CN113555499A - 固态电解质阈值开关器件及其制备方法和1s1r集成结构 - Google Patents

固态电解质阈值开关器件及其制备方法和1s1r集成结构 Download PDF

Info

Publication number
CN113555499A
CN113555499A CN202110653606.5A CN202110653606A CN113555499A CN 113555499 A CN113555499 A CN 113555499A CN 202110653606 A CN202110653606 A CN 202110653606A CN 113555499 A CN113555499 A CN 113555499A
Authority
CN
China
Prior art keywords
electrode layer
layer
thickness
substrate
film layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110653606.5A
Other languages
English (en)
Inventor
闫小兵
裴逸菲
李晓钰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University
Original Assignee
Hebei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University filed Critical Hebei University
Priority to CN202110653606.5A priority Critical patent/CN113555499A/zh
Publication of CN113555499A publication Critical patent/CN113555499A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/883Oxides or nitrides
    • H10N70/8833Binary metal oxides, e.g. TaOx
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明提供了一种固态电解质阈值开关器件及其制备方法和1S1R集成结构,所述1S1R集成结构由固态电解质阈值开关器件和Ga2O3基忆阻器在空间叠加形成的堆叠结构;所述固态电解质阈值开关器件是在基片上依次制备有Ag底电极层、Ga2O3膜层、MoS2量子点膜层和Ag顶电极层;所述Ga2O3基忆阻器是在基片上依次制备有Pt底电极层、Ga2O3膜层和Ag顶电极层。所述固态电解质阈值开关器件响应迅速,有较窄的阈值电压分布范围,电阻分布较为集中,高低阻比值较大,并且具有大幅度抑制大阵列中寄生电流的能力。

Description

固态电解质阈值开关器件及其制备方法和1S1R集成结构
技术领域
本发明涉及忆阻器阵列技术领域,具体涉及一种固态电解质阈值开关器件及其制备方法和1S1R集成结构。
背景技术
忆阻器(Memristor),顾名思义有记忆电阻功能的器件,能反应磁通量φ与电荷量q 之间对应关系的电路器件。1971年,美国的加州大学伯克利分校华裔科学家Leon O.Chua从逻辑和公理两个方向论证指出,自然界应该还存在一个表示磁通与电荷关系的电路元件,并且根据对称原则二者符合 d=Mdq 的数学关系,其中M即表示忆阻器。忆阻器由于其结构简单,十分有利于在半导体集成电路中应用。然而,由于阵列中器件之间的寄生电流的存在,尤其是在三维阵列集成过程中低阻状态器件之间的互相影响,增加了整个电路芯片的功耗,甚至增加了在数据读取时候误读的可能。因此,如何减少寄生电流的影响具有重要的研究意义。
基于Ga2O3薄膜的阈值开关器件具有高选择性106、陡开斜率<2mV/dec、开关电压集中的特点。本发明将该阈值开关器件堆叠在Ag/Ga2O3/Pt忆阻器上,以形成集成的 1S1R单元,能够实现解决减少寄生电流影响的功能。证明了阈值开关型器件与忆阻器集成的可行性,这将有利于大型交叉阵列的应用,包括非易失性存储器和神经形态计算的应用。
发明内容
本发明的目的是提供一种固态电解质阈值开关器件及其制备方法和1S1R集成结构,以解决阵列中器件之间寄生电流所产生的影响。
本发明为实现其目的采用的技术方案是:一种固态电解质阈值开关器件,所述器件是在基片上依次制备有Ag底电极层、Ga2O3膜层、MoS2量子点膜层和Ag顶电极层。
所述基片为表面含有二氧化硅层的硅基片。
所述Ag底电极层的厚度为10~30 nm,Ga2O3膜层的厚度为5~25 nm,MoS2量子点膜层的厚度为5~40nm,Ag顶电极层的厚度为10~30 nm。
上述的固态电解质阈值开关器件的制备方法,包括以下步骤:
a、使用含厚度为0.8~1.2μm二氧化硅层的硅片作为基片,采用直流磁控溅射法在基片上沉积Ag底电极层;
b、采用磁控溅射法在步骤a 的样品上制备Ga2O3 膜层,其中,溅射功率为 70~90w,溅射室的基压低于 2×10-4pa,工作压力为 2~4pa,工作气氛为Ar 和O2混合气氛,Ar 和O2的气体流量比为1~3∶1;
c、在步骤b所得样品上滴涂MoS2量子点溶液,然后置于加热平台上,在75~85℃干燥 10~20min,从而制得MoS2量子点膜层;
d、在步骤c所得样品上放置掩膜版,然后采用直流磁控溅射法沉积Ag 顶电极层。
一种1S1R集成结构,其是由固态电解质阈值开关器件和Ga2O3 基忆阻器在空间叠加形成的堆叠结构;所述固态电解质阈值开关器件是在基片上依次制备有Ag底电极层、Ga2O3膜层、MoS2量子点膜层和Ag顶电极层;所述Ga2O3 基忆阻器是在基片上依次制备有Pt底电极层、Ga2O3 膜层和Ag顶电极层。
所述Ga2O3 基忆阻器中Pt底电极层的厚度为10~70 nm,Ga2O3 膜层的厚度为5-15nm,Ag顶电极层的厚度为10~30 nm。
所述Ga2O3 基忆阻器通过以下方法制备得到:
a、使用含厚度为0.8~1.2μm二氧化硅层的硅片作为基片,采用射频磁控溅射法在基片上沉积5~15nm厚的金属钛膜作为粘附层,然后用电子束蒸发法制备 Pt底电极层;
b、采用磁控溅射法在步骤a 的样品上制备Ga2O3 膜层,其中,溅射功率为 70~90w,溅射室的基压低于 2×10-4pa,工作压力为 2~4pa,工作气氛为Ar 和O2混合气氛,Ar 和O2的气体流量比为1~3∶1;
c、在步骤b所得样品上放置掩膜版,然后采用直流磁控溅射法沉积Ag 顶电极层。
在 MoS2量子点基阈值开关型器件中,展示了优异的选通特性。陡开斜率<2 mV/dec,高低阻比值106,选择性高。通过制作 1S1R 集成器件,能够实现解决减少寄生电流影响的功能。证明了将这种阈值开关型器件与忆阻器集成的可行性,这将有利于大型交叉阵列的应用,包括非易失性存储器和神经形态计算的应用。
附图说明
图1是本发明中MoS2薄膜的 SEM 图像。
图2是阈值开关器件的 I-V 特性曲线。
图3是阈值开关器件的陡开斜率(约2 mV/dec)图。
图4是阈值开关器件的开关电压统计图。
图5是阈值开关器件的高低电阻积累概率统计图。
图6是1S1R串联结构的I-V特性曲线。
具体实施方式
下面结合实施例对本发明做进一步的阐述,下述实施例仅作为说明,并不以任何方式限制本发明的保护范围。
实施例1 固态电解质阈值开关器件
阈值开关器件是在基片上依次制备有Ag底电极层、Ga2O3膜层、MoS2量子点膜层和Ag顶电极层。Ag底电极层的厚度为10nm,Ga2O3膜层的厚度为10nm,MoS2量子点膜层的厚度为15nm,Ag顶电极层的厚度为30nm、直径为 100μm。
采用磁控溅射和滴涂法制备阈值开关型器件。使用含 1μm 二氧化硅层的硅片作为基片。采用直流磁控溅射, 其中,溅射功率为 10w,溅射室的基压低于 2×10-4pa,在50sccm Ar气氛下的工作压力为 3pa。沉积厚度为 10nm 的 Ag 膜作为底电极。随后,采用磁控溅射法在基片上制备厚度为 10nm 的 Ga2O3 膜层,其中,溅射功率为 80w,溅射室的基压低于 2×10-4pa,在 50sccm Ar 和 25sccm O2 混合气氛下的工作压力为 3pa。然后,在Ga2O3 薄膜上滴涂MoS2量子点溶液(浓度为10mg/ml,溶剂为水),置于加热平台上 ,在80℃干燥 10 min,制得MoS2量子点膜层。最后,在基片上放置掩模版,采用直流磁控溅射10min沉积厚度为 50nm、直径为 100μm 的 Ag 顶电极层。
本发明所制备的固态电解质阈值器件的结构为Ag/MoS2/Ga2O3/Ag。图1为MoS2薄膜的SEM图像,图像显示 MoS2有较好成膜特性,颗粒大小均匀。图 2 显示了阈值开关器件的10 个连续周期 I-V 特性曲线,经过10个重复循环发现,器件能够在保持易失性的同时,又展现了较好的可重复性。图3 展示了阈值开关器件的陡开斜率,斜率为2mV/dec,说明电压响应速度较快。图4分析了阈值开关器件中开关电压的分布,验证了阈值开关型器件的均匀性。阈值开关器件的开关电压分别集中在 0.34V和 0.1V。这种较窄的阈值电压范围分布,使设定和复位操作的程控电压得到精确控制。图5 为阈值开关器件的高低电阻积累概率统计,阈值开关型器件电阻分散较为集中,高低阻比值大约106,高低阻差别较大。
实施例2 1S1R 结构
将实施例1的阈值开关器件串联Ga2O3 基忆阻器构成堆叠的 1S1R 结构。Ga2O3 基忆阻器是在基片上依次制备有Pt底电极层、Ga2O3 膜层和Ag顶电极层。Ga2O3 基忆阻器中Pt底电极层的厚度为50,Ga2O3 膜层的厚度为5nm,Ag顶电极层的厚度为30nm。
Ga2O3 基忆阻器通过以下方法制备得到:
a、使用含厚度为1μm二氧化硅层的硅片作为基片,采用直流磁控溅射法, 其中,溅射功率为 10w,溅射室的基压低于 2×10-4pa,在 50sccm Ar气氛下的工作压力为 3pa。在基片上沉积10nm厚的金属钛膜作为粘附层,然后用射频磁控溅射法, 其中,溅射功率为10w,溅射室的基压低于 2×10-4pa,在 50sccm Ar气氛下的工作压力为 3pa。制备 Pt底电极层;
b、采用磁控溅射法,在室温下,在步骤a 的样品上制备Ga2O3 膜层,其中,溅射功率为80w,溅射室的基压低于 2×10-4pa,在 50sccm Ar 和 25sccm O2 混合气氛下的工作压力为 3pa;
c、在步骤b所得样品上放置掩膜版,然后采用直流磁控溅射10min沉积厚度为50nm、直径为 100μm 的 Ag 顶电极层。
将两种器件空间叠加形成1S1R 堆叠结构。图6(a)为1S1R 结构示意图。这种结构允许分别访问阈值开关器件、忆阻器和1S1R单元的特性。图6(b)为阈值开关器件 i-v 特性曲线。阈值开关器件显示具有单个偏压极性的可重复阈值切换。图6(c)为忆阻器 i-v 特性曲线,展示出了单个 Ag/Ga2O3/Pt 忆阻器的可重复双极记忆开关。6(d)为1S1R 叠层结构i-v 特性曲线,展示出了具有大幅度抑制大阵列中寄生电流的能力。此特性证明了将这种阈值开关型与忆阻器集成的可行性,这将有利于大型交叉阵列的应用,包括非易失性存储器和神经形态计算的应用。

Claims (7)

1.一种固态电解质阈值开关器件,其特征在于,所述器件是在基片上依次制备有Ag底电极层、Ga2O3膜层、MoS2量子点膜层和Ag顶电极层。
2.根据权利要求1所述的固态电解质阈值开关器件,其特征在于,所述基片为表面含有二氧化硅层的硅基片。
3.根据权利要求1所述的固态电解质阈值开关器件,其特征在于,所述Ag底电极层的厚度为10~30 nm,Ga2O3膜层的厚度为5~25 nm,MoS2量子点膜层的厚度为5~40nm,Ag顶电极层的厚度为10~30 nm。
4.权利要求1~3任一所述的固态电解质阈值开关器件的制备方法,其特征在于,包括以下步骤:
a、使用含厚度为0.8~1.2μm二氧化硅层的硅片作为基片,采用直流磁控溅射法在基片上沉积Ag底电极层;
b、采用磁控溅射法在步骤a 的样品上制备Ga2O3 膜层,其中,溅射功率为 70~90w,溅射室的基压低于 2×10-4pa,工作压力为 2~4pa,工作气氛为Ar 和O2混合气氛,Ar 和O2的气体流量比为1~3∶1;
c、在步骤b所得样品上滴涂MoS2量子点溶液,然后置于加热平台上,在75~85℃干燥 10~20min,从而制得MoS2量子点膜层;
d、在步骤c所得样品上放置掩膜版,然后采用直流磁控溅射法沉积Ag 顶电极层。
5.一种1S1R集成结构,其特征在于,其是由固态电解质阈值开关器件和Ga2O3 基忆阻器在空间叠加形成的堆叠结构;所述固态电解质阈值开关器件是在基片上依次制备有Ag底电极层、Ga2O3膜层、MoS2量子点膜层和Ag顶电极层;所述Ga2O3 基忆阻器是在基片上依次制备有Pt底电极层、Ga2O3 膜层和Ag顶电极层。
6.根据权利要求5所述的1S1R集成结构,其特征在于,所述Ga2O3 基忆阻器中Pt底电极层的厚度为10~70 nm,Ga2O3 膜层的厚度为5-15 nm,Ag顶电极层的厚度为10~30nm。
7.根据权利要求5所述的1S1R集成结构,其特征在于,所述Ga2O3 基忆阻器通过以下方法制备得到:
a、使用含厚度为0.8~1.2μm二氧化硅层的硅片作为基片,采用射频磁控溅射法在基片上沉积5~15nm厚的金属钛膜作为粘附层,然后用电子束蒸发法制备 Pt底电极层;
b、采用磁控溅射法在步骤a 的样品上制备Ga2O3 膜层,其中,溅射功率为 70~90w,溅射室的基压低于 2×10-4pa,工作压力为 2~4pa,工作气氛为Ar 和O2混合气氛,Ar 和O2的气体流量比为1~3∶1;
c、在步骤b所得样品上放置掩膜版,然后采用直流磁控溅射法沉积Ag 顶电极层。
CN202110653606.5A 2021-06-11 2021-06-11 固态电解质阈值开关器件及其制备方法和1s1r集成结构 Pending CN113555499A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110653606.5A CN113555499A (zh) 2021-06-11 2021-06-11 固态电解质阈值开关器件及其制备方法和1s1r集成结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110653606.5A CN113555499A (zh) 2021-06-11 2021-06-11 固态电解质阈值开关器件及其制备方法和1s1r集成结构

Publications (1)

Publication Number Publication Date
CN113555499A true CN113555499A (zh) 2021-10-26

Family

ID=78130581

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110653606.5A Pending CN113555499A (zh) 2021-06-11 2021-06-11 固态电解质阈值开关器件及其制备方法和1s1r集成结构

Country Status (1)

Country Link
CN (1) CN113555499A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017039611A1 (en) * 2015-08-31 2017-03-09 Hewlett Packard Enterprise Development Lp Material stacks for low current unipolar memristors
US20180012652A1 (en) * 2015-01-26 2018-01-11 Agency For Science, Technology And Research Memory cell selector and method of operating memory cell
CN108231823A (zh) * 2018-03-16 2018-06-29 湖北大学 一种基于氧化锆隧穿层的氧化铌选通器件及其制造方法
US20190074436A1 (en) * 2017-09-05 2019-03-07 SK Hynix Inc. Switching device and non-volatile memory device including the same
US20200303639A1 (en) * 2016-03-15 2020-09-24 Agency For Science, Technology And Research Memory device and method of forming the same
CN112885868A (zh) * 2021-02-03 2021-06-01 湖北大学 一种基于氧化铌选通管的1s1r器件及其制备方法
CN112885869A (zh) * 2021-02-03 2021-06-01 湖北大学 一种基于金属性插层的1s1r器件及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180012652A1 (en) * 2015-01-26 2018-01-11 Agency For Science, Technology And Research Memory cell selector and method of operating memory cell
WO2017039611A1 (en) * 2015-08-31 2017-03-09 Hewlett Packard Enterprise Development Lp Material stacks for low current unipolar memristors
US20200303639A1 (en) * 2016-03-15 2020-09-24 Agency For Science, Technology And Research Memory device and method of forming the same
US20190074436A1 (en) * 2017-09-05 2019-03-07 SK Hynix Inc. Switching device and non-volatile memory device including the same
CN108231823A (zh) * 2018-03-16 2018-06-29 湖北大学 一种基于氧化锆隧穿层的氧化铌选通器件及其制造方法
CN112885868A (zh) * 2021-02-03 2021-06-01 湖北大学 一种基于氧化铌选通管的1s1r器件及其制备方法
CN112885869A (zh) * 2021-02-03 2021-06-01 湖北大学 一种基于金属性插层的1s1r器件及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
李晓钰,赵莹,赵建辉,裴逸菲,闫小兵: "《基于量子点对阻变存储器性能提升的研究进展》", 《微纳电子与智能制造》 *
李雨佳,吴华强,高滨,化麒麟,张昭,张万荣,钱鹤: "《Impact of variations of threshold voltage and hold voltage of threshold switching selectors in 1S1R crossbar array》", 《CHINESE PHYSICS B》 *
裴逸菲: "《量子点掺杂Ga2O3忆阻器性能与物理机制研究》", 《中国优秀博硕士学位论文全文数据库(硕士)信息科技辑(月刊)》 *

Similar Documents

Publication Publication Date Title
Mao et al. Lead-free monocrystalline perovskite resistive switching device for temporal information processing
Wu et al. $\hbox {Al} _ {2}\hbox {O} _ {3} $-Based RRAM Using Atomic Layer Deposition (ALD) With 1-$\mu\hbox {A} $ RESET Current
US8264864B2 (en) Memory device with band gap control
JP2008135752A (ja) ドーパントを含む抵抗性メモリ素子及びその製造方法
Praveen et al. Top electrode dependent resistive switching in M/ZnO/ITO memristors, M= Al, ITO, Cu, and Au
Hu et al. Forming-free resistive switching characteristics in tantalum oxide and manganese oxide based crossbar array structure
KR20160125843A (ko) 저항변화메모리
GB2471535A (en) Electrically actuated switch
TWI549263B (zh) 記憶體結構及其製備方法
CN113555499A (zh) 固态电解质阈值开关器件及其制备方法和1s1r集成结构
Zhao et al. Ultrahigh Uniformity and Stability in NbO x-Based Selector for 3-D Memory by Using Ru Electrode
Bae et al. Improved Resistive Switching Observed in Ti/Zr 3 N 2/p-Si Capacitor via Hydrogen Passivation
Kumar et al. Multibit, Lead‐Free Cs2SnI6 Resistive Random Access Memory with Self‐Compliance for Improved Accuracy in Binary Neural Network Application
CN106887519B (zh) 一种实现多值存储的阻变存储器的制备方法
CN110752289A (zh) 一种基于MnZn共掺杂BiFeO3薄膜的阻变存储器及其制备方法
CN106374040A (zh) 一种多层阻变存储器单元及其制备方法
CN113088912A (zh) 改善TaOx基阻变存储器可靠性的硅掺杂磁控溅射工艺
Liu et al. Resistive switching characteristics of a SiO x Layer with CF 4 plasma treatment
KR102526214B1 (ko) 전이금속 산화물 기반 3차원 구조 뉴로모픽 소자 및 그 제조 방법
Choi et al. New materials for memristive switching
CN105098065A (zh) 一种电阻型随机存储器的存储单元的制备方法及其产品
CN112382719B (zh) 提升铁电隧穿结性能的器件结构及其制备方法
US20240107904A1 (en) Resistive Switching in a RRAM Device
Cheng et al. Hf1-xZrxO2based bipolar selector with high uniformity and high selectivity for large-scale integration of memristor crossbars
US11925129B2 (en) Multi-layer selector device and method of fabricating the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211026