CN113563513A - 一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及应用 - Google Patents

一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及应用 Download PDF

Info

Publication number
CN113563513A
CN113563513A CN202110880049.0A CN202110880049A CN113563513A CN 113563513 A CN113563513 A CN 113563513A CN 202110880049 A CN202110880049 A CN 202110880049A CN 113563513 A CN113563513 A CN 113563513A
Authority
CN
China
Prior art keywords
nmam
vcl
solution
copper
cuncs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110880049.0A
Other languages
English (en)
Other versions
CN113563513B (zh
Inventor
王杨
常柏松
方渊
陶登武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Chien Shiung Institute of Technology
Original Assignee
Suzhou Chien Shiung Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Chien Shiung Institute of Technology filed Critical Suzhou Chien Shiung Institute of Technology
Priority to CN202110880049.0A priority Critical patent/CN113563513B/zh
Publication of CN113563513A publication Critical patent/CN113563513A/zh
Application granted granted Critical
Publication of CN113563513B publication Critical patent/CN113563513B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L29/00Foods or foodstuffs containing additives; Preparation or treatment thereof
    • A23L29/20Foods or foodstuffs containing additives; Preparation or treatment thereof containing gelling or thickening agents
    • A23L29/288Synthetic resins, e.g. polyvinylpyrrolidone
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/16Inorganic salts, minerals or trace elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/34Copper; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/32Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. carbomers, poly(meth)acrylates, or polyvinyl pyrrolidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-(meth)acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/085Copper
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Dispersion Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提出一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,包括以下步骤:S1:以N‑乙烯基己内酰胺(VCL)或异丙基丙烯酰胺(NIPAM)为主要单体、N‑羟甲基丙烯酰胺(NMAM)为共聚单体,N,N‑亚甲基双丙烯酰胺(MBA)和N,N'‑双(丙烯酰)胱胺(BAC)为共交联剂,以有机溶剂为溶剂,合成聚合物纳米水凝胶;S2:以步骤S1合成的聚合物纳米水凝胶为模板,以水为介质、加入还原剂与含铜化合物合成聚合物凝胶‑CuNCs;本法制备的发光铜纳米簇具有良好的细胞抗氧化酶的活性和稳定性,粒子大小有利于细胞吸收,将复合材料冻干成粉末,更有利于保存;其发光特性可用于通过光学显微镜对细胞进行成像,无需额外的染料;可以作为药物成分调节细胞中的ROS水平或者作为抗肿瘤药物的载体协同抑制癌细胞增殖。

Description

一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及 应用
技术领域
本发明涉及一种高分子复合纳米材料制备方法,具体涉及一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及应用。
背景技术
好氧有机物能够产生活性氧 (ROS),如超氧化物、过氧化氢和羟基自由基,以维持正常的生命活动。ROS能够介导各种信号的转导机制,在调节各种生理过程中发挥着重要作用;但过量产生的 ROS会导致氧化应激,造成生物分子的破坏,导致各种疾病的产生,包括神经变性、糖尿病、慢性肾病、心血管疾病和癌症等。因此,维持 ROS 水平对抗氧化应激对于维持细胞稳态尤为重要。
细胞中的氧化还原平衡是通过复杂的内源性抗氧化防御系统实现的,其中包括内源性抗氧化酶,例如超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GPx)和葡萄糖氧化酶(GOx)等。由ROS失衡引起的氧化应激调节已被公认为癌症和神经系统疾病的重要治疗靶点。抗氧化酶具有不同清除ROS的调节机制,例如,SOD对体内歧化酶转化为O2和H2O2具有非常高的特异性。虽然H2O2的存在对身体有害,但CAT和过氧化物酶会立即将其分解成无害的水。CAT和过氧化物酶能够在氧化应激期间催化过量的H2O2,而GPx可以微调H2O2浓度以实现细胞信号传导的功能。受上述发现的启发,科学研究者们不再满足于开发具有单一酶活性的材料,开始致力于设计具有多酶活性的功能材料。
天然抗氧化酶,例如辣根过氧化物酶(HRP),虽具有较好的氧化应激调节能力,但其发展仍然受到固有缺点的限制,如储存困难、易失活、稳定性差和来源相对有限等。为了克服天然酶的这些缺点,研究人员正在努力开发天然抗氧化酶的理想替代品。铜是人体必需的微量营养素,是许多重要酶的组成部分,如酪氨酸酶和铜-锌SOD。铜基纳米粒子,尤其是亚铜和氧化铜(Cu2O和CuO),被广泛研究应用于抗菌材料、生物传感和催化等领域。最近,刘等人制备了用于清除ROS和减轻炎症相关疾病的超细铜基纳米粒子。郝等人合成了手性分子介导的多孔CuxO纳米团簇,具有CAT、SOD和GPx活性,用于改善帕金森病。因此,可尝试通过设计和构建铜纳米团簇(CuNCs)在功能上实现模拟主要的细胞抗氧化酶。
铜纳米团簇(CuNCs)被证明具有独特的荧光特性、良好的生物相容性和电子导电性,可用于识别各种分析物,如金属阳离子、阴离子、生物分子、小分子和pH等。然而,CuNCs不够稳定、容易发生氧化,特别是在亚纳米尺寸的情况下,这一定程度上限制了它们的应用。虽然可通过生物硫醇分子、DNA和蛋白质等方法合成CuNCs,但仍然需要具有高稳定性和稳定分子结构的CuNCs。如果CuNCs能够基于聚合物微球以固体复合材料的形式保存,则更有利于后期的储存、运输和进一步的应用。
发明内容
针对上述问题,本发明提供一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及应用。
本发明包括以下技术方案:
一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,包括以下步骤:
S1:以N-乙烯基己内酰胺(VCL)或异丙基丙烯酰胺(NIPAM)为主要单体、N-羟甲基丙烯酰胺(NMAM)为共聚单体, N,N-亚甲基双丙烯酰胺(MBA)和N,N'-双(丙烯酰)胱胺(BAC)为共交联剂,以有机溶剂为溶剂,合成聚合物纳米水凝胶;
S2:以步骤S1合成的聚合物纳米水凝胶为模板,以水为介质、加入还原剂与含铜化合物合成聚合物凝胶-CuNCs。
进一步的,上述一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,所述有机溶剂包括乙腈。
进一步的,上述一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,所述还原剂包括谷胱甘肽、抗坏血酸、二硫苏糖醇和半胱氨酸。
进一步的,上述一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,所述含铜化合物包括硝酸铜、氯化铜和硫酸铜。
进一步的,上述一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,包括以下具体步骤:
S1:P(VCL/NIPAM-co-NMAM)纳米水凝胶的制备:
在圆底烧瓶中加入1.15~10.36 mM N-乙烯基己内酰胺(VCL)或N-异丙基丙烯酰胺(NIPAM),0.209~5.70 mM N-羟甲基丙烯酰胺(NMAM),0.21~0.96 mM 的摩尔比1:3~3:1的N,N-亚甲基双丙烯酰胺(MBA)和N,N'-双(丙烯酰)胱胺BAC),0.038~0.192 mM偶氮二异丁腈(AIBN),10~30 mL的乙腈溶液,超声分散均匀后,放入磁子,安装加热回流装置,打开磁力搅拌,搅拌速度400~800 rpm/min,升温至80~95 °C开始反应,恒温回流反应2~4 h结束,将白色乳液倒出,4000~7000 r/min速度离心5~10 min,倒去上层溶液,用无水乙醇洗涤、离心,反复2~3次;产物经自然干燥或者冷冻干燥,得到白色粉状产品;
S2:P(VCL/NIPAM-co-NMAM)-CuNCs的制备:
圆底烧瓶中,量取0.5 mL 固含量为0.020~0.050 g/mL P(VCL/NIPAM -co-NMAM)纳米凝胶水溶液,加入9.5 mL 0.01~0.1 M pH 8.0 缓冲溶液;分散均匀后,向上述凝胶水溶液中加入0.154~0.307 g GSH,搅拌使之充分溶解,37℃下搅拌反应6~12 h ,搅拌速率为300~600 rpm/min。向上述反应混合液中加入0.2~0.6 mL的0.1 M的硝酸铜溶液,300~600rpm/min 搅拌速率下反应30~60 min;加热至60~80℃继续反应20~40 min,溶液一直为白色乳液,再加入0.5~1.2 mL 1M氢氧化钠溶液,此时溶液变为淡黄色的乳液,反应结束。将反应混合物用纯水在5000~8000 rpm/min 下离心洗涤2次,收集沉淀并冷冻干燥得白色粉末,即为基于温敏性聚合物水凝胶的发光铜纳米簇P(VCL/NIPAM -co-NMAM)-CuNCs。
进一步的,上述一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,包括以下具体步骤:
S1:P(VCL-co-NMAM)纳米水凝胶的制备
50 mL圆底烧瓶中加入0.395 g N-乙烯基己内酰胺(VCL),0.395 g N-羟甲基丙烯酰胺 (NMAM), 0.0586 g (0.380 mM) N,N-亚甲基双丙烯酰胺(MBA)和0.0989 g (0.380mM) N,N'-双(丙烯酰)胱胺(BAC),0.0158 g偶氮二异丁腈(AIBN),20 mL的乙腈溶液,超声5分钟分散均匀后,放入磁子,安装加热回流装置,打开磁力搅拌,搅拌速度500 rpm/min,升温至90 °C开始反应,恒温回流反应2 h结束,将白色乳液倒出,5000 rpm/min速度离心10min,倒去上层溶液,用无水乙醇反复离心洗涤2次,冷冻干燥后得白色粉末状产品;
S2:P(VCL -co-NMAM)-CuNCs的制备:
25 mL圆底烧瓶中,量取0.5 mL 固含量为0.039 g/mL P(VCL-co-NMAM)纳米凝胶水溶液,加入9.5 mL 0.01M pH 8.0 缓冲溶液;分散均匀后,向上述凝胶水溶液中加入0.3073 g GSH,搅拌使之充分溶解,37℃下搅拌反应12 h ,搅拌速率为300 rpm/min。向上述反应混合液中0.5 mL的0.1 M的硝酸铜溶液,500 rpm/min 搅拌速率下反应60 min;加热至80℃继续反应20 min,溶液一直为白色乳液,再加入0.94 mL 1M氢氧化钠溶液,此时溶液变为淡黄色的乳液,反应结束。将反应混合物用纯水在6000 rpm/min 下离心洗涤2次,收集沉淀并冷冻干燥得白色粉末,即为基于温敏性聚合物水凝胶的发光铜纳米簇P(VCL-co-NMAM)-CuNCs。
S3:GSH-CuNCs的制备
25℃下,称取0.125 g (0.407 mM)的谷胱甘肽(GSH)加入装有20 mL超纯水的250mL三口烧瓶中,在600 rpm/min转速下搅拌使其充分溶解,加入0.1 mol/L的硝酸铜(Ⅱ)溶液 1 mL,溶液迅速变黄色透明溶液。继续搅拌30 min,溶液中产生少量白色浑浊,此时将溶液缓缓加热至60 ℃,溶液变为不透明乳白色液体。加热搅拌30 min后加入1 mol/L氢氧化钠溶液直到溶液变为黄色澄清透明,结束反应。产物冷却后,加入5倍体积的乙醇,得到白色乳浊液。乳浊液在8000 rpm/min转速下离心5 min得到粗产物。将粗产物分散在5 mL水中得到黄色澄清溶液,并用5倍体积的乙醇溶液再次形成乳浊液、在8000 rpm转速下离心,该步骤重复3次得到最终产物。收集离心管中的产物并冷冻干燥,冻干后的粉末样品保存在4 ℃冰箱中。
进一步的,上述一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,所述步骤S1制备的P(VCL-co-NMAM)的DLS粒径为550 nm,TEM粒径为290 nm;所述步骤S2制备的P(VCL-co-NMAM)-CuNCs在365 nm紫外光激发下发出红色荧光。
进一步的,上述一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,所述P(VCL-co-NMAM)-CuNCs对SOD抑制率约为相同浓度GSH的2倍。
进一步的,上述一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法所制备得到的发光铜纳米簇。
进一步的,上述发光铜纳米簇在制备维持机体氧化还原平衡的药物或者保健品中的用途,所述用途包括作为药物成分调节细胞中的ROS水平或者作为抗肿瘤药物的载体。本发明具有以下有益效果:
本技术以聚合物纳米水凝胶为模板通过原位合成法制备发光铜纳米团簇。在原位合成法中,首先以N-乙烯基己内酰胺或异丙基丙烯酰胺为主要单体、N-羟甲基丙烯酰胺为共聚单体,N,N-亚甲基双丙烯酰胺(MBA)和N,N'-双(丙烯酰)胱胺(BAC)为共交联剂,以乙腈为溶剂,合成富含氮原子和二硫键的聚合物纳米水凝胶;再以合成的聚合物纳米水凝胶为模板,以水为介质、谷胱甘肽为还原剂合成稳定性好、具有红色荧光的聚合物凝胶-CuNCs。谷胱甘肽作为还原剂,不仅可还原铜离子,还可将聚合物水凝胶中的二硫键还原为巯基,生成的巯基起到稳定剂的作用,有助于提高铜纳米簇的稳定性。聚合物凝胶-CuNCs复合材料性能稳定、粒子大小有利于细胞吸收,将复合材料冻干成粉末,更有利于保存;其发光特性可用于通过光学显微镜对细胞进行成像,而无需使用任何其他染料。同时,聚合物凝胶-CuNCs具有细胞抗氧化酶的活性,能够调节细胞中的ROS 水平,可用于治疗癌症和神经系统疾病;此外,聚合物凝胶-CuNCs还能够作为抗肿瘤药物载体,并通过在肿瘤细胞中产生活性氧,实现与药物协同杀死肿瘤细胞的功效。
附图说明
附图1 为本发明中P(VCL-co-NMAM)微球的粒径分布图;
附图2为本发明中P(VCL-co-NMAM)微球的TEM图;
附图3为本发明中P(VCL-co-NMAM)微球的温度变化曲线;
附图4为本发明中铜纳米团簇(GSH-CuNCs)在日光下(a)及在紫外灯(365 nm)(b)的照片;
附图5为本发明中GSH-CuNCs的荧光性能;
附图6为本发明中(a) P(VCL-co-NMAM)-CuNCs冻干粉末分别在日光下(a)和紫外灯光(365nm)下(b)的照片;
附图7为本发明中不同浓度P(VCL-co-NMAM)-CuNCs(1–200 µg mL-1)的GPx活性;
附图8为本发明中P(VCL-co-NMAM)-CuNCs和 GSH的SOD活性;
附图9为本发明中不同浓度(0~200 μg mL-1)(a)和不同时间200 μg mL-1的P(VCL-co-NMAM)-CuNCs的过氧化物酶活性(b);
附图10为本发明中合成的GSH-CuNCs和P(VCL-co-NMAM)-CuNCs聚集体分别在冰箱中(0-4 ℃)的稳定性。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
制备例
一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,流程如附图1所示,包括下列步骤:
(1)P(VCL-co-NMAM)纳米水凝胶的制备
在50 mL的圆底烧瓶中加入0.395 g (2.84 mM) N-乙烯基己内酰胺(VCL),0.395g (2.245 mM)N-羟甲基丙烯酰胺 (NMAM), 0.0586 g (0.38 mM)N,N-亚甲基双丙烯酰胺(MBA)和0.0989 g (0.38 mM)N,N'-双(丙烯酰)胱胺(BAC),0.0158 g (0.0962 mM)偶氮二异丁腈(AIBN),20 mL的乙腈溶液,超声5分钟分散均匀后,放入磁子,安装加热回流装置,打开磁力搅拌,搅拌速度500 rpm/min,升温至90 °C开始反应,恒温回流反应2 h结束,将白色乳液倒出,5000 rpm/min速度离心10 min,倒去上层溶液,用无水乙醇反复离心洗涤2次,冷冻干燥后得白色粉末状产品。
(2)P(VCL-co-NMAM)-CuNCs的制备
在 25 mL圆底烧瓶中,量取0.5 mL 固含量为0.039 g/mL P(VCL-co-NMAM)纳米凝胶水溶液,加入9.5 mL 0.01M pH 8.0 缓冲溶液;分散均匀后,向上述凝胶水溶液中加入0.3073 g GSH,搅拌使之充分溶解,37 ℃下搅拌反应12 h ,搅拌速率为300 rpm/min。向上述反应混合液中0.5 mL的0.1 M的硝酸铜溶液,500 rpm/min 搅拌速率下反应60 min;加热至80℃继续反应20 min,溶液一直为白色乳液,再加入0.94 mL 1M氢氧化钠溶液,此时溶液变为淡黄色的乳液,反应结束。将反应混合物用纯水在6000 rpm/min 下离心洗涤2次,收集沉淀并冷冻干燥得白色粉末。冷冻干燥后的粉末样品保存在4 ℃冰箱。
对照组:GSH-CuNCs的制备(作为对照)
25 ℃下,称取0.125 g (0.407 mM)的谷胱甘肽(GSH)加入装有20 mL超纯水的50mL三口烧瓶中,800 rpm转速下搅拌使其充分溶解,加入0.1 mol/L的硝酸铜溶液 1 mL,溶液迅速变黄色透明溶液。继续搅拌30 min,溶液中产生少量白色浑浊,此时将溶液缓缓加热至60 ℃,搅拌30 min后加入1 mol/L氢氧化钠溶液直到溶液变为黄色澄清透明,结束反应。产物冷却后,加入4倍体积的乙醇,得到白色乳浊液。乳浊液在8000 rpm/min转速下离心5min得到粗产物。将粗产物分散在5 mL水中得到黄色澄清溶液,并用4倍体积的乙醇溶液再次形成乳液,在8000 rpm/min转速下离心5 min,收集沉淀,该步骤重复3次。收集离心管中的产物,冷冻干燥后的粉末样品保存在4 ℃冰箱。
实施例2
1.P(VCL-co-NMAM)-CuNCs和GSH-CuNCs的物理性质测试:
包括动态光散射(DLS)和TEM测试,温度-粒径变化曲线、荧光激发实验均按照现有技术的实验步骤进行。
2. P(VCL-co-NMAM)-CuNCs的生物酶催化活性测试
(1)谷胱甘肽过氧化物酶(GPx)活性
配制含1 mM GSH、1 mM H2O2和20 µg mL-1 P(VCL-co-NMAM)-CuNCs的混合溶液5mL,并在 37 oC下反应6 min。反应结束后加入1mL DTNB柠檬酸钠缓冲液(1mM),并用紫外-可见分光光度计记录412 nm处的吸光度。在相同条件下,通过用 PBS 缓冲液(pH 7.4)代替P(VCL-co-NMAM)-CuNCs 进行对照实验。
(2)超氧化物歧化酶(SOD)活性
将pH 5.5 PBS 缓冲溶液(10 mM)、黄嘌呤(5 mM)和黄嘌呤氧化酶 (0.5 U mL-1)混合溶液在37 oC下孵育10 min,再分别加入适量的P(VCL-co-NMAM)-CuNCs或GSH溶液和5,5-二甲基-1-吡咯啉-N-氧化物(DMPO),使P(VCL-co-NMAM)-CuNCs或GSH浓度分别为30、60、90、120、150和180 µg mL-1,然后记录450 nm 处的紫外吸光度。
(3)过氧化物酶活性
配制含TMB (0.4 mM)、H2O2 (5 mM) 和 P(VCL-co-NMAM)-CuNCs (0~200 µg mL-1)的混合溶液,在紫外可见分光光度计上测定652 nm 处的最大吸光度。
3. P(VCL-co-NMAM)-CuNCs的稳定性分析
为了分析GSH-CuNCs和P(VCL-co-NMAM)-CuNCs的冻干后粉末的储存稳定性,分别测定0-4 oC条件下冰箱中储存0~2 个月的荧光强度。
实施例3
实验结果分析:
1.P(VCL-co-NMAM)-CuNCs和GSH-CuNCs的物理性质测试结果:
P(VCL-co-NMAM)的动态光散射(DLS)测试结果如图1,结果表明最佳实施方法制备P(VCL-co-NMAM)微球的粒径约550 nm,大小均匀,分布范围窄。TEM结果(图2)表明,最佳实施方法制备的P(VCL-co-NMAM)微球呈现规则的球形形貌、TEM粒径约290 nm,分布均匀。DLS粒径大于TEM粒径,是因为DLS测试是在水溶液中,微球处于膨胀状态;而TEM测试是在干燥状态,微球处于塌陷状态。温度变化曲线(图3)表明,随着温度的升高,P(VCL-co-NMAM)微球的粒径在减小,从 20 oC 的 1250 nm 减小至57.5 oC的 380 nm。当温度升高时,PVCL聚合物链从亲水性变为疏水性,聚合物凝胶从膨胀状态变为收缩状态,致使粒径迅速减小。当温度超过 50 oC时,纳米水凝胶的尺寸也几乎不变,表明其具有优异的稳定性。
如图4所示,制备得到的铜纳米团簇(GSH-CuNCs)在日光下呈白色乳浊液,在紫外灯下(365 nm)表现出强烈的橙黄色荧光。图5结果表明,在376 nm激发波长下,GSH-CuNCs荧光最大发射强度在630 nm波长附近。
如图6所示,制备得到的铜纳米团簇(P(VCL-co-NMAM)-CuNCs)冻干粉末在日光下呈白色粉末状,在紫外灯下(365 nm)表现出橙色荧光。
2. P(VCL-co-NMAM)-CuNCs的生物酶催化活性测试结果:
通常,GPx能够催化细胞内还原剂GSH与H2O2发生氧化还原反应生成水和GSSG。随着GSSG的增加,游离巯基降低,其中巯基的还原能力与412 nm处具有典型吸收的NTB2-线性相关。随着铜纳米团簇浓度的增加,游离巯基降低,412 nm处紫外吸收明显降低,可用于测定GPx活性。为了研究P(VCL-co-NMAM)-CuNCs的GPx活性,可通过改变P(VCL-co-NMAM)-CuNCs的浓度来研究其GPx活性。如图7所示,随着P(VCL-co-NMAM)-CuNCs的浓度增加(0~200 µgmL-1),GPx活性增强。
以GSH作为对照物比较GSH与P(VCL-co-NMAM)-CuNCs的SOD活性。由图8观察到,对于相同的浓度,P(VCL-co-NMAM)-CuNCs的SOD抑制率约为GSH的2倍。
为了证实P(VCL-co-NMAM)-CuNCs的过氧化物酶活性,在H2O2存在下测定了材料对TMB的催化氧化作用。如图9所示,不同浓度的P(VCL-co-NMAM)-CuNCs 可以催化 H2O2氧化TMB,且P(VCL-co-NMAM)-CuNCs的浓度越大、时间越长,生成的蓝色TMB氧化物越多,紫外吸收越强。
由图10可观察到,GSH-CuNCs和P(VCL-co-NMAM)-CuNCs在放置一个星期后荧光强度均有所增强,这是因为放置了一段时间后粉末的聚集程度增加导致荧光增强;两个星期后,GSH-CuNCs的荧光强度发生明显降低,这是因为GSH-CuNCs长时间放置被氧化导致荧光强度降低;相比较而言,P(VCL-co-NMAM)-CuNCs的稳定性较好,即使放置了两个月荧光强度也没有发生显著的变化。以上结果表明,以聚合物纳米水凝胶为模板制备铜纳米团簇,有助于增加铜纳米团簇的稳定性。
总结
根据以上实施例1-3的结果可以得到结论:
本发明以N-乙烯基己内酰胺或异丙基丙烯酰胺为主要单体、N-羟甲基丙烯酰胺为共聚单体,N,N-亚甲基双丙烯酰胺(MBA)和N,N'-双(丙烯酰)胱胺(BAC)为共交联剂,用回流冷凝管取代传统工艺中复杂的蒸馏装置与溶剂收集装置,使得溶剂在体系内回流,从而切实提高生产效率,简化生产过程,同时还利用磁力搅拌装置来减少体系中产物的沉降,以期获得制备形态可控、尺寸均一、分散性良好的温度响应性聚合物纳米水凝胶;接着将硝酸铜与上述聚合物纳米水凝胶混合,以谷胱甘肽(GSH)为还原剂,将铜离子还原为0价铜或I价铜,在聚合物纳米凝胶中原位生成铜纳米团簇。交联剂(BAC)中的二硫键经还原后生成巯基,可作为配体和稳定剂进一步提高生成的铜纳米簇的稳定性;离心分离纯化反应混合物,弃上清液得沉淀,在356 nm紫外灯下观察到沉淀呈现红色荧光,表明成功地合成基于聚合物纳米水凝胶的铜纳米团簇。通过各种仪器如动态光散射(DLS)、透射电子显微镜(TEM)、荧光光谱仪(FLS)、紫外可见分光光度计(UV)等方法对产物性能进行表征,并研究铜纳米团簇的荧光性能以及多酶催化活性。
本法制备得到的聚合物凝胶-CuNCs复合材料性能稳定、粒子大小有利于细胞吸收,将复合材料冻干成粉末,更有利于保存;其发光特性可用于通过光学显微镜对细胞进行成像,而无需使用任何其他染料。同时,聚合物凝胶-CuNCs具有细胞抗氧化酶的活性,能够调节细胞中的ROS 水平,可用于治疗癌症和神经系统疾病;此外,聚合物凝胶-CuNCs还能够作为抗肿瘤药物载体,并通过在肿瘤细胞中产生活性氧,实现与药物协同杀死肿瘤细胞的功效。
以上仅为本发明的较佳实施例而已,不能以此限定本发明的保护范围,即大凡依本发明权利要求书及发明内容所做的简单的等效变化与修改,皆仍属于本发明专利申请的保护范围。

Claims (10)

1.一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,其特征在于,包括以下步骤:
S1:以N-乙烯基己内酰胺(VCL)或异丙基丙烯酰胺(NIPAM)为主要单体、N-羟甲基丙烯酰胺(NMAM)为共聚单体,N,N-亚甲基双丙烯酰胺(MBA)和N,N'-双(丙烯酰)胱胺(BAC)为共交联剂,以有机溶剂为溶剂,合成聚合物纳米水凝胶;
S2:以步骤S1合成的聚合物纳米水凝胶为模板,以水为介质、加入还原剂与含铜化合物合成聚合物凝胶-CuNCs。
2.根据权利要求1所述的一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,其特征在于,所述有机溶剂包括乙腈。
3.根据权利要求1所述的一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,其特征在于,所述还原剂包括谷胱甘肽、抗坏血酸、二硫苏糖醇和半胱氨酸。
4.根据权利要求1所述的一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,其特征在于,所述含铜化合物包括硝酸铜、氯化铜和硫酸铜。
5.根据权利要求1所述的一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,其特征在于,包括以下具体步骤:
S1:P(VCL/NIPAM-co-NMAM)纳米水凝胶的制备:
在圆底烧瓶中加入1.15~10.36 mM N-乙烯基己内酰胺(VCL)或N-异丙基丙烯酰胺(NIPAM),0.209~5.70 mM N-羟甲基丙烯酰胺(NMAM),0.21~0.96 mM 的摩尔比1:3~3:1的N,N-亚甲基双丙烯酰胺(MBA)和N,N'-双(丙烯酰)胱胺(BAC),0.038~0.192 mM偶氮二异丁腈(AIBN),10~30 mL的乙腈溶液,超声分散均匀后,放入磁子,安装加热回流装置,打开磁力搅拌,搅拌速度400~800 rpm/min,升温至80~95 °C开始反应,恒温回流反应2~4 h结束,将白色乳液倒出,4000~7000 r/min速度离心5~10 min,倒去上层溶液,用无水乙醇洗涤、离心,反复2~3次;产物经自然干燥或者冷冻干燥,得到白色粉状产品;
S2:P(VCL/NIPAM-co-NMAM)-CuNCs的制备:
圆底烧瓶中,量取0.5 mL 固含量为0.020~0.050 g/mL P(VCL/NIPAM -co-NMAM)纳米凝胶水溶液,加入9.5 mL 0.01~0.1 M pH 8.0 缓冲溶液;分散均匀后,向上述凝胶水溶液中加入0.154~0.307 g GSH,搅拌使之充分溶解,37℃下搅拌反应6~12 h ,搅拌速率为300~600 rpm/min;向上述反应混合液中加入0.2~0.6 mL的0.1 M的硝酸铜溶液,300~600 rpm/min 搅拌速率下反应30~60 min;加热至60~80℃继续反应20~40 min,溶液一直为白色乳液,再加入0.5~1.2 mL 1M氢氧化钠溶液,此时溶液变为淡黄色的乳液,反应结束;将反应混合物用纯水在5000~8000 rpm/min 下离心洗涤2次,收集沉淀并冷冻干燥得白色粉末,即为基于温敏性聚合物水凝胶的发光铜纳米簇P(VCL/NIPAM -co-NMAM)-CuNCs。
6.根据权利要求1所述的一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,其特征在于,包括以下具体步骤:
S1:P(VCL-co-NMAM)纳米水凝胶的制备
50 mL圆底烧瓶中加入0.395 g N-乙烯基己内酰胺(VCL),0.395 g N-羟甲基丙烯酰胺(NMAM), 0.0586 g (0.380 mM) N,N-亚甲基双丙烯酰胺(MBA)和0.0989 g ( 0.380 mM)N,N'-双(丙烯酰)胱胺(BAC),0.0158 g偶氮二异丁腈(AIBN),20 mL的乙腈溶液,超声5分钟分散均匀后,放入磁子,安装加热回流装置,打开磁力搅拌,搅拌速度500 rpm/min,升温至90°C开始反应,恒温回流反应2 h结束,将白色乳液倒出,5000 rpm/min速度离心10 min,倒去上层溶液,用无水乙醇反复离心洗涤2次,冷冻干燥后得白色粉末状产品;
S2:P(VCL-co-NMAM)-CuNCs的制备
25 mL圆底烧瓶中,量取0.5 mL 固含量为0.039 g/mL P(VCL-co-NMAM)纳米凝胶水溶液,加入9.5 mL 0.01M pH 8.0 缓冲溶液;分散均匀后,向上述凝胶水溶液中加入0.3073 gGSH,搅拌使之充分溶解,37℃下搅拌反应12 h ,搅拌速率为300 rpm/min;向上述反应混合液中0.5 mL的0.1 M的硝酸铜溶液,500 rpm/min 搅拌速率下反应60 min;加热至80℃继续反应20 min,溶液一直为白色乳液,再加入0.94 mL 1M氢氧化钠溶液,此时溶液变为淡黄色的乳液,反应结束;将反应混合物用纯水在6000 rpm/min 下离心洗涤2次,收集沉淀并冷冻干燥得白色粉末,即为基于温敏性聚合物水凝胶的发光铜纳米簇P(VCL-co-NMAM)-CuNCs。
7.根据权利要求6所述的一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,其特征在于,所述步骤S1制备的P(VCL-co-NMAM)的DLS粒径为550 nm,TEM粒径为290 nm;所述步骤S2制备的P(VCL-co-NMAM)-CuNCs在365 nm激发下发出红色荧光。
8.根据权利要求6所述的一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法,其特征在于,所述P(VCL-co-NMAM)-CuNCs对SOD抑制率约为相同浓度GSH的2倍。
9.如权利要求1-8任一项所述的基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法制备的发光铜纳米簇。
10.如权利要求9所述的发光铜纳米簇在制备维持机体氧化还原平衡的药物或者保健品中的用途,所述用途包括作为药物成分调节细胞中的ROS水平或者作为抗肿瘤药物的载体。
CN202110880049.0A 2021-08-02 2021-08-02 一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及应用 Active CN113563513B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110880049.0A CN113563513B (zh) 2021-08-02 2021-08-02 一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110880049.0A CN113563513B (zh) 2021-08-02 2021-08-02 一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及应用

Publications (2)

Publication Number Publication Date
CN113563513A true CN113563513A (zh) 2021-10-29
CN113563513B CN113563513B (zh) 2022-09-02

Family

ID=78169881

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110880049.0A Active CN113563513B (zh) 2021-08-02 2021-08-02 一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及应用

Country Status (1)

Country Link
CN (1) CN113563513B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210182A (zh) * 2021-11-15 2022-03-22 郑州轻工业大学 一种生物协同电催化反应器
CN115433309A (zh) * 2022-09-06 2022-12-06 郑州大学 一种用于节能窗的液体复合夹层材料及其制备方法
CN115651642A (zh) * 2022-09-07 2023-01-31 大连理工大学 圆二色信号增强手性光学活性纳米铜材料的制备和应用
CN117467074A (zh) * 2023-10-23 2024-01-30 苏州健雄职业技术学院 一种基于两性离子聚合物凝胶的生物降解纳米酶的制备与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090123544A1 (en) * 2007-11-02 2009-05-14 Agency For Science, Technology And Research Stimulus-responsive biodegradable polymers and methods of preparation
CN106890332A (zh) * 2016-12-30 2017-06-27 华中科技大学 光热化疗精准协同抗肿瘤的温敏金纳米笼水凝胶载药系统
CN107011527A (zh) * 2017-05-04 2017-08-04 长春工业大学 一种温度响应的银纳米簇/聚合物水凝胶复合材料的制备方法及应用
CN109836534A (zh) * 2019-01-22 2019-06-04 苏州健雄职业技术学院 一种利用回流沉淀聚合制备温度响应性铁基纳米酶的方法
CN112250887A (zh) * 2020-09-01 2021-01-22 华南理工大学 铜金属有机骨架纳米粒子功能化水凝胶及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090123544A1 (en) * 2007-11-02 2009-05-14 Agency For Science, Technology And Research Stimulus-responsive biodegradable polymers and methods of preparation
CN106890332A (zh) * 2016-12-30 2017-06-27 华中科技大学 光热化疗精准协同抗肿瘤的温敏金纳米笼水凝胶载药系统
CN107011527A (zh) * 2017-05-04 2017-08-04 长春工业大学 一种温度响应的银纳米簇/聚合物水凝胶复合材料的制备方法及应用
CN109836534A (zh) * 2019-01-22 2019-06-04 苏州健雄职业技术学院 一种利用回流沉淀聚合制备温度响应性铁基纳米酶的方法
CN112250887A (zh) * 2020-09-01 2021-01-22 华南理工大学 铜金属有机骨架纳米粒子功能化水凝胶及其制备方法与应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
ANI BAGHDASARYAN,ETAL.: "Copper nanoclusters: designed synthesis, structural diversity, and multiplatform applications", 《NANOSCALE》 *
BAILONG TAO,ETAL.: "Copper nanoparticles embedded hydrogel for killing bacteria and promoting wound healing with photothermal therapy", 《JOURNAL OF MATERIALS CHEMISTRY B 》 *
HAI‑YAN LIU,ETAL.: "A method for synthesizing copper nanoclusters based on protein–polyacrylamide gel and its application", 《JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 》 *
RAMA GHOSH,ETAL.: "Synergistic Anticancer Activity of Fluorescent Copper Nanoclusters and Cisplatin Delivered Through a Hydrogel Nanocarrier", 《ACS APPLIED MATERIALS & INTERFACES》 *
WEI YAN,ETAL.: "Facile Synthesis of Ultrastable Fluorescent Copper Nanoclusters and Their Cellular Imaging Application", 《NANOMATERIALS》 *
YANG WANG,ETAL.: "Temperature-responsive iron nanozymes based on poly(N-vinylcaprolactam) with multi-enzyme activity", 《RSC ADVANCES》 *
赵婧等: "温度/pH敏感型壳聚糖水凝胶的制备及其性能", 《应用化工》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114210182A (zh) * 2021-11-15 2022-03-22 郑州轻工业大学 一种生物协同电催化反应器
CN114210182B (zh) * 2021-11-15 2023-11-03 郑州轻工业大学 一种生物协同电催化反应器
CN115433309A (zh) * 2022-09-06 2022-12-06 郑州大学 一种用于节能窗的液体复合夹层材料及其制备方法
CN115433309B (zh) * 2022-09-06 2024-05-03 郑州大学 一种用于节能窗的液体复合夹层材料及其制备方法
CN115651642A (zh) * 2022-09-07 2023-01-31 大连理工大学 圆二色信号增强手性光学活性纳米铜材料的制备和应用
CN115651642B (zh) * 2022-09-07 2023-08-18 大连理工大学 圆二色信号增强手性光学活性纳米铜材料的制备和应用
CN117467074A (zh) * 2023-10-23 2024-01-30 苏州健雄职业技术学院 一种基于两性离子聚合物凝胶的生物降解纳米酶的制备与应用

Also Published As

Publication number Publication date
CN113563513B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN113563513B (zh) 一种基于温敏性聚合物水凝胶的发光铜纳米簇的制备方法及应用
Tian et al. Ellagic acid-Fe@ BSA nanoparticles for endogenous H2S accelerated Fe (III)/Fe (II) conversion and photothermal synergistically enhanced chemodynamic therapy
Qin et al. Development of copper vacancy defects in a silver-doped CuS nanoplatform for high-efficiency photothermal–chemodynamic synergistic antitumor therapy
Sun et al. The cost-effective preparation of green fluorescent carbon dots for bioimaging and enhanced intracellular drug delivery
CN104043135B (zh) 一种白蛋白吲哚菁绿紫杉醇复合物及其制备方法与应用
CN104491871B (zh) 一种基于聚谷氨酸和胱胺的pH与还原敏感性的纳米微凝胶
Du et al. NIR-activated multi-hit therapeutic Ag2S quantum dot-based hydrogel for healing of bacteria-infected wounds
Chen et al. A CaO2@ Tannic Acid‐FeIII Nanoconjugate for Enhanced Chemodynamic Tumor Therapy
CN108355140B (zh) 一种叶酸靶向载药纳米金颗粒及其应用
Vishnevetskii et al. l-Cysteine as a reducing/capping/gel-forming agent for the preparation of silver nanoparticle composites with anticancer properties
CN105106958B (zh) 具有近红外光热效应的铜基人血白蛋白纳米复合物及其制备方法和应用
CN107469079B (zh) 一种t1-mri成像引导下的光动治疗剂制备方法
CN116654986B (zh) 一种硫化锰纳米花一体化诊疗制剂及其制备方法和应用
Chen et al. Glucose oxidase-loaded colloidal stable WS2 nanobowls for combined starvation/photothermal therapy of colorectal tumors
CN110385427B (zh) 一种水溶性纳米粒子及其制备方法和应用
Chen et al. AuPt bimetallic nanozymes for enhanced glucose catalytic oxidase
Wang et al. High biocompatible AuNCs-silk fibroin hydrogel system for visual detection of H2O2
Zheng et al. Fabrication of denatured BSA-hemin-IR780 (dBHI) nanoplatform for synergistic combination of phototherapy and chemodynamic therapy
Feng et al. Covalent organic framework-based nanozyme for cascade-amplified synergistic cancer therapy
Chen et al. Biosynthesis of NIR‐II Ag2Se Quantum Dots with Bacterial Catalase for Photoacoustic Imaging and Alleviating‐Hypoxia Photothermal Therapy
Xu et al. Integration of chemotherapy and phototherapy based on a pH/ROS/NIR multi-responsive polymer-modified MSN drug delivery system for improved antitumor cells efficacy
Castillo et al. Reversible Nanogate System for Mesoporous Silica Nanoparticles Based on Diels–Alder Adducts
Luo et al. pH-Sensitive Stimulus Responsive ZIF-8 Composites Nanoparticles Coated with Folic Acid-Conjugated Chitosan for Targeted Delivery of Curcumin
Ren et al. Phytic acid-Cu2+ framework/Cu2-xS nanocomposites with heat-shock protein down-modulation ability for enhanced multimodal combination therapy
Wang et al. Preparation of amphiphilic magnetic polyvinyl alcohol targeted drug carrier and drug delivery research

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant