CN113540977A - 带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器 - Google Patents

带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器 Download PDF

Info

Publication number
CN113540977A
CN113540977A CN202110712582.6A CN202110712582A CN113540977A CN 113540977 A CN113540977 A CN 113540977A CN 202110712582 A CN202110712582 A CN 202110712582A CN 113540977 A CN113540977 A CN 113540977A
Authority
CN
China
Prior art keywords
layer
type
alp
yellow light
gainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110712582.6A
Other languages
English (en)
Other versions
CN113540977B (zh
Inventor
林涛
解佳男
穆妍
李亚宁
孙婉君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN202110712582.6A priority Critical patent/CN113540977B/zh
Publication of CN113540977A publication Critical patent/CN113540977A/zh
Application granted granted Critical
Publication of CN113540977B publication Critical patent/CN113540977B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3427Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in IV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34326Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer based on InGa(Al)P, e.g. red laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/34346Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser characterised by the materials of the barrier layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器,并给定了其每层材料相应的组分范围,包括从上至下依次设置的P面电极,P型势垒层,SiN介质层,P型上限制层,载流子阻挡层,上波导层,量子阱,下波导层,N型下限制层,N型变掺杂缓冲层,Si1‑xGex基体层,Ge衬底,N面电极;本发明的带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器,在实现黄光激射的同时通过载流子阻挡层抑制载流子泄露,减小了阈值电流,使输出光功率与转换效率得到提升。

Description

带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器
技术领域
本发明属于半导体激光器技术领域,具体涉及带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器。
背景技术
黄光波长包含了人眼最敏感的波段,波长为589nm的黄激光可应用于光遗传学、钠激光信标、激光显示、测温测风激光雷达、激光拉曼、动态核极化、城市景观、科研及国防军事等领域。目前,589nm黄光激光器主要应用在钠激光信标技术上,可以配合自适应光学系统补偿大气对波前扰动,是获得清晰天文图像的有效手段。获得高效率、高光束质量、高稳定性、窄线宽的黄光激光器,是高端应用必然需求。
关于黄光激光光源,由于没有合适的固体激光增益介质来实现黄光波长范围,通常采用体积较大的有机染料和铜蒸气激光器来实现黄光波长的获取。虽然已经研制出利用激光二极管泵浦的Tb3+:LiLuF4激光器和Dy3+掺杂光纤激光器来获得连续输出的黄光激光器,但这类系统需要进一步的研究来提高输出功率和波长复盖率。不同的非线性变频技术也被应用于各种系统结构中,从近红外光源中产生黄色辐射,如腔内增强和频产生、拉曼位移光纤激光器系统倍频、二极管泵浦1150nm掺Yb光纤激光器倍频、垂直外腔面发射二极管(VECSEL)倍频等。然而,所有这些黄光光源都受到一个或多个条件的限制,平均功率低和可调谐性有限或不可调谐,固体激光器虽然可以做到该波段但其体积较大并没有简单易行的方法实现小型化。
半导体激光器有着可连续定制波长、适用于规模化生产、使用方便的天然优势。目前国内外很少有关于半导体激光器实现在黄光波段激射的报道和研究,相关研究主要集中在黄光发光二极管,虽然通过外界加压的方法低温下实现了黄光的激射,但是输出功率为毫瓦级,无法满足应用需求。直接带隙GaInP材料的Ga组分极限是0.69,对应的禁带宽度为2.218eV,截止波长为559nm,理论上采用高Ga组分的GaInP量子阱可以实现半导体激光器黄光的激射。由于GaInP材料的禁带宽度已经很宽,采用AlInP和AlGaInP材料作为限制层与波导层其形成的势垒对载流子的限制作用弱,载流子容易越过势垒发生泄漏影响器件性能。
发明内容
为克服上述现有技术的不足,本发明的目的是提供带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器,通过确定Si1-xGex基体层的晶格常数,并使激光器整体晶格常数(除GaInP量子阱外)与Si1-xGex基体层保持一致,从而使其可以实现黄光激射,在上波导层与P型限制层之间加入AlP阻挡层来限制载流子泄露,解决了载流子泄露问题,具有降低阈值电流、提升温度特性的特点。
为实现上述目的,本发明采用的技术方案是:带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器,包括有从上至下依次设置的P面电极,P型GaInP势垒层,SiN介质层,P型AlInP上限制层,AlP载流子阻挡层,AlGaInP上波导层,GaInP量子阱,AlGaInP下波导层,N型AlInP下限制层,N型变掺杂GaInP缓冲层一,N型变掺杂GaInP缓冲层二,N型变掺杂GaInP缓冲层三,Si1-xGex基体层,Ge衬底,N面电极;
其中,P型GaInP势垒层与N型变掺杂GaInP缓冲层一、N型变掺杂GaInP缓冲层二及N型变掺杂GaInP缓冲层三中Ga组分范围为0.55~0.67;P型AlInP上限制层与N型AlInP下限制层中Al组分范围为0.57~0.69;AlGaInP上波导层与AlGaInP下波导层中In组分范围为0.56~0.68;GaInP量子阱中Ga组分范围为0.63~0.66;Si1-xGex基体层中Ge组分范围为0.7~0.9。
所述的AlP载流子阻挡层位于P型AlInP上限制层、AlGaInP上波导层之间,AlP载流子阻挡层的厚度范围为2nm~40nm。
所述的SiN介质层包括SiN介质层一和SiN介质层二,SiN介质层一和SiN介质层二分设在腐蚀出的条形或脊型区两侧。
本发明的有益效果是:
通过确定Si1-xGex基体层晶格常数,使整体激光器结构晶格常数与基体层保持一致来满足高Ga组分的量子阱结构实现黄光激射,并通过加入AlP阻挡层来限制载流子泄露问题使器件性能提升。
附图说明
图1是本发明一种带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器的结构示意图。
图2为带有AlP载流子阻挡层的Ge/GeSi衬底黄光半导体激光器的结构示意图。
图3为沿器件纵向的电子浓度图。
图4为半导体激光器的光电特性P-I曲线图。
图5为本发明光谱图。
图中:1-P电极,2-GaInP势垒层,3-SiN介质层一,4-SiN介质层二,5-AlInP上限制层,6-AlP载流子阻挡层,7-AlGaInP上波导层,8-GaInP量子阱,9-AlGaInP下波导层,10-AlInP下限制层,11-N型变掺杂GaInP缓冲层一,12-N型变掺杂GaInP缓冲层二,13-N型变掺杂GaInP缓冲层三,14-Si1-xGex基体层,15-Ge衬底,16-N电极。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器,其特征在于,包括有从上至下依次设置的P面电极1,P型GaInP势垒层2,SiN介质层,P型AlInP上限制层5,AlP载流子阻挡层6,AlGaInP上波导层7,GaInP量子阱8,AlGaInP下波导层9,N型AlInP下限制层10,N型变掺杂GaInP缓冲层一11,N型变掺杂GaInP缓冲层二12,N型变掺杂GaInP缓冲层三13,Si1-xGex基体层14,Ge衬底15,N面电极16;
其中,P型GaInP势垒层2与N型变掺杂GaInP缓冲层一11、N型变掺杂GaInP缓冲层二12及N型变掺杂GaInP缓冲层三13中Ga组分范围为0.55~0.67;P型AlInP上限制层5与N型AlInP下限制层10中Al组分范围为0.57~0.69;AlGaInP上波导层7与AlGaInP下波导层9中In组分范围为0.56~0.68;GaInP量子阱8中Ga组分范围为0.63~0.66;Si1-xGex基体层14中Ge组分范围为0.7~0.9。
所述的AlP载流子阻挡层6位于P型AlInP上限制层5、AlGaInP上波导层7之间,AlP载流子阻挡层的厚度范围为2nm~40nm。
所述的SiN介质层包括SiN介质层一3和SiN介质层二4,SiN介质层一3和SiN介质层二4分设在腐蚀出的条形或脊型区两侧。
本发明的工作原理是:
本发明采用Ge/SiGe衬底使激光器整体晶格常数变小,有源区量子阱可以采用高Ga组分的GaInP材料同时保持较小的张应变或压应变,高Ga组分的GaInP材料具有更宽的带隙可以使发光波长变得更短达到黄光波段。由于有源区量子阱采用了高Ga组分的GaInP材料其禁带宽度变宽,使量子阱与波导层之间形成的势垒高度变低,对载流子的限制作用变小,在高温等情况下载流子泄露比较严重,因此在AlGaInP上波导层7和P型AlInP上限制层5之间加入AlP载流子阻挡层6可以有效减少载流子泄露,提高器件特性。
实施例1
图2为本发明实例1的带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器的结构示意图。在实施例1中,半导体激光器腔长为1.5mm,条宽400μm,电流注入区宽度为120μm。器件结构为Ge衬底,Si0.2Ge0.8基体层,变掺杂n-Ga0.613In0.387P缓冲层,n-Al0.633In0.367P下限制层,Al0.217Ga0.403In0.38P下波导层,Al0.217Ga0.403In0.38P上波导层,AlP载流子阻挡层(厚度为4nm),p-Al0.633In0.367P上限制层,p-Ga0.613In0.387P势垒层。其中量子阱是张应变为0.18%的Ga0.637In0.363P层,阱厚为8nm。
图3是模拟得出的实施例1沿器件纵向的电子浓度图。将其与未添加阻挡层的情况进行对比可以看到,在AlGaInP上波导层与p-AlInP上限制层间加入AlP载流子阻挡层抑制了电子的泄露,添加AlP阻挡层后p-AlInP上限制层的电子浓度小于无阻挡层时。
图4是模拟得出的实施例1的半导体激光器的光电特性。本发明实施例的器件阈值电流为1.17A,电流为2.5A时,光功率为2.54W,斜率效率为1.02W/A,转换效率为53%,输出波长如图5所示为589nm。相对于无AlP阻挡层的结构,其阈值电流为1.71A,当电流为2.5A时,光功率为1.46W,斜率效率为0.58W/A,转换效率为30%。可以看出本发明实施例带有AlP载流子阻挡层的黄光半导体激光器,在实现黄光的输出同时,明显减小了阈值电流,增加了输出光功率,转换效率也得到了提升。

Claims (3)

1.带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器,其特征在于,包括有从上至下依次设置的P面电极(1),P型GaInP势垒层(2),SiN介质层,P型AlInP上限制层(5),AlP载流子阻挡层(6),AlGaInP上波导层(7),GaInP量子阱(8),AlGaInP下波导层(9),N型AlInP下限制层(10),N型变掺杂GaInP缓冲层一(11),N型变掺杂GaInP缓冲层二(12),N型变掺杂GaInP缓冲层三(13),Si1-xGex基体层(14),Ge衬底(15),N面电极(16);
其中,P型GaInP势垒层(2)与N型变掺杂GaInP缓冲层一(11)、N型变掺杂GaInP缓冲层二(12)及N型变掺杂GaInP缓冲层三(13)中Ga组分范围为0.55~0.67;P型AlInP上限制层(5)与N型AlInP下限制层(10)中Al组分范围为0.57~0.69;AlGaInP上波导层(7)与AlGaInP下波导层(9)中In组分范围为0.56~0.68;GaInP量子阱(8)中Ga组分范围为0.63~0.66;Si1- xGex基体层(14)中Ge组分范围为0.7~0.9。
2.根据权利要求书1所述的带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器,其特征在于,所述的AlP载流子阻挡层(6)位于P型AlInP上限制层(5)、AlGaInP上波导层(7)之间,AlP载流子阻挡层的厚度范围为2nm~40nm。
3.根据权利要求1所述的带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器,其特征在于,所述的SiN介质层包括SiN介质层一(3)和SiN介质层二(4),SiN介质层一(3)和SiN介质层二(4)分设在腐蚀出的条形或脊型区两侧。
CN202110712582.6A 2021-06-25 2021-06-25 带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器 Active CN113540977B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110712582.6A CN113540977B (zh) 2021-06-25 2021-06-25 带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110712582.6A CN113540977B (zh) 2021-06-25 2021-06-25 带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器

Publications (2)

Publication Number Publication Date
CN113540977A true CN113540977A (zh) 2021-10-22
CN113540977B CN113540977B (zh) 2023-05-23

Family

ID=78125893

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110712582.6A Active CN113540977B (zh) 2021-06-25 2021-06-25 带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器

Country Status (1)

Country Link
CN (1) CN113540977B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987047A (en) * 1996-04-24 1999-11-16 Uniphase Opto Holdings, Inc. Radiation-emitting semiconductor diode and method of manufacturing
CN1741290A (zh) * 2004-08-27 2006-03-01 中国科学院半导体研究所 蓝光、黄光量子阱堆叠结构白光发光二极管及制作方法
JP2008192799A (ja) * 2007-02-05 2008-08-21 Sony Corp 半導体発光素子およびこれを用いたレーザプロジェクタ
CN102117812A (zh) * 2009-12-31 2011-07-06 中国科学院微电子研究所 一种基于应变硅的纳米晶非挥发性存储器及其制作方法
CN108091743A (zh) * 2016-11-22 2018-05-29 山东浪潮华光光电子股份有限公司 一种黄光倒装led外延结构及其制备方法
CN110165555A (zh) * 2019-04-28 2019-08-23 西安理工大学 一种基于GexSi1-x可变晶格常数基体的红光半导体激光器
CN112072469A (zh) * 2020-08-07 2020-12-11 西安理工大学 一种基于量子阱混杂有源区的半导体激光器及制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5987047A (en) * 1996-04-24 1999-11-16 Uniphase Opto Holdings, Inc. Radiation-emitting semiconductor diode and method of manufacturing
CN1741290A (zh) * 2004-08-27 2006-03-01 中国科学院半导体研究所 蓝光、黄光量子阱堆叠结构白光发光二极管及制作方法
JP2008192799A (ja) * 2007-02-05 2008-08-21 Sony Corp 半導体発光素子およびこれを用いたレーザプロジェクタ
CN102117812A (zh) * 2009-12-31 2011-07-06 中国科学院微电子研究所 一种基于应变硅的纳米晶非挥发性存储器及其制作方法
CN108091743A (zh) * 2016-11-22 2018-05-29 山东浪潮华光光电子股份有限公司 一种黄光倒装led外延结构及其制备方法
CN110165555A (zh) * 2019-04-28 2019-08-23 西安理工大学 一种基于GexSi1-x可变晶格常数基体的红光半导体激光器
CN112072469A (zh) * 2020-08-07 2020-12-11 西安理工大学 一种基于量子阱混杂有源区的半导体激光器及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEO BONATO ET AL.: "230 s room-temperature storage time and 1.14 eV hole localization energy in In0.5Ga0.5As quantum dots on a GaAs interlayer in GaP with an AlP barrier", 《APPLIED PHYSICS LETTERS》 *
林涛等: "张应变GaInP量子阱结构变温光致发光特性", 《光子学报》 *

Also Published As

Publication number Publication date
CN113540977B (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
Ha et al. Multiple-quantum-well GaInNAs-GaNAs ridge-waveguide laser diodes operating out to 1.4 μm
WO2004064207A2 (en) Quantum dot devices having proximity-placed acceptor impurities
CN104466678A (zh) 大功率低阈值基横模975nm半导体激光器管芯
JPS6350873B2 (zh)
EP0805533B1 (en) Semiconductor laser element
JP5023419B2 (ja) 半導体量子ドット・デバイス
US7006545B2 (en) Semiconductor laser device and optical fiber amplifier using the same
JPH05102595A (ja) レーザダイオードアレー及びその製造方法
CN115394883A (zh) 基于量子阱及量子点混合有源区的超宽谱高增益饱和增益芯片
JPS59208889A (ja) 半導体レ−ザ
US6879612B1 (en) Temperature insensitive VCSEL
Li et al. High-efficiency 808-nm InGaAlAs–AlGaAs double-quantum-well semiconductor lasers with asymmetric waveguide structures
CN101841123A (zh) 带有倒v型耦合光波导小发散角半导体激光器结构
CN116505377A (zh) 一种半导体紫光紫外激光器
CN113540977B (zh) 带有AlP载流子阻挡层的Ge/SiGe衬底黄光半导体激光器
CN113659433A (zh) 带有n面非注入区窗口的半导体激光器
US8238397B2 (en) Semiconductor laser device
JP2661307B2 (ja) 半導体レーザ
CN219677770U (zh) 一种半导体紫光紫外激光器
CN115036789B (zh) 一种基于type-Ⅱ隧道结的GaAs基高速垂直腔面发射激光器
CN219779408U (zh) 一种半导体紫外激光器
KR20010044594A (ko) 광통신용 희토류 반도체 소자
RU2168249C1 (ru) Инжекционный лазер
US20030138014A1 (en) Semiconductor optical component
GB2371145A (en) Semiconductor optical amplifier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant