CN113563088A - 多孔氮化硅陶瓷零件及其制造方法 - Google Patents

多孔氮化硅陶瓷零件及其制造方法 Download PDF

Info

Publication number
CN113563088A
CN113563088A CN202110871784.5A CN202110871784A CN113563088A CN 113563088 A CN113563088 A CN 113563088A CN 202110871784 A CN202110871784 A CN 202110871784A CN 113563088 A CN113563088 A CN 113563088A
Authority
CN
China
Prior art keywords
pressure
silicon nitride
porous silicon
nitride ceramic
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110871784.5A
Other languages
English (en)
Other versions
CN113563088B (zh
Inventor
曹冲
张振翀
马金秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zibo Guochuang Center Advanced Vehicle Material Technology Innovation Center
Original Assignee
Zibo Guochuang Center Advanced Vehicle Material Technology Innovation Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zibo Guochuang Center Advanced Vehicle Material Technology Innovation Center filed Critical Zibo Guochuang Center Advanced Vehicle Material Technology Innovation Center
Priority to CN202110871784.5A priority Critical patent/CN113563088B/zh
Publication of CN113563088A publication Critical patent/CN113563088A/zh
Application granted granted Critical
Publication of CN113563088B publication Critical patent/CN113563088B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/65Reaction sintering of free metal- or free silicon-containing compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/063Preparing or treating the raw materials individually or as batches
    • C04B38/0635Compounding ingredients
    • C04B38/0645Burnable, meltable, sublimable materials
    • C04B38/068Carbonaceous materials, e.g. coal, carbon, graphite, hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/428Silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/46Gases other than oxygen used as reactant, e.g. nitrogen used to make a nitride phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/665Local sintering, e.g. laser sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明涉及陶瓷材料领域,具体涉及一种多孔氮化硅陶瓷零件及其制造方法。所述的多孔氮化硅陶瓷零件,由以下质量百分比的原料制造而成:SiO230~60%,活性炭10~25%,硅粉10~20%,α‑Si3N45~20%,助烧剂3%~10%。本发明提供一种多孔氮化硅陶瓷零件,制造成本低,微观均匀性和气孔连通性好,机械强度高,制备形状多样,应用广泛;本发明还提供其制备方法。

Description

多孔氮化硅陶瓷零件及其制造方法
技术领域
本发明涉及陶瓷材料领域,具体涉及一种多孔氮化硅陶瓷零件及其制造方法。
背景技术
多孔氮化硅陶瓷综合了多孔陶瓷和氮化硅陶瓷的优点,透过性均匀,比表面积大,体积密度小,同时耐高温、耐腐蚀,是一种化学稳定性很高的多孔陶瓷材料,作为过滤、分离、吸音、透波材料,催化剂载体和生物陶瓷等,已广泛应用于航空航天、石油化工和生物医疗等领域,但多孔陶瓷孔隙率与强度之间的矛盾制约了其发展。多孔氮化硅陶瓷制备过程中,坯体成型是关键环节。传统成型方法为模压成型、等静压成型、注射成型,适合制备形状简单的制品,制备坯体的均匀性差、变形大,在某些特殊工业领域,传统成型工艺已不能满足要求。
目前市场上为满足高强度,高耐磨性的的氮化硅材料,多采用价格昂贵的纯度高的氮化硅粉末来满足市场的零件需求,但是昂贵的氮化硅原材料极大的限制了氮化硅陶瓷零件市场的推广与扩展,因此急需寻找一种制造成本低,制造工艺简单,又能依旧保证多孔氮化硅陶瓷零件的强度工艺方法。
专利CN200610041867.7公开了一种氮化硅多孔陶瓷及其制备方法,采用碳、二氧化硅粉末75-95%,氮化硅1-10%,烧结助剂Y2O3为2-20%,采用分散剂混合干燥后过筛,填入模具,采用压力成型工艺得到形体,置于氮气气氛中高温烧制,获得烧结体,气孔率大于60%,制备成本低,烧结机械性能好,但成型零件较为简单,反应过程存在失重反应。
专利CN201710114862.0公开了一种氮化硅多孔陶瓷的制备方法,采用的氮化硅粉体和烧结助剂与稀土氟化物,混合后加入聚乙烯醇球磨,烘干过筛,模压成型,在氮气气氛下烧制成氮化硅多孔陶瓷,得到的陶瓷气孔率高,抗弯强度大,但是采用的原料成本较高,限制企业推广应用。
专利CN201710384629.4公开了一种高孔隙率复杂多孔陶瓷的直接凝固浇筑成型制备方法,采用直接凝固浇筑成型方法,将陶瓷纤维、分散剂、水混合加入熔盐球磨后注入增材制造的无孔模具中固化干燥,烧结,得到多孔陶瓷,制备的陶瓷件孔隙率非常高,这种技术虽然可以制备不同简单的造型,不用脱模,直接将磨具烧化,但是这种应用仍然不能制备纯度较高的氮化硅陶瓷方法中,纯度不够,无法制备出高纯度的氮化硅零件。
发明内容
本发明要解决的技术问题是提供一种多孔氮化硅陶瓷零件,制造成本低,微观均匀性和气孔连通性好,机械强度高,制备形状多样,应用广泛;本发明还提供其制备方法。
本发明所述的多孔氮化硅陶瓷零件,由以下质量百分比的原料制造而成:
Figure BDA0003189075250000021
SiO2粉末粒径D50≤1μm,纯度99.5%以上;硅粉为工业硅粉,粒径D50≤1μm,纯度99.5%以上。
α-Si3N4中α相>95%,粉末粒径为1~10μm。
活性炭粒径D50≤100nm;助烧剂为Y2O3
所述的多孔氮化硅陶瓷零件的制造方法,包括以下步骤:
(a)制备混合料:
(b)选择性激光烧结技术制作零件素坯;
(c)首次真空压力浸渍;
(d)首次冷等静压处理;
(e)排胶处理;
(f)第二次真空压力浸渍;
(g)第二次冷等静压处理;
(h)碳热还原-反应烧结。
所述的多孔氮化硅陶瓷零件的制造方法,包括以下步骤:
(a)制备混合料:
将SiO2、活性炭、助烧剂、硅粉、α-Si3N4混合,加入总质量的2倍无水乙醇,以α-Si3N4球作为球磨介质在尼龙罐中球磨1~2h,干燥,过200目筛,然后与粘结剂混合;
(b)采用选择性激光烧结技术制作零件素坯;
(c)首次真空压力浸渍:
将零件素坯体置入真空箱中,抽真空至100pa~200pa,保压15~60min后注入8%~30%浓度的纳米α-Si3N4悬浮液浸没,真空保持10min~20min,常压静置15min~60min,充入氮气对浸渍液渗压20~60min,压力200Pa~300pa,于80℃~120℃干燥1h~3h,得到首次真空压力浸渍的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;
(d)首次冷等静压处理:
升降压速度2-8MPa/s,压力升至150~250MPa,保压15~30s再降压;
(e)排胶处理:
以2~4℃/min的速度升至粘结剂软化点温度减去10℃,再以2℃/min的升温速度升至150~170℃,保温1.5h,最后以2℃/min的速度升至粘结剂分解温度加50℃,保温2h;
(f)对零件素坯第二次真空压力浸渍:
(g)第二次冷等静压处理:
升降压速度2MPa/s~4MPa/s,压力升至200~300MPa,保压15~30s再降压;
(h)碳热还原反应烧结:
置于1atm的流动氮气气氛烧结炉中,以2~8℃/min速度升至烧结温度1200~1300℃,保温1~2h;再以10℃/min将温度升至1700~1800℃,保温2h,得到多孔氮化硅陶瓷零件。
粘结剂为双酚A型环氧树脂,粒径为10-50μm;粘结剂的加入质量与原料的总质量比为100:5~100:20。
步骤b中激光器为35~60W的CO2激光器,预加热温度为40~60℃,单层厚度为0.1~0.2mm,扫描间距为0.1~0.2mm,扫描速度800~4000mm/s。
采用选择性激光烧结技术制作零件素坯的相对密度为30%~35%。
第二次冷等静压处理后的零件素坯相对密度为58%~62%。
具体地,本发明所述的氮化硅陶瓷零件的制造方法,包括以下步骤:
(a)制备混合料:
将SiO2、活性炭、助烧剂、硅粉、α-Si3N4混合,加入总质量的2倍无水乙醇,以α-Si3N4球作为球磨介质在尼龙罐中球磨1~2h,使粉料混合均匀,蒸发器中干燥后过200目筛,得到粒径在100μm内的初级混合材料,然后将材料与双酚A型环氧树脂混合均匀;
(b)采用选择性激光烧结技术(SLS)制作零件素坯,激光器为35~60W的CO2激光器,预加热温度为40~60℃,单层厚度为0.1~0.2mm,扫描间距为0.1~0.2mm,扫描速度800~4000mm/s,零件素坯的相对密度为30%~35%;
(c)首次真空压力浸渍:
将零件素坯体置入真空箱中,抽真空至100pa~200pa,保压15~60min后注入8%~30%浓度的纳米α-Si3N4悬浮液浸没,真空保持10min~20min,常压静置15min~60nin,再往真空压力浸渍器中充入氮气对浸渍液渗压20~60min,压力200Pa~300pa,将零件素坯放入烘箱中于80℃~120℃干燥1h~3h,得到一次浸渍处理的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;
(d)首次冷等静压处理:
升降压速度2~8MPa/s,压力升至150~250MPa,保压15~30s再降压;
(e)排胶处理:
除去低温粘结剂,以2~4℃/min粘结剂软化点温度T1-10℃,再以2℃/min的升温速度升至150~170℃,除尽水蒸气,保温1.5h,最后以2℃/min的速度升至T2+50℃,保温2h;T1为粘结剂熔点或者软化点,T2为完全分解温度;
(f)对零件素坯第二次真空压力浸渍,可根据实际需要调整工艺参数或者重复第一次真空压力浸渍;
(g)第二次冷等静压处理:
升降压速度2MPa/s~4MPa/s,压力升至150~250MPa,保压15~30s再降压,零件素坯相对密度为58%~62%;
(h)碳热还原反应烧结:
置于1atm的流动氮气气氛烧结炉中,以2~8℃/min速度升至烧结温度1200~1300℃,保温1~2h;再以10℃/min将温度升至1700~1800℃,保温2h,得到多孔氮化硅陶瓷零件。
本发明的多孔氮化硅陶瓷零件,以二氧化硅粉为主要原料,采用选择性激光烧结技术(SLS),得到综合性能优良的多孔氮化硅陶瓷零件;其中选择性激光烧结技术(SLS))成型后进行两次真空溶渗浸渍处理,冷等静压处理,最后通过碳热还原-常压烧制技术,使已成型的零件素坯成为多孔氮化硅零件;采用的SLS技术成型复杂形状的零件,尤其是具有复杂曲面和内部中空的零件,通过计算各工艺过程中的收缩率,得到零件的形状和尺寸大小,达到或接近近净成形,减少加工余量,提高效率,缩短制备周期;其中制备工艺中采用两次熔渗浸渍和冷等静压工艺提高其体积密度,降低气孔率,烘干后留下的Si3N4可在高温烧结时做助烧剂,提高反应烧结效率。
本发明利用选择性激光烧结成型技术结合碳热还原反应制备多孔氮化硅陶瓷,无需模具便可制备形状复杂的多孔氮化硅陶瓷零件,通过冷等静压,常压烧结等后处理工艺,制得的多孔陶瓷零件微观均匀性和孔连通性较好,同时烧结前后样品的形状和尺寸不变,实现近净成型。
与现有技术相比,本发明具有以下有益效果:
(1)本发明中的多孔氮化硅陶瓷零件,生产成本低,制备工艺简单;
(2)本发明中的多孔氮化硅陶瓷零件,弯曲强度>40Mpa,并且气孔率>50%;
(3)本发明中的多孔氮化硅陶瓷零件,相对于传统成型方法,可制作复杂零部件,减少加工余量,提高了制作效率;
(4)本发明中的多孔氮化硅陶瓷零件,微观均匀性和孔连通性好,烧结前后样品的形状和尺寸不变,实现近净成型。
附图说明
图1为本发明的实施例1制备的多孔氮化硅陶瓷罐及其断面SEM示意图;
图2为本发明的实施例1制备的多孔氮化硅陶瓷碗及其断面SEM示意图。
具体实施方式
以下结合实施例对本发明作进一步描述。
实施例1
所述的多孔氮化硅陶瓷罐的制造方法,包括以下步骤:
首先按照以下质量分数的百分比准备混合料:
Figure BDA0003189075250000051
(a)制备混合料:
将上述原料按照配方比混合,加入总质量的2倍无水乙醇,以α-Si3N4球作为球磨介质在尼龙罐中球磨2h,使粉料混合均匀,蒸发器中干燥后过200目筛,得到粒径在100μm内的初级混合材料,然后将材料料与20wt%双酚A型环氧树脂混合均匀;
(b)采用选择性激光烧结技术(SLS)制作零件素坯,激光器为50W的CO2激光器,预加热温度为60℃,单层厚度为0.1mm,扫描间距为0.1mm,扫描速度3000mm/s,零件素坯的相对密度为35%;
(c)首次真空压力浸渍:
将零件素坯体置入真空箱中,抽真空至200pa,保压30min后注入20%浓度的纳米α-Si3N4悬浮液浸没,真空保持10min,常压静置30min,再往真空压力浸渍器中充入氮气对浸渍液渗压20min,压力200pa,将零件素坯放入烘箱中于100℃干燥1h,得到一次浸渍处理的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;
(d)首次冷等静压处理:
升降压速度5MPa/s,压力升至200MPa,保压30s再降压;
(e)排胶处理:
除去低温粘结剂,以3℃/min升温至90℃,再以2℃/min的升温速度升至160℃,除尽水蒸气,保温1.5h,最后以2℃/min的速度升至680℃,保温2h;
(f)对零件素坯第二次真空压力浸渍,可根据实际需要调整工艺参数或者重复第一次真空压力浸渍;
(g)第二次冷等静压处理:
升降压速度3MPa/s,压力升至300MPa,保压30s再降压,零件素坯相对密度为60%;
(h)碳热还原反应烧结:
置于1atm的流动氮气气氛烧结炉中,以4℃/min速度升至烧结温度1250℃,保温2h;再以10℃/min将温度升至1750℃,保温2h,得到多孔氮化硅陶瓷罐;测得其弯曲强度为47Mpa,气孔率为65%。
实施例2
所述的多孔氮化硅陶瓷罐的制造方法,包括以下步骤:
首先按照以下质量分数的百分比准备混合料:
Figure BDA0003189075250000061
(a)制备混合料:
将上述原料按照配方比混合,加入总质量的2倍无水乙醇,以α-Si3N4球作为球磨介质在尼龙罐中球磨1h,使粉料混合均匀,蒸发器中干燥后过200目筛,得到粒径在100μm内的初级混合材料,然后将材料料与5wt%双酚A型环氧树脂混合均匀;
(b)采用选择性激光烧结技术(SLS)制作零件素坯,激光器为60W的CO2激光器,预加热温度为40℃,单层厚度为0.2mm,扫描间距为0.2mm,扫描速度4000mm/s,零件素坯的相对密度为30%;
(c)首次真空压力浸渍:
将零件素坯体置入真空箱中,抽真空至150pa,保压60min后注入8%浓度的纳米α-Si3N4悬浮液浸没,真空保持20min,常压静置60min,再往真空压力浸渍器中充入氮气对浸渍液渗压60min,压力300pa,将零件素坯放入烘箱中于90℃干燥2h,得到一次浸渍处理的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;
(d)首次冷等静压处理:
升降压速度5MPa/s,压力升至200MPa,保压30s再降压;
(e)排胶处理:
除去低温粘结剂,以2℃/min升温至90℃,再以2℃/min的升温速度升至170℃,除尽水蒸气,保温1.5h,最后以2℃/min的速度升至680℃,保温2h;
(f)对零件素坯第二次真空压力浸渍,可根据实际需要调整工艺参数或者重复第一次真空压力浸渍;
(g)第二次冷等静压处理:
升降压速度3MPa/s,压力升至300MPa,保压30s再降压,零件素坯相对密度为58%;
(h)碳热还原反应烧结:
置于1atm的流动氮气气氛烧结炉中,以8℃/min速度升至烧结温度1250℃,保温1.5h;再以10℃/min将温度升至1750℃,保温2h,得到多孔氮化硅陶瓷罐;测得其弯曲强度为43Mpa,气孔率为55%。
实施例3
所述的多孔氮化硅陶瓷碗的制造方法,包括以下步骤:
首先按照以下质量分数的百分比准备混合料:
Figure BDA0003189075250000071
(a)将以上粉末混合,加入总质量的2倍无水乙醇,以α-Si3N4球作为球磨介质在尼龙罐中球磨1h,使粉料混合均匀,蒸发器中干燥后过200目筛,得到粒径在100μm内的初级混合材料,然后将材料料与8wt%双酚A型环氧树脂混合均匀;
(b)采用选择性激光烧结技术(SLS)制作零件素坯,激光器为50W的CO2激光器,预加热温度为50℃,单层厚度为0.15mm,扫描间距为0.2mm,扫描速度2500mm/s,零件素坯的相对密度为30%;
(c)首次真空压力浸渍:
将零件素坯体置入真空箱中,抽真空至100pa,保压25min后注入10%浓度的纳米α-Si3N4悬浮液浸没,真空保持10min,常压静置30nin,再往真空压力浸渍器中充入氮气对浸渍液渗压20min,压力200pa,将零件素坯放入烘箱中于100℃干燥1h,得到一次浸渍处理的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;
(d)首次冷等静压处理:
升降压速度5MPa/s,压力升至200MPa,保压30s再降压;
(e)排胶处理:
除去低温粘结剂,以3℃/min粘结剂软化点温度90℃,再以2℃/min的升温速度升至160℃,除尽水蒸气,保温1.5h,最后以2℃/min的速度升至680℃,保温2h;
(f)对零件素坯第二次真空压力浸渍,可根据实际需要调整工艺参数或者重复第一次真空压力浸渍;
(g)第二次冷等静压处理:
升降压速度3MPa/s,压力升至300MPa,保压30s再降压,零件素坯相对密度为58%;
(h)碳热还原反应烧结:
置于1atm的流动氮气气氛烧结炉中,以4℃/min速度升至烧结温度1200℃,保温1h;再以10℃/min将温度升至1700℃,保温2h,得到多孔氮化硅陶瓷碗;测得其弯曲强度为45Mpa,气孔率为50%。
当然,上述内容仅为本发明的较佳实施例,不能被认为用于限定对本发明的实施例范围。本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的均等变化与改进等,均应归属于本发明的专利涵盖范围内。

Claims (10)

1.一种多孔氮化硅陶瓷零件,其特征在于:由以下质量百分比的原料制造而成:
Figure FDA0003189075240000011
2.根据权利要求1所述的多孔氮化硅陶瓷零件,其特征在于:SiO2粉末粒径D50≤1μm,纯度99.5%以上;硅粉为工业硅粉,粒径D50≤1μm,纯度99.5%以上。
3.根据权利要求1所述的多孔氮化硅陶瓷零件,其特征在于:α-Si3N4中α相>95%,粉末粒径为1~10μm。
4.根据权利要求1所述的多孔氮化硅陶瓷零件,其特征在于:活性炭粒径D50≤100nm;助烧剂为Y2O3
5.一种权利要求1-4任一项所述的多孔氮化硅陶瓷零件的制造方法,其特征在于:包括以下步骤:
(a)制备混合料:
(b)选择性激光烧结技术制作零件素坯;
(c)首次真空压力浸渍;
(d)首次冷等静压处理;
(e)排胶处理;
(f)第二次真空压力浸渍;
(g)第二次冷等静压处理;
(h)碳热还原-反应烧结。
6.根据权利要求5所述的多孔氮化硅陶瓷零件的制造方法,其特征在于:包括以下步骤:
(a)制备混合料:
将SiO2、活性炭、助烧剂、硅粉、α-Si3N4混合,加入总质量的2倍无水乙醇,以α-Si3N4球作为球磨介质在尼龙罐中球磨1~2h,干燥,过200目筛,然后与粘结剂混合;
(b)采用选择性激光烧结技术制作零件素坯;
(c)首次真空压力浸渍:
将零件素坯体置入真空箱中,抽真空至100pa~200pa,保压15~60min后注入8%~30%浓度的纳米α-Si3N4悬浮液浸没,真空保持10min~20min,常压静置15min~60min,充入氮气对浸渍液渗压20~60min,压力200Pa~300pa,于80℃~120℃干燥1h~3h,得到首次真空压力浸渍的零件素坯,将零件素坯使用包套密封包覆后进行抽真空处理;
(d)首次冷等静压处理:
升降压速度2-8MPa/s,压力升至150~250MPa,保压15~30s再降压;
(e)排胶处理:
以2~4℃/min的速度升至粘结剂软化点温度减去10℃,再以2℃/min的升温速度升至150~170℃,保温1.5h,最后以2℃/min的速度升至粘结剂分解温度加50℃,保温2h;
(f)对零件素坯第二次真空压力浸渍:
(g)第二次冷等静压处理:
升降压速度2MPa/s~4MPa/s,压力升至200~300MPa,保压15~30s再降压;
(h)碳热还原反应烧结:
置于1atm的流动氮气气氛烧结炉中,以2~8℃/min速度升至烧结温度,1200℃~1300℃,保温1~2h;再以10℃/min将温度升至1700℃~1800℃,保温2h,得到多孔氮化硅陶瓷零件。
7.根据权利要求6所述的多孔氮化硅陶瓷零件的制造方法,其特征在于:粘结剂为双酚A型环氧树脂,粒径为10-50μm;粘结剂的加入质量与原料的总质量比为100:5~100:20。
8.根据权利要求6所述的多孔氮化硅陶瓷零件的制造方法,其特征在于:步骤b中激光器为35~60W的CO2激光器,预加热温度为40~60℃,单层厚度为0.1~0.2mm,扫描间距为0.1~0.2mm,扫描速度800~4000mm/s。
9.根据权利要求6所述的多孔氮化硅陶瓷零件的制造方法,其特征在于:采用选择性激光烧结技术制作零件素坯的相对密度为30%~35%。
10.根据权利要求6所述的多孔氮化硅陶瓷零件的制造方法,其特征在于:第二次冷等静压处理后的零件素坯相对密度为58%~62%。
CN202110871784.5A 2021-07-30 2021-07-30 多孔氮化硅陶瓷零件及其制造方法 Active CN113563088B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110871784.5A CN113563088B (zh) 2021-07-30 2021-07-30 多孔氮化硅陶瓷零件及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110871784.5A CN113563088B (zh) 2021-07-30 2021-07-30 多孔氮化硅陶瓷零件及其制造方法

Publications (2)

Publication Number Publication Date
CN113563088A true CN113563088A (zh) 2021-10-29
CN113563088B CN113563088B (zh) 2023-06-13

Family

ID=78169446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110871784.5A Active CN113563088B (zh) 2021-07-30 2021-07-30 多孔氮化硅陶瓷零件及其制造方法

Country Status (1)

Country Link
CN (1) CN113563088B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455974A (zh) * 2022-02-11 2022-05-10 四川墨夏空间艺术设计股份有限公司 一种储酒用轻质陶瓷坛盖的制作方法

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029868A (ja) * 1996-07-15 1998-02-03 Honda Motor Co Ltd 窒化珪素複合焼結体及びその製造方法
JP2005119934A (ja) * 2003-10-20 2005-05-12 National Institute Of Advanced Industrial & Technology 窒化ケイ素多孔体及びその製造方法
CN1821168A (zh) * 2006-03-02 2006-08-23 西安交通大学 一种氮化硅多孔陶瓷及其制备方法
JP2007131528A (ja) * 2006-12-25 2007-05-31 Noritake Co Ltd 非酸化物系多孔質セラミック材の製造方法
CN102173396A (zh) * 2011-01-25 2011-09-07 巩义市宏泰氮化硅材料有限公司 一种高含量α晶形氮化硅粉末的生产方法
CN104609867A (zh) * 2015-02-15 2015-05-13 上海材料研究所 一种选择性激光烧结陶瓷件的致密方法
CN104628393A (zh) * 2015-02-15 2015-05-20 上海材料研究所 一种高性能陶瓷的制备方法
CN105439620A (zh) * 2014-09-28 2016-03-30 盐城工学院 放电等离子烧结制备多孔氮化硅的方法
JP2016160117A (ja) * 2015-02-27 2016-09-05 新日鐵住金株式会社 窒化珪素質セラミックス焼結体及びその製造方法
CN106316440A (zh) * 2016-08-19 2017-01-11 华中科技大学 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN108002842A (zh) * 2017-11-16 2018-05-08 华中科技大学 一种复杂形状多孔氮化硅件的制备方法
CN108002843A (zh) * 2017-11-17 2018-05-08 华中科技大学 一种基于膏体的高精度多孔氮化硅复杂形状件的制备方法
CN113105252A (zh) * 2021-04-20 2021-07-13 中材高新氮化物陶瓷有限公司 一种制备氮化硅陶瓷的烧结助剂及其应用、氮化硅陶瓷的制备方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1029868A (ja) * 1996-07-15 1998-02-03 Honda Motor Co Ltd 窒化珪素複合焼結体及びその製造方法
JP2005119934A (ja) * 2003-10-20 2005-05-12 National Institute Of Advanced Industrial & Technology 窒化ケイ素多孔体及びその製造方法
CN1821168A (zh) * 2006-03-02 2006-08-23 西安交通大学 一种氮化硅多孔陶瓷及其制备方法
JP2007131528A (ja) * 2006-12-25 2007-05-31 Noritake Co Ltd 非酸化物系多孔質セラミック材の製造方法
CN102173396A (zh) * 2011-01-25 2011-09-07 巩义市宏泰氮化硅材料有限公司 一种高含量α晶形氮化硅粉末的生产方法
CN105439620A (zh) * 2014-09-28 2016-03-30 盐城工学院 放电等离子烧结制备多孔氮化硅的方法
CN104628393A (zh) * 2015-02-15 2015-05-20 上海材料研究所 一种高性能陶瓷的制备方法
CN104609867A (zh) * 2015-02-15 2015-05-13 上海材料研究所 一种选择性激光烧结陶瓷件的致密方法
JP2016160117A (ja) * 2015-02-27 2016-09-05 新日鐵住金株式会社 窒化珪素質セラミックス焼結体及びその製造方法
CN106316440A (zh) * 2016-08-19 2017-01-11 华中科技大学 一种基于激光选区烧结的复杂结构多孔陶瓷的制备方法
CN108002842A (zh) * 2017-11-16 2018-05-08 华中科技大学 一种复杂形状多孔氮化硅件的制备方法
CN108002843A (zh) * 2017-11-17 2018-05-08 华中科技大学 一种基于膏体的高精度多孔氮化硅复杂形状件的制备方法
CN113105252A (zh) * 2021-04-20 2021-07-13 中材高新氮化物陶瓷有限公司 一种制备氮化硅陶瓷的烧结助剂及其应用、氮化硅陶瓷的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
,鲁 元: "碳热还原-反应烧结法制备多孔氮化硅陶瓷", 《无机材料学报》 *
,鲁 元: "碳热还原-反应烧结法制备多孔氮化硅陶瓷", 《无机材料学报》, 31 May 2013 (2013-05-31), pages 469 - 473 *
鲁 元等: "碳热还原–常压烧结法制备多孔氮化硅陶瓷", 《硅酸盐学报》 *
鲁 元等: "碳热还原–常压烧结法制备多孔氮化硅陶瓷", 《硅酸盐学报》, 31 August 2009 (2009-08-31), pages 1277 - 1281 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114455974A (zh) * 2022-02-11 2022-05-10 四川墨夏空间艺术设计股份有限公司 一种储酒用轻质陶瓷坛盖的制作方法

Also Published As

Publication number Publication date
CN113563088B (zh) 2023-06-13

Similar Documents

Publication Publication Date Title
CN108706978B (zh) 喷雾造粒结合3dp和cvi制备碳化硅陶瓷基复合材料的方法
CN109320246B (zh) 一种高温抗氧化石墨陶瓷复合材料及其制备方法
CN104609867B (zh) 一种选择性激光烧结陶瓷件的致密方法
US20100028710A1 (en) Open cell porous material and method for producing same
CN108585917B (zh) 氮化硅-碳化硅复相多孔陶瓷的制备方法
CN108002842B (zh) 一种复杂形状多孔氮化硅件的制备方法
CN110449586B (zh) 一种低压注射成型制备金属蜂窝材料的方法
CN109553420A (zh) 一种高孔隙率碳化硅基多孔陶瓷材料的制备方法
CN108585905A (zh) 一种高强度碳化硅陶瓷及其制备方法
CN105198437A (zh) 一种多孔碳化硅陶瓷的制备方法
CN111889686B (zh) 高强碳化硅颗粒增强铝基复合材料的方法及其复合材料
CN113563088A (zh) 多孔氮化硅陶瓷零件及其制造方法
CN113106285A (zh) 具有网络互穿型结构的铜/石墨烯复合材料及制备方法
CN115536403A (zh) 一种高韧氮化硅陶瓷材料及其制备方法
CN113930635B (zh) 一种不锈钢增强铝碳化硅复合材料及其制备方法
CN109454231B (zh) 一种铁铝铜合金微孔过滤材料的制备方法
CN106083205B (zh) 一种通过化学气相渗透提高整体式氧化铝基陶瓷铸型高温强度的方法
CN111187959A (zh) 一种富金属相梯度结构碳氮化钛基金属陶瓷及其制备方法
CN113248263B (zh) Si3N4w/Si预制体及利用该预制体制备Si3N4w/Si3N4复合材料的方法
CN111876625B (zh) 一种AlNMg复合材料及其制备方法
CN111230118A (zh) 一种FeAlSi金属间化合物多孔材料及其制备方法和应用
CN111484330A (zh) 金刚石增强碳化硅基板及其制备方法和电子产品
CN115161529A (zh) 一种铝基碳化硅复合材料及其制备方法和应用
CN113563087A (zh) 氮化硅陶瓷零件及其制造方法
CN116730736B (zh) 一种基于激光打印与真空-压力辅助原位浸渗树脂预增密的SiC复合材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant