CN113563078A - 三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备方法 - Google Patents

三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备方法 Download PDF

Info

Publication number
CN113563078A
CN113563078A CN202110865095.3A CN202110865095A CN113563078A CN 113563078 A CN113563078 A CN 113563078A CN 202110865095 A CN202110865095 A CN 202110865095A CN 113563078 A CN113563078 A CN 113563078A
Authority
CN
China
Prior art keywords
srzn
scintillator
hours
sintering
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110865095.3A
Other languages
English (en)
Inventor
李晓明
张薛佳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN202110865095.3A priority Critical patent/CN113563078A/zh
Publication of CN113563078A publication Critical patent/CN113563078A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/567Chalcogenides with alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/574Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour

Abstract

本发明公开了一种三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备方法,该材料的化学组成为Sr1‑xZn1.995Mn0.005BixS2O,其中0.005≤x≤0.08。其步骤为:将SrCO3、ZnS、MnCO3与Bi2O3在无水乙醇中混合、球磨,真空干燥得到混合粉体;将所得混合粉体在氩气气氛下进行烧结,烧结温度为900~1050℃,烧结时间为3~6小时;待反应结束后自然冷却至室温,再次研磨成细粉。本发明制备的SrZn2S2O:Mn2+,Bi3+闪烁体具有较强的X射线吸收能力,成本低廉,易于合成且环境友好,在X射线连续照射下具有高稳定性,故可应用于X射线成像、高能辐射探测等领域。

Description

三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备 方法
技术领域
本发明属于无机半导体发光材料技术领域,具体涉及一种三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备方法。
背景技术
X射线探测在现代核医学影像、工业无损探伤、安保安检、高能物理等领域,具有重要的市场应用价值。闪烁体作为X射线探测的核心元件,是一种可以将高能量的X光子转换成低能量可见光子的发光功能材料。因此,闪烁体的各项性能指标是影响X射线辐射探测应用的重要因素。无机闪烁体因其密度大、体积小、物化性能和闪烁性能优良等特点,在辐射探测和X射线成像等领域发挥着不可替代的作用。早期的CsI、CdWO4等商用化闪烁晶体在实际应用中普遍存在一些难以克服的缺点,如CdWO4的合成温度高且脆性大,使加工过程难度增大;CsI(TI)闪烁体存在严重的余辉问题,且吸收系数较小。稀土硫氧化物闪烁体如Gd2O2S:Pr/Tb具有密度大、光产额高、化学性质稳定和加工时无解理等优势,但由于稀土元素稀缺且生产成本高,故仍需要寻找无稀土离子的闪烁材料。
SrZn2S2O属于Pmn21正交空间群,作为一种具有紧密堆积的ZnS3O四面体波纹双层的硫氧化物半导体,具有非中心对称的二维层状晶体结构和合适的能带结构,是发光离子掺杂的良好宿主材料。Mn2+掺杂的SrZn2S2O在X射线的激发下可以产生强烈的橙色发射(Mn2 +,4T16A1),且SrZn2S2O:Mn2+闪烁体对激发功率表现出良好的线性响应,可实现从X射线到可见光的能量转换,在X射线辐射探测中具有潜在的应用。然而,SrZn2S2O:Mn2+闪烁体的X射线光子吸收能力有限且材料在X射线辐照下的稳定性还有待提高,因此,亟需探索和开发一种具有高辐射吸收系数、高稳定性、易于制备、成本低廉且环境友好的闪烁体材料,从而实现X射线的高效探测。
发明内容
本发明的目的是提供一种具有高辐射吸收系数、高光产额、长波长可见光发光以及高稳定性的SrZn2S2O:Mn2+,Bi3+硫氧化物闪烁体。
本发明采用如下技术方案:
一种高辐射致发光强度的三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体,其中,Mn2+的掺杂百分量为0.5%,Bi3+的掺杂百分量为0.5%~8%。
上述三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体的制备方法,包括如下步骤:
(1)将SrCO3、ZnS、MnCO3和Bi2O3按照各元素的化学计量比称取,随后加入少量无水乙醇充分研磨,使原料混合均匀;
(2)将步骤(1)得到的混合物真空干燥得到混合粉体;
(3)将步骤(2)得到的混合粉体放置在氩气气氛的真空管式炉中进行烧结;
(4)待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到SrZn2S2O:Mn2+,Bi3+粉末。
较佳的,步骤(1)中,SrCO3、ZnS、MnCO3、Bi2O3的摩尔比例为0.995~0.92:1.995:0.005:0.005~0.08。
较佳的,步骤(1)中,充分研磨是指以400r/分钟的转速球磨120 分钟。
较佳的,步骤(2)中,干燥温度为60℃,干燥时间为24 小时。
较佳的,步骤(3)中,烧结温度为900~1050℃,烧结时间为3~6 小时。
本发明与现有技术相比,其有益效果为:
(1)本发明制备方法简单,成本低廉,对环境友好。
(2)本发明制得的三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体具有高的X射线吸收能力、高的光产额、长波长可见光发光以及高的稳定性,故可应用于X射线探测与成像。
附图说明
图1是本发明实施例1~2、4中所示条件下合成的SrZn2S2O,SrZn2S2O:0.5%Mn2+,SrZn2S2O:0.5%Mn2+,1%Bi3+(Mn2+的摩尔量为0.025mmol,Bi3+的摩尔量为0.05mmol)烧结样品在254nm紫外灯的照射下的发光照片。
图2是本发明实施例1、4制备样品SrZn2S2O,SrZn2S2O:0.5%Mn2+,1%Bi3+(Mn2+的摩尔量为0.025mmol,Bi3+的摩尔量为0.05mmol)的粉末X射线衍射图。
图3为本发明实施例1~2、4制备样品SrZn2S2O,SrZn2S2O:0.5%Mn2+,SrZn2S2O:0.5%Mn2+,1%Bi3+(Mn2+的摩尔量为0.025mmol,Bi3+的摩尔量为0.05mmol)在X射线激发下的RL示意图。
图4为本发明实施例3~7在不同的Bi2O3含量下制备的样品SrZn2S2O:0.5%Mn2+,Bi3+(Mn2+的摩尔量为0.025mmol,Bi3+的摩尔量为0.025,0.05,0.1,0.2,0.4mmol)在297nm激发下的PL示意图。
图5为本发明实施例3~7在不同的Bi2O3含量下制备的样品SrZn2S2O:0.5%Mn2+,Bi3+(Mn2+的摩尔量为0.025mmol,Bi3+的摩尔量为0.025,0.05,0.1,0.2,0.4mmol)在X射线激发下的RL示意图。
图6为本发明实施例4、8~10在不同反应温度下制备的样SrZn2S2O:0.5%Mn2+,1%Bi3+(Mn2+的摩尔量均为0.025mmol,Bi3+的摩尔量为0.05mmol)在X射线激发下的RL示意图。
图7为本发明实例4、11~13在不同烧结时间下制备的样品SrZn2S2O:0.5%Mn2+,1%Bi3 +(Mn2+的摩尔量为0.025mmol,Bi3+的掺杂含量为0.05mmol)在X射线激发下的RL示意图。
图8为本发明实施例4制备的样品SrZn2S2O:0.5%Mn2+,1%Bi3+(Mn2+的摩尔量为0.025mmol,Bi3+的摩尔量为0.05mmol)与商用闪烁材料GOS以及ZnS:Cu在X射线激发下的RL示意图,插图显示了SrZn2S2O:0.5%Mn2+,1%Bi3+、GOS和ZnS:Cu的积分RL强度。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等效形式的修改均落于本申请所附权利要求所限定的范围。
实施例1
根据化学式SrZn2S2O中各元素的化学计量配比,准确称取3mmol SrCO3和6mmolZnS。将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24 小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到白色SrZn2S2O粉末。
实施例2
根据化学式SrZn1.995Mn0.005S2O中各元素的化学计量配比,准确称取0.025mmolMnCO3,5mmol SrCO3和9.975mmol ZnS,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24 小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+粉末。
实施例3
根据化学式Sr0.995Zn1.995Mn0.005Bi0.005S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.975mmol SrCO3,9.975mmol ZnS和0.025mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24 小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,0.5%Bi3+粉末。
实施例4
根据化学式Sr0.99Zn1.995Mn0.005Bi0.01S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.95mmol SrCO3,9.975mmol ZnS和0.05mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24 小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,1%Bi3+粉末。
实施例5
根据化学式Sr0.98Zn1.995Mn0.005Bi0.02S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.9mmol SrCO3,9.975mmol ZnS和0.1mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,2%Bi3+粉末。
实施例6
根据化学式Sr0.96Zn1.995Mn0.005Bi0.04S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.8mmol SrCO3,9.975mmol ZnS和0.2mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,4%Bi3+粉末。
实施例7:
根据化学式Sr0.92Zn1.995Mn0.005Bi0.08S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.6mmol SrCO3,9.975mmol ZnS和0.4mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,8%Bi3+粉末。
实施例8:
根据化学式Sr0.99Zn1.995Mn0.005Bi0.01S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.95mmol SrCO3,9.975mmol ZnS和0.05mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24 小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在900℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,1%Bi3+粉末。
实施例9:
根据化学式Sr0.99Zn1.995Mn0.005Bi0.01S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.95mmol SrCO3,9.975mmol ZnS和0.05mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24 小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在950℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,1%Bi3+粉末。
实施例10:
根据化学式Sr0.99Zn1.995Mn0.005Bi0.01S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.95mmol SrCO3,9.975mmol ZnS和0.05mmol Bi2O3,将上述原料置于球磨罐中加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1000℃氩气气氛真空管式炉中烧结4 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,1%Bi3+粉末。
实施例11:
根据化学式Sr0.99Zn1.995Mn0.005Bi0.01S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.95mmol SrCO3,9.975mmol ZnS和0.05mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24 小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结3 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,1%Bi3+粉末。
实施例12:
根据化学式Sr0.99Zn1.995Mn0.005Bi0.01S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.95mmol SrCO3,9.975mmol ZnS和0.05mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24 小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结5 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,1%Bi3+粉末。
实施例13:
根据化学式Sr0.99Zn1.995Mn0.005Bi0.01S2O中各元素的化学计量配比,准确称取0.025mmol MnCO3,4.95mmol SrCO3,9.975mmol ZnS和0.05mmol Bi2O3,将上述原料置于球磨罐中,加入15mL无水乙醇混合,随后以400 rpm的转速充分研磨120 分钟,60℃真空干燥24 小时后得到均匀的混合物;将所得混合粉体移至刚玉坩埚中,以5℃/分钟的升温速率,在1050℃氩气气氛真空管式炉中烧结6 小时;待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到淡黄色SrZn2S2O:0.5%Mn2+,1%Bi3+粉末。
图2为本实施例1、4样品的X射线衍射谱图,由图2知,这两个样品均为SrZn2S2O单相,属于纯正交相,发光离子的掺杂未引入新的杂质或其他物相。
图3为本实施例1~2、4制备样品在X射线激发下的RL示意图。由图3可知:在最佳反应条件下合成的SrZn2S2O:0.5%Mn,1%Bi的辐射致发光强度远高于SrZn2S2O和SrZn2S2O:0.5%Mn,通过三价铋离子和过渡金属锰离子的共掺杂可显著提高锌基硫氧化物闪烁体材料的光产额。
图4为本发明实施例3~7在不同的Bi2O3含量下(反应温度为1050 ℃,烧结时间为4小时)制备的样品SrZn2S2O:0.5%Mn2+,Bi3+在297nm激发下的PL示意图。由图4可知:在297nm的激发下,该PL光谱由两个发射中心分别位于~456nm和~580nm发射带组成,其中580nm发射中心源于锰离子的d-d跃迁(4T16A1)。随着铋离子掺杂浓度的增加,Bi3+离子的发射强度单调上升,而Mn2+离子的发射强度逐渐下降。当x=0.01时,锰离子的发光强度最大。
图5为本实施例3~7在不同Bi2O3含量下(反应温度为1050 ℃,烧结时间为4小时)制备的样品SrZn2S2O:0.5%Mn2+,Bi3+在X射线激发下的RL示意图,由图5可知:Bi2O3最佳反应比例为0.05mmol,在此条件下制备的闪烁体材料的辐射致发光强度为1447(a. u.)。
图6为本发明实施例4、8~10在不同的反应温度下(烧结时间为4 小时)制备样品SrZn2S2O:0.5%Mn2+,1%Bi3+(Mn2+的摩尔量为0.025mmol,Bi3+的摩尔量为0.05mmol)在X射线激发下的RL示意图。由图6可知:最佳反应温度为1050℃,在此条件下制备的闪烁体材料的辐射致发光强度最大。
图7为本发明实施例8~10在不同的烧结时间下(反应温度为1050 ℃)制备的样品SrZn2S2O:0.5%Mn2+,1%Bi3+在X射线激发下的RL示意图。由图7可知:最佳烧结时间为4 小时,在此条件下制备的闪烁体材料的辐射致发光强度最大。
图8为本发明实施例4制备样品SrZn2S2O:0.5%Mn2+,1%Bi3+(Mn2+的摩尔量为0.025mmol,Bi3+的摩尔量为0.05mmol)与GOS及商用ZnS:Cu在X射线激发下的RL和积分RL强度示意图。由图8可知:在最佳反应条件下合成的SrZn2S2O:0.5%Mn2+,1%Bi3+的积分RL强度远高于商用的闪烁体(GOS和ZnS:Cu)。

Claims (6)

1.一种三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体,其特征在于,该材料的化学组成为Sr1-xZn1.995Mn0.005BixS2O,其中0.005≤x≤0.08。
2.一种三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体的制备方法,其特征在于,包括如下步骤:
(1)将SrCO3、ZnS、MnCO3和Bi2O3按照一定摩尔比称取,随后加入无水乙醇充分研磨,使原料混合均匀;
(2)将步骤(1)得到的混合物真空干燥得到混合粉体;
(3)将步骤(2)得到的混合粉体放置在氩气气氛的真空管式炉中进行烧结;
(4)待反应结束后自然冷却至室温,取出烧结产物并进行研磨得到SrZn2S2O:Mn2+,Bi3+粉末。
3.如权利要求2所述的方法,其特征在于,步骤(1)中,SrCO3、ZnS、MnCO3、Bi2O3的摩尔比例为0.995~0.92:1.995:0.005:0.005~0.08。
4. 如权利要求2所述的方法,其特征在于,步骤(1)中,充分研磨是指以400r/分钟的转速球磨120 分钟。
5. 如权利要求2所述的方法,其特征在于,步骤(2)中,干燥温度为60℃,干燥时间为24小时。
6. 如权利要求2所述的方法,其特征在于,步骤(3)中,烧结温度为900~1050℃,烧结时间为3~6 小时。
CN202110865095.3A 2021-07-29 2021-07-29 三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备方法 Pending CN113563078A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110865095.3A CN113563078A (zh) 2021-07-29 2021-07-29 三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110865095.3A CN113563078A (zh) 2021-07-29 2021-07-29 三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备方法

Publications (1)

Publication Number Publication Date
CN113563078A true CN113563078A (zh) 2021-10-29

Family

ID=78169085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110865095.3A Pending CN113563078A (zh) 2021-07-29 2021-07-29 三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备方法

Country Status (1)

Country Link
CN (1) CN113563078A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774128A (zh) * 2022-03-09 2022-07-22 苏州大学 二价铕硫化物近红外闪烁体及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106010528A (zh) * 2016-06-17 2016-10-12 东北大学秦皇岛分校 一种铋、锰掺杂的蓝色荧光粉及其制备方法和应用
CN108611091A (zh) * 2018-03-22 2018-10-02 辽宁师范大学 一种铋锰共掺Zn2GeO4长余辉纳米粉末及其制备工艺
CN110628423A (zh) * 2019-10-09 2019-12-31 厦门大学 一种氧硫化物弹性应力发光材料及其制备方法
US20200071181A1 (en) * 2018-09-05 2020-03-05 University Of South Carolina Polar Oxysulfide for Nonlinear Optical Applications
CN112143488A (zh) * 2020-09-04 2020-12-29 深圳大学 熔融介质保护的反应方法及应力发光荧光粉的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106010528A (zh) * 2016-06-17 2016-10-12 东北大学秦皇岛分校 一种铋、锰掺杂的蓝色荧光粉及其制备方法和应用
CN108611091A (zh) * 2018-03-22 2018-10-02 辽宁师范大学 一种铋锰共掺Zn2GeO4长余辉纳米粉末及其制备工艺
US20200071181A1 (en) * 2018-09-05 2020-03-05 University Of South Carolina Polar Oxysulfide for Nonlinear Optical Applications
CN110628423A (zh) * 2019-10-09 2019-12-31 厦门大学 一种氧硫化物弹性应力发光材料及其制备方法
CN112143488A (zh) * 2020-09-04 2020-12-29 深圳大学 熔融介质保护的反应方法及应力发光荧光粉的制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHANGJIAN CHEN等: "Creating Visible-to-Near-Infrared Mechanoluminescence in Mixed-Anion Compounds", 《NANO ENERGY》 *
RENPINGCAO等: "Luminescence properties of Sr2Mg3P4O15:Mn2+ phosphor and the improvement by co-doping Bi3+", 《OPTICAL MATERIALS》 *
RONGHUA MA等: "Luminescence in Manganese", 《FRONTIERS IN CHEMISTRY 》 *
YUN-LING YANG等: "Effi cient energy transfer from Bi", 《DALTON TRANSACTIONS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114774128A (zh) * 2022-03-09 2022-07-22 苏州大学 二价铕硫化物近红外闪烁体及其制备方法
CN114774128B (zh) * 2022-03-09 2023-06-27 苏州大学 二价铕硫化物近红外闪烁体及其制备方法

Similar Documents

Publication Publication Date Title
Hua et al. Excellent photoluminescence and cathodoluminescence properties in Eu3+-activated Sr2LaNbO6 materials for multifunctional applications
Du et al. Sol-gel processing of Eu3+ doped Li6CaLa2Nb2O12 garnet for efficient and thermally stable red luminescence under near-ultraviolet/blue light excitation
CN111778017A (zh) 一种具有高光产额的锰掺杂Cs3Cu2I5卤化物闪烁体
CN113563882B (zh) 一种闪烁发光材料及其制备方法
Ji et al. La2Hf2O7: Ti4+ ceramic scintillator for x-ray imaging
Zhou et al. Compositional engineering of doped zero-dimensional zinc halide blue emitters for efficient X-ray scintillation
Chen et al. Luminescence properties of Gd 2 MoO 6: Eu 3+ nanophosphors for WLEDs
Liu et al. Gel-combustion assisted synthesis of eulytite-type Sr3Y (PO4) 3 as a single host for narrow-band Eu3+ and broad-band Eu2+ emissions
Vinodkumar et al. Influence of interstitial UO 2 2+ doping on the valence control of Eu and energy transfer to substitutional Eu 3+ and Sm 3+ in SrBPO 5
CN110003893B (zh) 一种硅锗酸盐黄-橙色长余辉发光材料及制备方法
CN113563078A (zh) 三价铋离子增强的锰掺杂SrZn2S2O硫氧化物闪烁体及其制备方法
Salim et al. The local structure of phosphor material, Sr2MgSi2O7 and Sr2MgSi2O7: Eu2+ by infrared spectroscopy
Guckan et al. Impact of Li concentration in KMgF3: Eu, Yb fluoroperovskite on structure and luminescence properties
Jiang et al. Luminescence properties of a new green emitting long afterglow phosphor Ca14Zn6Ga10O35: Mn2+, Ge4+
Li et al. Boosting self-trapped exciton emission from Cs3Cu2I5 nanocrystals by doping-enhanced exciton-phonon coupling
Ji et al. Preparation and spectroscopic properties of La2Hf2O7/Tb
Sanjay et al. Effect of monovalent, divalent, and trivalent ions codoped with LaOCl: Eu3+ phosphors and its Judd-Ofelt analysis for display device applications
Liu et al. Spectroscopic properties of nano-sized cerium-doped lutetium aluminum garnet phosphors via sol–gel combustion process
Ye et al. Nitride-doped Sr4Al14O25: Eu2+ phosphor with improved photoluminescence and long afterglow
Quilty et al. Structural characterization and photoluminescence in the rare earth-free oxy-fluoride anti-perovskites Sr 3− x Bi 2x/3 AlO 4 F and Sr 3− x Bi 2x/3 GaO 4 F
He et al. Optical and thermoluminescence properties of Lu2Si2O7: Pr single crystal
Luchechko et al. Synthesis and luminescent properties of magnesium gallate spinel doped with Mn2+ and Eu3+ ions
Li et al. Luminescence properties of high-quality Ca2Si5N8: Eu2+ phosphor: CaH2-raw material
Hou et al. Lead-free halide Cs 2 MnCl 4: Cu+ as a new phosphor for efficient green light emission
Gieszczyk et al. Luminescent properties of Tb and Eu activated AxB1-xAlO3 (A= Y, Lu, Gd; B= Lu; x= 0, 0.5, 1) mixed oxides crystals prepared by micro-pulling-down method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20211029

RJ01 Rejection of invention patent application after publication