgatgtcg gcctcctagg tttgcttgtg ttggttggtt gtagtttgtg 2400
gtcacttcac tctggtggtt ctcacacctg gtcctgacga tgttgatggg tttgaaactt 2460
tgaatctctc ttttcctgca gctgaggccg tcatacttgg attccagcac tacattgtga 2520
tgctgggcac atcagtgatt attcccagtg ctcttgttcc ccagatggga ggtggaaatg 2580
tgagtctccc caagaatcac ctgaaaagta ttccaatatc tgaatcttgg ttgatttcac 2640
ttgttgacat gtgcatttga agaatgtcac agaagatcta aactgttact actgtaattt 2700
tgtgatgagc ttgcatgtca aaactgatga actgtacctg catttcgttg cattgccact 2760
caggaggaga aggctcgggt gattcagacg ctgctgttcg ttgccgggat aaacaccctc 2820
tgccaatcgt tcttcgggac tcgtcttcca gctgtgatgg gaggatcgta caccattgtt 2880
gcgccgacaa tttccatcat attggctggc cgctatagca atgaagcaga tcctcatgag 2940
gtagtatccg cactagctgt atctaagcat taagattgtc acatcctctg tgtgatcttg 3000
taaagttggt aagattttgc tactgctgtg aagaaattct tgcggacaat gcgaggaaca 3060
caaggtgctc tcatcattgc atcgacaatc cagatcatac ttggtttcag tggtctctgg 3120
cgcaatgtag ttaggtaggt atcattgttg aacttctgaa tgtacattgt gcaattgcat 3180
catttcagtt tgcaggcttg ccaactgcag tgtttcagtt atcaggtttg gcgactcgtt 3240
gcacaatgta ttgttttagt ttgtggcttg accattgccc actctttcac agacttctta 3300
gtccattgtc tgctgttcct ttgatctcac ttgctggatt tggcctctat gagcttggtt 3360
ttccaggggt aagagttagc ttggagattc tttttttttt ctttggctgt tccctacctc 3420
ataagactga ttttagtgcc acaactgtat gtgcaggttg caaagtgcgt ggaaattggg 3480
ctcccagaaa tcattctact gcttgtattt tctcaggtga ttgcagcagt cataatgcat 3540
attcacacaa gtatagctgt ggttgctgaa agtcatgagc taactgcatt tgcccccttg 3600
tgcagtattt accccatgtc atacatgtgg caaagcccgt gttcgaccgg tttgctgtga 3660
ttttcaccat tgctattgtg tggctgtatg catacattct aactgctagt ggcgcataca 3720
agaatgcccg gccgaagaca caagtgcact gtcgtgttga tcgctctgga attatcagtg 3780
gagctccatg gtaagcaatt catgagtgtt tcatcatttc tcttcctggg ccctttattg 3840
atagtactca tcatagaagc actgaaaaaa aaatcttgta ggataagagt tcctttccct 3900
tttcaatggg gggctccaac atttgatgct ggtgaatctt ttgccatgat gatggcctca 3960
tttgttgctc ttgtagaggt ttgtctgcac agctttacct gaaagtgaaa catagattgc 4020
tggttataag ttttaacccg ctgctactac tatctttcag tcaactggga ccttcattgc 4080
tgtgtcaaga tatgcaagtg cgactatgat acctccatca gtgcttggtc gtggaattgg 4140
ttggcaggta aacatgttga ttattttccc ccagaagcat catcttagtc aatcgctagg 4200
ttttactgat cactgctgag tatcatttgc agggtattgg tactttaata ggtgcatttt 4260
tcgggacagc caatggaact gctgtatcag tgtaagtgta atgttaccat ctaattaaat 4320
tagtggcctg gattacttgg gaactggttt tcttcccatt tgtctcttaa gtaggtcata 4380
atccatattg atctttgcag ggaaaatgcc ggtttgctag ctttgacaca tgttggcagc 4440
cggagagtag tgcaaatatc tgctggcttc atgatcttct tttctatcct tggtaatgtg 4500
cagtgctttt tctaacttta gtactccata tcagctttca gaagaaaaat ctagtaggct 4560
cgtagttgtc gtgtgcaggg atagagagaa tcagagtaca tataagtttt aataaggata 4620
gacagaatca gagtaccata tgatttccta ggctaataat gtttgttatg ctaaaccagg 4680
gaaattcgga gcaatctttg cgtcaattcc cttaccaata ttcgctgcac tgtattgcat 4740
cttctttgca tatattggta agtggtccag atattcagca ccctttacca ggcttttgat 4800
tatttctgtg cttttatttg cacattgcag tttccaaatt gtcaatgcct ctatttgcag 4860
gtgcctgtgg tctgagcttc cttcagttct gcaatctcaa cagcttcagg accaagttca 4920
ttgtggggtt ctcgttcttc atgggcttat cggttcctca gtacttcaac gagtatacat 4980
cggttgccgg ttatggtcca gtgcacaccg gcgctcgatg ggtatgtaaa gaaaacctcc 5040
aaccttcttg tacttctata tatctttttt tttccagcta aatcctttac aggttactga 5100
tgttcatcat tttggcatgg cagttcaatg acatgataaa tgtacccttc gcgtcaaagc 5160
cgttcgtcgc agggctcatt gcgtacttcc tagacaacac tatccagagg cgcgacaatg 5220
gggtgaggag agacagggga taccactggt gggacaagtt caggagcttc aagacggaca 5280
cccggagcga ggagttctac tctctgccgt tcaacttgaa caagttcttc ccttccgtgt 5340
gatccgcctt agctcgggtt cggaccgcag cagaattggg ggggagcttc agcttctact 5400
tgtatggggg catgtttttt cgatgttggt tcgatggttt tgtaaatctt aggatgggtg 5460
aattttggct ggttggggga ctaatctgtc atgccacata ttattgcatt ttggttcagt 5520
acagaggtca gggaggggct gctgcttctg gttgatctgt tgttcttgaa tcttgagagc 5580
tttctgctag gagttcccct tgtggtaagg tagattcagg attctgtact tctgttttgc 5640
ccaaggagaa tcacagtgct tagtagcatc 5670
<210> 4
<211> 5615
<212> DNA
<213> 水稻(Oryza sativa Linn)
<400> 4
gccgcctctc ccgtcgccgg cgtccaccgc agcccctctc tctccctctc tcccatcgcc 60
gcctatcgct gtcctctccg gcatcctcca cctcgtgccg tcgccggtca ggggcgccag 120
atccggcgcc gtagtgggcg gatctgagct ccacgtggcc agatcgggga ggatacagtg 180
gcagcgccgg cggtagcggg cacggcgcca gcggtggcga gcaaggtgtc ggcgaagaag 240
gccgggcaag gcgcacggtg gtcgtcgtca ccgtcgtccc cgagcgcgat gaccaccacc 300
acgacgtcgt ccttgtgctc ctcggcggcg agcacgggca cctcaagccg tctccgcccg 360
tcgccgtcgc ctctcttctc tctctctctc tctctctctc tctcgctctc gttgtcacgc 420
taccgatgag gggcaacatg gggaagcaat gggggaggag gtgggggaca gggcatcggg 480
tcaccccaat gcgtagcccc gatggagtag ctcaggaaaa gtgagctgag gagcccggag 540
ccactcgtcc cccgcgtggg ggtcgcacct ccctcccagg ggacgacccg acgacggaag 600
ttggatgcca tttgcgaggc tactctctag gggcacgcat ttctgatggc cttagtggct 660
aactttatca aatcacaatt gagataagtt gtggcttatc acagaattat gtttatagat 720
ccttatccac actacaagct taggccctgt ttagatctct agcaaaattt tacaccctgt 780
cacatcaaat gtttgaacat atgcatggaa tattaaatat agacgaaaaa aataactaat 840
tacacagatt gcgtgtaaat tatgagatga atcttttaag cctaattgca ccataatttg 900
acaatgtggt gttacaataa atatttgcta atgacggatt gattaggctt aataaagtca 960
tctcgcggtt tacaggtgga ttctgtaatt tgtcttgtta ttagactacg tttaatactt 1020
taaatgtgta cacgtatatc caatgtgaca cgacgaaact tcaaccacta gatctaaaca 1080
caaccttggt taaaaacttg aatcaatgac aaggaagacc atgtgtctat aaagtttgac 1140
aagagactat tgtgacaatg aaccaaatag ttatttaaaa agttgtgaca tactcctagc 1200
taaccttaaa tataatacta ctcccttcat ttcacaatat aagattttct agcattgctt 1260
atatacatat agatgttaat gaatctatat acatatagat gttaatgaat ctaaacacat 1320
atatataaat atgaccaatg ctagaaagtc ttacattgtg aaacggagga agtacctccg 1380
tcccaaaatg ttacaatatt tagttatgga tctagacata ttcgacggag ggagtatacc 1440
gaagatatca accaaacaga accgaacttc ttcccattgt ggaatttgca atcttttctc 1500
ctctctctgc catctccttt acggtggtgg gaaaaagata acatcttggg aagaggagcg 1560
gagggcgcgt ttttcgcgga ggcggtggcg caaaggcgaa actccgatcc catggccaga 1620
gaaaaaaagc attgctggta gcgagagaaa agaagggaaa cataaaagag ggaggaaaag 1680
ctcaaagcat tgtagattcc ttcgacccag gtagtagctg ctagctgcga gtgtgttgca 1740
ttgcattgca ctgctgctgc ttcactccac tgcgcactgg gaggagtagt agtagaaagc 1800
aagaagcagc agctgtagct gtctcccttt cttttcatcc tcctttgttc ttgctcctct 1860
ttgcacgcaa agaatcggta gccgcctttg tttgctgctc tctgaaatct ctctgagctt 1920
tgtgctttca ctgcactgtt ctggttcttg gactccctgt tcttggttcc tgcatttctt 1980
ttcttttttg cctttgtttg tcccattttt gttgggttct tggaggtggt ggaggatggc 2040
cggaggaggg gcggcgccgc cgccgaagca ggaggagttg cagcctcacc aggtgaagga 2100
ccagctgccc agcgtgtcct actgcatcac cagcccaccg ccatggcgta cgtctcttaa 2160
tttcttcttc tctgattctc tctctatatc accaaggcca tctttgcctt ttgattttga 2220
tggcggagct gctaatcatc cactgtactt tgtggcattt atgttctctt agccgtatag 2280
atttgcagca ttgatgatgt cgatgtcgat gtcggcctcc taggtttgct tgtgttggtt 2340
ggttgtagtt tgtggtcact tcactctggt ggttctcaca cctggtcctg acgatgttga 2400
tgggtttgaa actttgaatc tctcttttcc tgcagctgag gccgtcatac ttggattcca 2460
gcactacatt gtgatgctgg gcacatcagt gattattccc agtgctcttg ttccccagat 2520
gggaggtgga aatgtgagtc tccccaagaa tcacctgaaa agtattccaa tatctgaatc 2580
ttggttgatt tcacttgttg acatgtgcat ttgaagaatg tcacagaaga tctaaactgt 2640
tactactgta attttgtgat gagcttgcat gtcaaaactg atgaactgta cctgcatttc 2700
gttgcattgc cactcaggag gagaaggctc gggtgattca gacgctgctg ttcgttgccg 2760
ggataaacac cctctgccaa tcgttcttcg ggactcgtct tccagctgtg atgggaggat 2820
cgtacaccat tgttgcgccg acaatttcca tcatattggc tggccgctat agcaatgaag 2880
cagatcctca tgaggtagta tccgcactag ctgtatctaa gcattaagat tgtcacatcc 2940
tctgtgtgat cttgtaaagt tggtaagatt ttgctactgc tgtgaagaaa ttcttgcgga 3000
caatgcgagg aacacaaggt gctctcatca ttgcatcgac aatccagatc atacttggtt 3060
tcagtggtct ctggcgcaat gtagttaggt aggtatcatt gttgaacttc tgaatgtaca 3120
ttgtgcaatt gcatcatttc agtttgcagg cttgccaact gcagtgtttc agttatcagg 3180
tttggcgact cgttgcacaa tgtattgttt tagtttgtgg cttgaccatt gcccactctt 3240
tcacagattt cttagtccat tgtctgctgt tcctttgatc tcacttgctg gatttggcct 3300
ctatgagctt ggttttccag gggtaagagt tagcttggag attctttttt ttttctttgg 3360
ctgttcccta cctcataaga ctgattttag tgccacaact gtatgtgcag gttgcaaagt 3420
gcgtggaaat tgggctccca gaaatcattc tactgcttgt attttctcag gtgattgcag 3480
cagtcataat gcatattcac acaagtatag ctgtggttgc tgaaagtcat gagctaactg 3540
catttgcccc cttgtgcagt atttacccca tgtcatacat gtggcaaagc ccgtgttcga 3600
ccggtttgct gtgattttca ccattgctat tgtgtggctg tatgcataca ttctaactgc 3660
tagtggcgca tacaagaatg cccggccgaa gacacaagtg cactgtcgtg ttgatcgctc 3720
tggaattatc agtggagctc catggtaagc aattcatgag tgtttcatca tttctcttcc 3780
tgggcccttt attgatagta ctcatcatag aaggactgaa aaaaaaatct tgtaggataa 3840
gagttccttt cccttttcaa tggggggctc caacatttga tgctggtgaa tcttttgcca 3900
tgatgatggc ctcatttgtt gctcttgtag aggtttgtct gcacagcttt acctgaaagt 3960
gaaacataga ttgctggtta taagttttaa cccgctgcta ctactatctt tcagtcaact 4020
gggaccttca ttgctgtgtc aagatatgca agtgcgacta tgatacctcc atcagttctt 4080
ggtcgtggaa ttggttggca ggtaaacatg ttgattattt tcccccagaa gcatcatctt 4140
agtcaatcgc taggttttac tgatcactgc tgagtatcat ttgcagggta ttggtacttt 4200
aataggtgca tttttcggga cagccaatgg aactgctgta tcagtgtaag tgtaatgtta 4260
ccatctaatt aaattagtgg cctggattac ttgggaactg gttttcttcc catttgtctc 4320
ttaagtaggt cataatccat attgatcttt gcagggaaaa tgccggtttg ctagctttga 4380
cacatgttgg cagccggaga gtagtgcaaa tatctgctgg cttcatgatc ttcttttcta 4440
tccttggtaa tgtgcagtgc tttttctaac tttagtactc catatcagct ttctgaagaa 4500
aaatctagta ggctcgtagt tgtcgtgtgc agggatagag agaatcagag tacatataag 4560
ttttaataag gatagacaga atcagagtac catatgattt cctaggctaa taatgtttgt 4620
tatgctaaac cagggaaatt cggagcaatc tttgcgtcaa ttcccttacc aatattcgct 4680
gcgctgtatt gcatcttctt tgcatatatt ggtaagtggt ccagatattc agcacccttt 4740
accaggcttc ttttgattat ttctgtgctt ttatttgcac attgcagttt ccaaattgtc 4800
aatgcctcta tttgcaggtg cctgtggtct gagcttcctt cagttctgca atctcaacag 4860
cttcaggacc aagttcattg tggggttctc gttcttcatg ggcttatcgg ttcctcagta 4920
cttcaacgag tatacatcgg ttgccggtta tggtccagtg cacaccggcg ctcgatgggt 4980
atgtaaagaa aacctccaac cttcttgtac ttctatatat cttttttttc cagctaaatc 5040
ctttgcaggt tactgatgtt catcattttg gcatggcagt tcaatgacat gataaatgta 5100
cccttcgcgt caaagccgtt cgtcgcaggg ctcattgcgt acttcctaga caacaccatc 5160
cagaggcgcg acaatggggt gaggagagac aggggatacc actggtggga caagttcagg 5220
agcttcaaga cggacacccg gagcgaggag ttctactctc tgccgttcaa cttgaacaag 5280
ttcttccctt cggtgtgatc cgccttagct cgggttcgga ccgcagcaga attgggggga 5340
gctttggctt ctacttgtat gggggcatgt tttttcaatg ttggttcgat ggttttgtaa 5400
atcttaggat gggtgaattt tggctggttg ggggactaat ctgtcatgct acatattatt 5460
gcatcttggt tcagtacaga ggtcagggag ggactgctgc ttctggttga tctgttcttt 5520
gagagccttc tgctaggagt tccccttgtg taaggtagat tcaggattct gtagctctgt 5580
tttgcccaag gagaatcaca gtgcttagta gcatc 5615
<210> 5
<211> 1602
<212> DNA
<213> 水稻(Oryza sativa Linn)
<400> 5
atggccggag gaggggcggc gccgccgccg aagcaggagg agttgcagcc tcaccaggtg 60
aaggaccagc tgcccagcgt gtcctactgc atcaccagcc caccgccatg gcctgaggcc 120
gtcatacttg gattccagca ctacattgtg atgctgggca catcagtgat tattcccagt 180
gctcttgttc cccagatggg aggtggaaat gaggagaagg ctcgggtgat tcagacgctg 240
ctgttcgttg ccgggataaa caccctctgc caatcgttct tcgggactcg tcttccagct 300
gtgatgggag gatcgtacac cattgttgcg ccgacaattt ccatcatatt ggctggccgc 360
tatagcaatg aagcagatcc tcatgagaaa ttcttgcgga caatgcgagg aacacaaggt 420
gctctcatca ttgcatcgac aatccagatc atacttggtt tcagtggtct ctggcgcaat 480
gtagttagac ttcttagtcc attgtctgct gttcctttga tctcacttgc tggatttggc 540
ctctatgagc ttggttttcc aggggttgca aagtgcgtgg aaattgggct cccagaaatc 600
attctactgc ttgtattttc tcagtattta ccccatgtca tacatgtggc aaagcccgtg 660
ttcgaccggt ttgctgtgat tttcaccatt gctattgtgt ggctgtatgc atacattcta 720
actgctagtg gcgcatacaa gaatgcccgg ccgaagacac aagtgcactg tcgtgttgat 780
cgctctggaa ttatcagtgg agctccatgg ataagagttc ctttcccttt tcaatggggg 840
gctccaacat ttgatgctgg tgaatctttt gccatgatga tggcctcatt tgttgctctt 900
gtagagtcaa ctgggacctt cattgctgtg tcaagatatg caagtgcgac tatgatacct 960
ccatcagtgc ttggtcgtgg aattggttgg cagggtattg gtactttaat aggtgcattt 1020
ttcgggacag ccaatggaac tgctgtatca gtggaaaatg ccggtttgct agctttgaca 1080
catgttggca gccggagagt agtgcaaata tctgctggct tcatgatctt cttttctatc 1140
cttgggaaat tcggagcaat ctttgcgtca attcccttac caatattcgc tgcactgtat 1200
tgcatcttct ttgcatatat tggtgcctgt ggtctgagct tccttcagtt ctgcaatctc 1260
aacagcttca ggaccaagtt cattgtgggg ttctcgttct tcatgggctt atcggttcct 1320
cagtacttca acgagtatac atcggttgcc ggttatggtc cagtgcacac cggcgctcga 1380
tggttcaatg acatgataaa tgtacccttc gcgtcaaagc cgttcgtcgc agggctcatt 1440
gcgtacttcc tagacaacac tatccagagg cgcgacaatg gggtgaggag agacagggga 1500
taccactggt gggacaagtt caggagcttc aagacggaca cccggagcga ggagttctac 1560
tctctgccgt tcaacttgaa caagttcttc ccttccgtgt ga 1602
<210> 6
<211> 1602
<212> DNA
<213> 水稻(Oryza sativa Linn)
<400> 6
atggccggag gaggggcggc gccgccgccg aagcaggagg agttgcagcc tcaccaggtg 60
aaggaccagc tgcccagcgt gtcctactgc atcaccagcc caccgccatg gcctgaggcc 120
gtcatacttg gattccagca ctacattgtg atgctgggca catcagtgat tattcccagt 180
gctcttgttc cccagatggg aggtggaaat gaggagaagg ctcgggtgat tcagacgctg 240
ctgttcgttg ccgggataaa caccctctgc caatcgttct tcgggactcg tcttccagct 300
gtgatgggag gatcgtacac cattgttgcg ccgacaattt ccatcatatt ggctggccgc 360
tatagcaatg aagcagatcc tcatgagaaa ttcttgcgga caatgcgagg aacacaaggt 420
gctctcatca ttgcatcgac aatccagatc atacttggtt tcagtggtct ctggcgcaat 480
gtagttagat ttcttagtcc attgtctgct gttcctttga tctcacttgc tggatttggc 540
ctctatgagc ttggttttcc aggggttgca aagtgcgtgg aaattgggct cccagaaatc 600
attctactgc ttgtattttc tcagtattta ccccatgtca tacatgtggc aaagcccgtg 660
ttcgaccggt ttgctgtgat tttcaccatt gctattgtgt ggctgtatgc atacattcta 720
actgctagtg gcgcatacaa gaatgcccgg ccgaagacac aagtgcactg tcgtgttgat 780
cgctctggaa ttatcagtgg agctccatgg ataagagttc ctttcccttt tcaatggggg 840
gctccaacat ttgatgctgg tgaatctttt gccatgatga tggcctcatt tgttgctctt 900
gtagagtcaa ctgggacctt cattgctgtg tcaagatatg caagtgcgac tatgatacct 960
ccatcagttc ttggtcgtgg aattggttgg cagggtattg gtactttaat aggtgcattt 1020
ttcgggacag ccaatggaac tgctgtatca gtggaaaatg ccggtttgct agctttgaca 1080
catgttggca gccggagagt agtgcaaata tctgctggct tcatgatctt cttttctatc 1140
cttgggaaat tcggagcaat ctttgcgtca attcccttac caatattcgc tgcgctgtat 1200
tgcatcttct ttgcatatat tggtgcctgt ggtctgagct tccttcagtt ctgcaatctc 1260
aacagcttca ggaccaagtt cattgtgggg ttctcgttct tcatgggctt atcggttcct 1320
cagtacttca acgagtatac atcggttgcc ggttatggtc cagtgcacac cggcgctcga 1380
tggttcaatg acatgataaa tgtacccttc gcgtcaaagc cgttcgtcgc agggctcatt 1440
gcgtacttcc tagacaacac catccagagg cgcgacaatg gggtgaggag agacagggga 1500
taccactggt gggacaagtt caggagcttc aagacggaca cccggagcga ggagttctac 1560
tctctgccgt tcaacttgaa caagttcttc ccttccgtgt ga 1602

Claims (8)

1.一种水稻NAT8基因,其特征在于:所述水稻NAT8基因的基因组核苷酸序列如SEQ IDNO:3或SEQ ID NO:4所示,水稻NAT8基因的CDS核苷酸序列如SEQ ID NO:5或SEQ ID NO:6所示。
2.根据权利要求1所述的一种水稻NAT8基因,其特征在于:该基因的编码蛋白的氨基酸序列如SEQ ID NO:1或SEQ ID NO:2所示。
3.一种如权利要求1-2任一所述基因的敲除载体,其特征在于:所述敲除载体为包含SEQ ID NO:3或SEQ ID NO:5的NAT8基因的gDNA片段的CRISPR/Cas9载体。
4.一种如权利要求1-2任一所述基因在提高植物产量育种中的应用。
5.根据权利要求4所述的应用,其特征在于,所述提高植物产量的方法为:将含有SEQID NO:3或SEQ ID NO:5所示的NAT8基因的植株进行NAT8基因敲除,获得缺失体植株。
6.根据权利要求5所述的应用,其特征在于:所述植物为水稻。
7.根据权利要求5所述的应用,其特征在于:所述应用为通过提高植物的氮利用效率来提高植物产量育种。
8.根据权利要求7所述的应用,其特征在于:所述氮利用效率提高体现在如下方面中的至少一种:氯酸盐敏感性、硝酸盐吸收转运能力、有效分蘖数、单株产量、小区产量。
CN202110835887.6A 2021-07-23 2021-07-23 水稻nat8基因及其编码蛋白在提高植物产量育种中的应用 Active CN113564179B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110835887.6A CN113564179B (zh) 2021-07-23 2021-07-23 水稻nat8基因及其编码蛋白在提高植物产量育种中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110835887.6A CN113564179B (zh) 2021-07-23 2021-07-23 水稻nat8基因及其编码蛋白在提高植物产量育种中的应用

Publications (2)

Publication Number Publication Date
CN113564179A true CN113564179A (zh) 2021-10-29
CN113564179B CN113564179B (zh) 2024-03-15

Family

ID=78166567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110835887.6A Active CN113564179B (zh) 2021-07-23 2021-07-23 水稻nat8基因及其编码蛋白在提高植物产量育种中的应用

Country Status (1)

Country Link
CN (1) CN113564179B (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299321B2 (en) * 1998-06-16 2012-10-30 Monsanto Technology Llc Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
CN102978221A (zh) * 2012-11-30 2013-03-20 三峡大学 一种水稻分蘖及株高相关蛋白htdf及其编码基因与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299321B2 (en) * 1998-06-16 2012-10-30 Monsanto Technology Llc Nucleic acid molecules and other molecules associated with plants and uses thereof for plant improvement
CN102978221A (zh) * 2012-11-30 2013-03-20 三峡大学 一种水稻分蘖及株高相关蛋白htdf及其编码基因与应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANDRIELE WAIRICH ET AL.: "The combined strategy for iron uptake is not exclusive to domesticated rice(Oryza sativa)", 《SCI REP》 *
ANDRIELE WAIRICH ET AL.: "The combined strategy for iron uptake is not exclusive to domesticated rice(Oryza sativa)", 《SCI REP》, 6 November 2019 (2019-11-06), pages 1 - 17 *
NCBI: "NCBI Reference Sequence:XM_015648266.1", 《NCBI》, pages 1 - 2 *
NCBI: "NCBI Reference Sequence:XM_015792780.2", 《GENBANK》 *
NCBI: "NCBI Reference Sequence:XM_015792780.2", 《GENBANK》, 7 August 2018 (2018-08-07), pages 1 - 2 *
王虹玲等: "利用同源转基因技术培育氮高效利用转基因水稻", 《浙江农业学报》 *
王虹玲等: "利用同源转基因技术培育氮高效利用转基因水稻", 《浙江农业学报》, vol. 23, no. 5, 31 October 2011 (2011-10-31), pages 862 - 869 *

Also Published As

Publication number Publication date
CN113564179B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
McElver et al. Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana
CN101880671B (zh) 一种控制水稻谷粒粒宽和粒重的主效基因gs5的克隆与应用
CN108822194B (zh) 一个植物淀粉合成相关蛋白OsFLO10及其编码基因与应用
CN107759676A (zh) 一种植物直链淀粉合成相关蛋白Du15与其编码基因及应用
CN106754967A (zh) 一种水稻粒型基因OsLG1及其编码蛋白质和应用
CN109666682A (zh) 水稻丝氨酸羟甲基转移酶编码基因OsSHM4突变体及其应用
CN113621625B (zh) 芝麻SiERF103基因在增强植物抗性中的应用
CN111172179A (zh) 泛素连接酶基因OsNLA2、蛋白及其在水稻选育中的应用
CN107326035B (zh) 一种调控水稻粒型和叶色的去泛素化酶基因ubp5及其应用
CN104328127B (zh) 茎瘤芥抗逆基因BjEFh1及其植物表达载体及应用
CN110760527B (zh) 与干旱胁迫相关的菏豆12号GmYLD1基因及其等位突变基因与应用
CN111593064B (zh) 一种通过抑制OsSDM基因表达提高水稻耐盐性的方法
CN108676081B (zh) 紫云英leafy基因及其应用
CN108913698B (zh) 一种与小麦穗发芽抗性/感性相关的caps标记及其应用
CN113564179B (zh) 水稻nat8基因及其编码蛋白在提高植物产量育种中的应用
CN113957082B (zh) 一种低温下保护水稻叶绿体发育基因tsa及其编码蛋白质和应用
CN113234731B (zh) 编码大豆ARF转录因子的GmARF16基因及应用
CN112029777B (zh) 一种降低水稻结实率的OsALIS4基因及其编码得到的蛋白和应用
CN110938615A (zh) 草酸代谢相关酶及其在草酸降解中的应用
Khlestkina et al. Intron loss in the chalcone-flavanone isomerase gene of rye
CN107446031A (zh) 一种植物谷蛋白转运储藏相关蛋白OsVHA‑E1及其编码基因与应用
CN107033229A (zh) 小麦抗白粉病相关蛋白TaEDS1‑D1及其编码基因与应用
CN108795949B (zh) 一种水稻叶色调控相关基因OsWSL6及其编码蛋白质和应用
CN114736908A (zh) 调节植物镉含量以及镉耐受性的基因及其应用
CN110468138B (zh) 控制水稻耐冷性的基因tsg2及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant