CN113527149B - 一种离子液体水基润滑添加剂及其制备方法和应用 - Google Patents
一种离子液体水基润滑添加剂及其制备方法和应用 Download PDFInfo
- Publication number
- CN113527149B CN113527149B CN202110964361.8A CN202110964361A CN113527149B CN 113527149 B CN113527149 B CN 113527149B CN 202110964361 A CN202110964361 A CN 202110964361A CN 113527149 B CN113527149 B CN 113527149B
- Authority
- CN
- China
- Prior art keywords
- ionic liquid
- steel
- water
- friction
- liquid compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 109
- 239000002608 ionic liquid Substances 0.000 title claims abstract description 82
- 239000000654 additive Substances 0.000 title claims abstract description 35
- 230000000996 additive effect Effects 0.000 title claims abstract description 33
- 230000001050 lubricating effect Effects 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 84
- 239000010959 steel Substances 0.000 claims abstract description 84
- 150000001875 compounds Chemical class 0.000 claims abstract description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 16
- 239000010949 copper Substances 0.000 claims abstract description 16
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 15
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 15
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 238000005260 corrosion Methods 0.000 claims abstract description 10
- 230000007797 corrosion Effects 0.000 claims abstract description 10
- 239000000758 substrate Substances 0.000 claims abstract description 6
- 239000000126 substance Substances 0.000 claims abstract description 4
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 claims description 11
- 238000005461 lubrication Methods 0.000 claims description 11
- 238000006243 chemical reaction Methods 0.000 claims description 10
- 239000008367 deionised water Substances 0.000 claims description 8
- 229910021641 deionized water Inorganic materials 0.000 claims description 8
- 238000001035 drying Methods 0.000 claims description 7
- -1 p-toluenesulfonyl Chemical group 0.000 claims description 7
- 239000012044 organic layer Substances 0.000 claims description 5
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 claims description 4
- 239000012467 final product Substances 0.000 claims description 4
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 claims description 4
- 239000002904 solvent Substances 0.000 claims description 4
- JRMUNVKIHCOMHV-UHFFFAOYSA-M tetrabutylammonium bromide Chemical compound [Br-].CCCC[N+](CCCC)(CCCC)CCCC JRMUNVKIHCOMHV-UHFFFAOYSA-M 0.000 claims description 4
- RKHXQBLJXBGEKF-UHFFFAOYSA-M tetrabutylphosphanium;bromide Chemical compound [Br-].CCCC[P+](CCCC)(CCCC)CCCC RKHXQBLJXBGEKF-UHFFFAOYSA-M 0.000 claims description 4
- DFQPZDGUFQJANM-UHFFFAOYSA-M tetrabutylphosphanium;hydroxide Chemical compound [OH-].CCCC[P+](CCCC)(CCCC)CCCC DFQPZDGUFQJANM-UHFFFAOYSA-M 0.000 claims description 4
- 238000001291 vacuum drying Methods 0.000 claims description 2
- 238000004519 manufacturing process Methods 0.000 claims 3
- 238000003756 stirring Methods 0.000 claims 2
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 claims 1
- 239000002253 acid Substances 0.000 claims 1
- 239000004411 aluminium Substances 0.000 claims 1
- 238000004821 distillation Methods 0.000 claims 1
- 238000002156 mixing Methods 0.000 claims 1
- 238000005406 washing Methods 0.000 claims 1
- 239000007864 aqueous solution Substances 0.000 description 31
- 239000000314 lubricant Substances 0.000 description 25
- 238000005481 NMR spectroscopy Methods 0.000 description 15
- 239000013068 control sample Substances 0.000 description 15
- 238000000034 method Methods 0.000 description 15
- 238000012360 testing method Methods 0.000 description 14
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 12
- 238000004896 high resolution mass spectrometry Methods 0.000 description 12
- 238000005299 abrasion Methods 0.000 description 11
- 150000002500 ions Chemical class 0.000 description 8
- 239000000523 sample Substances 0.000 description 7
- 238000005245 sintering Methods 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 4
- VDZOOKBUILJEDG-UHFFFAOYSA-M tetrabutylammonium hydroxide Chemical compound [OH-].CCCC[N+](CCCC)(CCCC)CCCC VDZOOKBUILJEDG-UHFFFAOYSA-M 0.000 description 4
- 229910001018 Cast iron Inorganic materials 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000003879 lubricant additive Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229910001250 2024 aluminium alloy Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000002173 cutting fluid Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/01—Sulfonic acids
- C07C309/28—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C309/41—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton
- C07C309/43—Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing singly-bound oxygen atoms bound to the carbon skeleton having at least one of the sulfo groups bound to a carbon atom of a six-membered aromatic ring being part of a condensed ring system
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/68—Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/62—Quaternary ammonium compounds
- C07C211/63—Quaternary ammonium compounds having quaternised nitrogen atoms bound to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/26—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids
- C07C303/30—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of esters of sulfonic acids by reactions not involving the formation of esterified sulfo groups
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C303/00—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
- C07C303/32—Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of salts of sulfonic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C309/00—Sulfonic acids; Halides, esters, or anhydrides thereof
- C07C309/63—Esters of sulfonic acids
- C07C309/72—Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
- C07C309/73—Esters of sulfonic acids having sulfur atoms of esterified sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton to carbon atoms of non-condensed six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F9/00—Compounds containing elements of Groups 5 or 15 of the Periodic Table
- C07F9/02—Phosphorus compounds
- C07F9/28—Phosphorus compounds with one or more P—C bonds
- C07F9/54—Quaternary phosphonium compounds
- C07F9/5407—Acyclic saturated phosphonium compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/04—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M133/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/08—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium containing a sulfur-to-oxygen bond
- C10M135/10—Sulfonic acids or derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M173/00—Lubricating compositions containing more than 10% water
- C10M173/02—Lubricating compositions containing more than 10% water not containing mineral or fatty oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/04—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions containing sulfur-to-oxygen bonds, i.e. sulfones, sulfoxides
- C10M2219/044—Sulfonic acids, Derivatives thereof, e.g. neutral salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2223/00—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions
- C10M2223/06—Organic non-macromolecular compounds containing phosphorus as ingredients in lubricant compositions having phosphorus-to-carbon bonds
- C10M2223/063—Ammonium or amine salts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/06—Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/12—Inhibition of corrosion, e.g. anti-rust agents or anti-corrosives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Molecular Biology (AREA)
- Lubricants (AREA)
Abstract
本发明提供了一种离子液体水基润滑添加剂及其制备方法和应用,属于化工技术领域。本发明提供的离子液体化合物为TsN4444、TsP4444、TsnN4444或TsnP4444,其作为离子液体水基润滑添加剂,能够大幅度降低水对摩擦基底的腐蚀,并显著提高水在钢/钢,钢/铜和钢/铝摩擦副上的减摩抗磨性能,同时能够大幅度提高水在钢/钢摩擦副上的极压承载能力。
Description
技术领域
本发明属于化工技术领域,具体而言,涉及一种水基润滑添加剂,尤其涉及一种离子液体水基润滑添加剂及其制备方法和应用。
技术背景
众所周知,摩擦在世界范围内广泛存在,如果不能有效地抑制摩擦,不仅会导致更多设备运行事故的发生,还会造成大量能源的消耗。因此,人们使用不同种类的润滑剂来减少摩擦。石油基润滑剂一直被广泛应用于维持机械设备的有序运行,旨在节约能源和避免事故。然而,石油基润滑剂的许多缺点是显而易见的,如冷却能力低、易燃、生物降解性差和污染严重等,这限制了其在许多特殊领域的应用。因此,开发新型润滑剂替代石油基润滑剂从而避免这些缺点是十分有必要的。
近年来,许多研究人员对水基润滑剂进行了研究。与石油基润滑剂相比,水基润滑剂可以避免上述缺点,并具有许多独特的优势,如良好的导热性、冷却性、价格低廉、环境友好等,这使得它们在金属切削液等领域有较为广泛的应用。但是,由于水的粘度和粘压系数较低,它很难在摩擦表面上形成有效的润滑膜。因此,水对大多数摩擦副的润滑性能较差。此外,水的承载能力差及其在摩擦过程中产生的严重腐蚀也限制了其在许多复杂行业中的应用。因此,非常有必要使用有效的添加剂来提高水基润滑剂的摩擦学性能,并降低其腐蚀性能。
发明内容
鉴于以上技术需求,本发明的第一个目的在于提供一种离子液体化合物,该离子液体作为水基润滑添加剂具有优异的减摩抗磨性能,并且能大幅度降低水对摩擦基底的腐蚀性。
为了实现本发明的上述目的,发明人通过大量试验研究并不懈探索,最终获得了如下技术方案:一种离子液体化合物,该离子液体化合物为TsN4444、TsP4444、TsnN4444或TsnP4444,具有如下所示结构:
其中:Ts为对甲苯磺酰基,TsnN4444和TsnP4444简称为修饰后的离子液体。
本发明的第二个目的在于提供以下上述离子液体化合物的制备方法,该方法包括如下步骤:为了合成TsN4444和TsP4444,首先,将变色酸与四丁基氢氧化胺(或四丁基氢氧化磷)按照摩尔比为1:2混合,室温下搅拌反应20-30h(优选24h)。然后,在60℃下减压蒸馏0.8-1h,并在60℃下真空干燥20-30h(优选24h),获得最终产物TsN4444(或TsP4444);就TsnN4444和TsnP4444而言,根据已经报道的方法,首先合成中间体4,5-二磺酰氧基萘-2,7-二磺酸二钠盐。然后将中间体和四丁基溴化胺(或四丁基溴化磷)按照摩尔比为1:2加入去离子水中,室温下搅拌20-30h(优选24h)。反应结束后,用二氯甲烷萃取反应液,再用去离子水洗涤有机层,重复2次以上,并用无水Na2SO4干燥,减压蒸馏下去除溶剂后,将目标离子液体在150℃下真空干燥20-30h(优选24h),获得最终产物TsnN4444(或TsnP4444)。
本发明第三个目的在于提供上述离子液体化合物作为水基润滑添加剂的应用。尤其是,本发明提供了上述离子液体化合物作为水基润滑添加剂在降低水对摩擦基底腐蚀中的应用,以及提高水在钢/钢摩擦副上的极压承载能力中的应用。
本发明人通过大量试验探索了水中添加多少该离子液体能够实现最佳摩擦学性能。结果显示该离子液体化合物作为水基润滑添加剂时的使用浓度可以为0.1-3.0%(W/W,质量百分比),该水基润滑添加剂的最佳添加浓度为0.5%(W/W,质量百分比)。另外,本发明提供的离子液体水基润滑添加剂可以在钢/钢、钢/铜和钢/铝等不同摩擦副上进行应用。
与现有技术相比,本发明提供的离子液体水基润滑添加剂具有如下优点和显著进步性:
(1)本发明所提供的离子液体水基润滑添加剂能够大幅度降低水对摩擦基底的腐蚀。
(2)本发明中所提供的离子液体,特别是修饰后的离子液体水基润滑添加剂能够大幅度提高水在钢/钢,钢/铜和钢/铝摩擦副上的减摩抗磨性能。
(3)本发明中修饰后的离子液体添加剂能够大幅度提高水在钢/钢摩擦副上的极压承载能力。
附图说明
图1:本发明提供的四种离子液体的化合物结构示意图。
图2:添加不同浓度TsnN4444的水溶液在钢/钢摩擦副上的平均摩擦系数折线图(a)以及平均磨损体积折线图(b)。
图3:添加了0.5%的本发明四种离子液体的水溶液与对照样纯水在钢/钢摩擦副上的平均摩擦系数折线图(a)以及平均磨损体积折线图(b)。
图4:添加了0.5%的本发明四种离子液体的水溶液与对照样纯水在钢/铜摩擦副上的平均摩擦系数折线图(a)以及平均磨损体积折线图(b)。
图5:添加了0.5%的本发明四种离子液体的水溶液与对照样纯水在钢/铝摩擦副上的平均摩擦系数折线图(a)以及平均磨损体积折线图(b)。
图6:添加了0.5%的本发明四种离子液体的水溶液与对照样纯水在钢/钢摩擦副上的最大载荷折线图(a)和变频平均摩擦系数折线图(b)。
图7:添加了0.5%的本发明四种离子液体的水溶液与对照样纯水的铸铁条腐蚀试验结果图。
具体实施方式
本发明提供了四种离子液体化合物,图1为这四种离子液体的化学结构。为了使本领域技术人员更好地理解本发明的技术方案并能予以实施,下面结合具体实施例对本发明作进一步说明,但所举实施例不作为对本发明保护范围的限定。
需要说明的是,以下实施例中采用德国Optimol公司生产的SRV-V微振动摩擦磨损试验机评价了所提供离子液体添加到纯水中所得到的水溶液的摩擦磨损性能,并与纯水的摩擦磨损性能进行比较。SRV-V微振动摩擦磨损试验机的摩擦副接触方式为球-盘点接触,测试条件为:载荷100N,温度25℃,频率25Hz,振幅1mm,实验时间30min;试验上试球为Φ10mm的AISI52100钢球;下试样为Φ24mm、厚度7.9mm的AISI 52100轴承钢、ZQSn663铜和2024铝合金,硬度分别为850-920HV,90-120HV和140-165HV;下试样的磨损体积由美国BRUKER公司生产的NPFLEX三维光学轮廓仪测得。此外,采用英国生产的四球摩擦试验机(19900-2)遵循国标方法GB/T 3142-1982测定了所提供的离子液体添加到纯水中所得到的水溶液和纯水的最大无卡咬负荷(PB)和最大烧结负荷(PD)。采用德国Optimol公司生产的SRV-V微振动摩擦磨损试验机测定了所提供的离子液体添加到纯水中所得到的水溶液和纯水在变载和变频条件下的摩擦学性能。变载测试在温度为25℃、频率为25Hz、振幅为1mm的条件下以50N/2min的变载速率进行。变频测试则在载荷为100N、温度为25℃、振幅为1mm、时间为30min的条件下以10Hz/6min的变频速率进行。最后,遵循国标方法GB 6144-2010评价了所提供的离子液体添加到纯水中所得到的水溶液和纯水的腐蚀性能。
实施例1:离子液体水基润滑添加剂TsN4444的制备及减摩抗磨性能研究
首先,将变色酸与四丁基氢氧化胺按照摩尔比为1:2混合,室温下搅拌24h。然后,在60℃下减压蒸馏1h,并在60℃下真空干燥24h,获得离子液体水基润滑添加剂TsN4444。采用1H(400MHz)和13C(100MHz)核磁共振波谱(NMR)以及高分辨质谱(HRMS)对该离子液体水基润滑添加剂的结构进行了表征。TsN4444的核磁数据如下:1H NMR(400MHz,D2O)δ(ppm):7.47(d,2H),6.72-6.71(d,2H),3.01-2.97(t,16H),1.50-1.44(m,16H),1.26-1.21(m,16H),0.86-0.82(t,24H),13C NMR(100MHz,D2O)δ(ppm):163.17,142.63,134.87,119.91,113.17,104.59,58.03,58.00,57.98,23.08,19.11,19.09,19.08,12.81.HRMS:m/z(ESI,positiveion)calc.242.2842,found 242.2852[C16H36N+],m/z(ESI,negative ion)calc.158.9749,found 158.9783[C5H3O4S-]。
将该离子液体按照质量分数0.5%的比例加入到纯水中,测试所得水溶液在钢/钢、钢/铜和钢/铝摩擦副上的减摩(摩擦系数)抗磨(磨损体积)性能,并与纯水进行对比。测试结果表明:添加了TsN4444的水溶液作为钢/钢摩擦副的润滑剂的平均摩擦系数(0.208)和磨损体积(1.04*10-3mm3),明显小于对照样纯水的平均摩擦系数(0.357)和磨损体积(2.34*10-3mm3);添加了TsN4444的水溶液作为钢/铜摩擦副的润滑剂的平均摩擦系数(0.295)和磨损体积(2.07*10-2mm3),远远小于对照样纯水的平均摩擦系数(0.578)和磨损体积(33.01*10-2mm3);添加了TsN4444的水溶液作为钢/铝摩擦副的润滑剂的平均摩擦系数(0.226)和磨损体积(3.63*10-2mm3),明显小于对照样纯水的平均摩擦系数(0.437)和磨损体积(4.98*10-2mm3)。
实施例2:离子液体水基润滑添加剂TsP4444的制备及减摩抗磨性能研究
首先,将变色酸与四丁基氢氧化磷按照摩尔比为1:2混合,室温下搅拌24h。然后,在60℃下减压蒸馏1h,并在60℃下真空干燥24h,获得离子液体水基润滑添加剂TsP4444。采用1H(400MHz)和13C(100MHz)核磁共振波谱(NMR)以及高分辨质谱(HRMS)对该离子液体水基润滑添加剂的结构进行了表征。TsP4444的核磁数据如下:1H NMR(400MHz,D2O)δ(ppm):7.40-7.39(d,2H),6.65(d,2H),1.90-1.88(t,16H),1.32-1.26(m,32H),0.78-0.75(t,24H),13CNMR(100MHz,D2O)δ(ppm):163.28,142.82,134.79,119.96,112.94,104.55,23.25,23.10,22.62,22.58,17.72,17.25,12.52.HRMS:m/z(ESI,positive ion)calc.259.2549,found259.2550[C16H36P+],m/z(ESI,negative ion)calc.158.9749,found 158.9764[C5H3O4S-]。
将该离子液体按照质量分数0.5%的比例加入到纯水中,测试所得水溶液在钢/钢、钢/铜和钢/铝摩擦副上的减摩(摩擦系数)抗磨(磨损体积)性能,并与纯水进行对比。测试结果表明:添加了TsP4444的水溶液作为钢/钢摩擦副的润滑剂的平均摩擦系数(0.218)和磨损体积(1.14*10-3mm3),明显小于对照样纯水的平均摩擦系数(0.357)和磨损体积(2.34*10-3mm3);添加了TsP4444的水溶液作为钢/铜摩擦副的润滑剂的平均摩擦系数(0.342)和磨损体积(1.07*10-2mm3),远远小于对照样纯水的平均摩擦系数(0.578)和磨损体积(33.01*10-2mm3);添加了TsP4444的水溶液作为钢/铝摩擦副的润滑剂的平均摩擦系数(0.238)和磨损体积(2.35*10-2mm3),明显小于对照样纯水的平均摩擦系数(0.437)和磨损体积(4.98*10-2mm3)。
实施例3:离子液体水基润滑添加剂TsnN4444的制备及减摩抗磨性能研究
根据已经报道的方法,首先合成中间体4,5-二磺酰氧基萘-2,7-二磺酸二钠盐。然后将中间体和四丁基溴化胺按照摩尔比为1:2加入50mL去离子水中,室温下搅拌24h。反应结束后,用二氯甲烷(50mL×2)萃取反应液,再用去离子水(50mL×2)洗涤有机层,并用无水Na2SO4干燥,减压蒸馏下去除溶剂后,将目标离子液体在150℃下干燥24h,获得离子液体水基润滑添加剂TsnN4444。采用1H(400MHz)和13C(100MHz)核磁共振波谱(NMR)以及高分辨质谱(HRMS)对该离子液体水基润滑添加剂的结构进行了表征。TsnN4444的核磁数据如下:1H NMR(400MHz,DMSO)δ(ppm):8.06(d,2H),7.53-7.51(d,4H),7.39-7.38(d,2H),7.33-7.31(d,4H),3.15-3.10(t,16H),2.33(s,6H),1.55-1.51(m,16H),1.29-1.24(m,16H),0.90-0.87(t,24H),13C NMR(100MHz,DMSO)δ(ppm):147.10,146.08,142.58,135.40,131.80,130.25,128.75,124.48,120.18,120.13,57.98,23.50,21.59,19.63,13.89.HRMS:m/z(ESI,positive ion)calc.242.2842,found 242.2851[C16H36N+],m/z(ESI,negative ion)calc.312.9837,found 312.9840[C12H9O6S2 -]。
将该离子液体按照质量分数0.5%的比例加入到纯水中,测试所得水溶液在钢/钢、钢/铜和钢/铝摩擦副上的减摩(摩擦系数)抗磨(磨损体积)性能,并与纯水进行对比。测试结果表明:添加了TsnN4444的水溶液作为钢/钢摩擦副的润滑剂的平均摩擦系数(0.117)和磨损体积(0.41*10-3mm3),远远小于对照样纯水的平均摩擦系数(0.357)和磨损体积(2.34*10-3mm3);添加了TsnN4444的水溶液作为钢/铜摩擦副的润滑剂的平均摩擦系数(0.117)和磨损体积(2.47*10-2mm3),远远小于对照样纯水的平均摩擦系数(0.578)和磨损体积(33.01*10-2mm3);添加了TsnN4444的水溶液作为钢/铝摩擦副的润滑剂的平均摩擦系数(0.114)和磨损体积(1.56*10-2mm3),远远小于对照样纯水的平均摩擦系数(0.437)和磨损体积(4.98*10-2mm3)。
实施例4:离子液体水基润滑添加剂TsnP4444的制备及减摩抗磨性能研究
根据已经报道的方法,首先合成中间体4,5-二磺酰氧基萘-2,7-二磺酸二钠盐。然后将中间体和四丁基溴化磷按照摩尔比为1:2加入50mL去离子水中,室温下搅拌24h。反应结束后,用二氯甲烷(50mL×2)萃取反应液,再用去离子水(50mL×2)洗涤有机层,并用无水Na2SO4干燥,减压蒸馏下去除溶剂后,将目标离子液体在150℃下干燥24h,获得离子液体水基润滑添加剂TsnP4444。采用1H(400MHz)和13C(100MHz)核磁共振波谱(NMR)以及高分辨质谱(HRMS)对该离子液体水基润滑添加剂的结构进行了表征。TsnP4444的核磁数据如下:1HNMR(400MHz,DMSO)δ(ppm):8.06(s,2H),7.53-7.51(d,4H),7.39-7.33(d,2H),7.31(s,4H),2.83(s,6H),2.16-2.11(t,16H),1.41-1.35(m,32H),0.88-0.85(t,24H),13C NMR(100MHz,DMSO)δ(ppm):147.10,146.07,142.60,135.39,131.81,130.24,128.74,124.426,120.19,120.13,55.33,23.85,23.69,23.09,23.05,21.58,18.01,17.54,13.66.HRMS:m/z(ESI,positive ion)calc.259.2549,found 259.2559[C16H36P+],m/z(ESI,negative ion)calc.312.9837,found 312.9836[C12H9O6S2 -]。
将该离子液体按照质量分数0.5%的比例加入到纯水中,测试所得水溶液在钢/钢、钢/铜和钢/铝摩擦副上的减摩(摩擦系数)抗磨(磨损体积)性能,并与纯水进行对比。测试结果表明:添加了TsnP4444的水溶液作为钢/钢摩擦副的润滑剂的平均摩擦系数(0.126)和磨损体积(0.55*10-3mm3),远远小于对照样纯水的平均摩擦系数(0.357)和磨损体积(2.34*10-3mm3);添加了TsnP4444的水溶液作为钢/铜摩擦副的润滑剂的平均摩擦系数(0.219)和磨损体积(1.94*10-2mm3),远远小于对照样纯水的平均摩擦系数(0.578)和磨损体积(33.01*10-2mm3);添加了TsnP4444的水溶液作为钢/铝摩擦副的润滑剂的平均摩擦系数(0.116)和磨损体积(1.55*10-2mm3),远远小于对照样纯水的平均摩擦系数(0.437)和磨损体积(4.98*10-2mm3)。
表1为添加不同浓度TsnN4444的水溶液作为钢/钢摩擦副的润滑剂的减摩(平均摩擦系数)抗磨性能(平均磨损体积),图2为相应的平均摩擦系数折线图(a)以及平均磨损体积折线图(b)。从表1、图2中数据可以看出,添加极低浓度的TsnN4444(0.1%)就能显著改善水的减摩抗磨性能,该添加剂的最佳添加浓度为0.5%。
表1:TsnN4444在钢/钢摩擦副上不同浓度下水溶液的摩擦学性能
浓度(wt%) | 平均摩擦系数 | <![CDATA[平均磨损体积(*10<sup>-3</sup>mm<sup>3</sup>)]]> |
0 | 0.359 | 2.07 |
0.1 | 0.207 | 0.77 |
0.5 | 0.122 | 0.42 |
1 | 0.116 | 0.64 |
2 | 0.123 | 0.64 |
3 | 0.126 | 0.51 |
表2、表3和表4为添加了0.5%的本发明所提供的离子液体的水溶液与对照样纯水作为钢/钢、钢/铜和钢/铝摩擦副的润滑剂的平均摩擦系数以及下试样磨斑的平均磨损体积。图3、4、5为相应的平均摩擦系数折线图(a)以及平均磨损体积折线图(b)。由表2、3、4及图3、4、5数据可知,无论是哪种摩擦副,本发明所提供的离子液体,特别是修饰后的离子液体均能显著提高水的减摩抗磨性能。
表2:添加0.5%四种离子液体的水溶液与对照样纯水在钢/钢摩擦副上的摩擦对比
样品 | 平均摩擦系数 | <![CDATA[平均磨损体积(*10<sup>-3</sup>mm<sup>3</sup>)]]> |
纯水 | 0.357 | 2.34 |
<![CDATA[0.5%TsN<sub>4444</sub>]]> | 0.208 | 1.04 |
<![CDATA[0.5%TsP<sub>4444</sub>]]> | 0.218 | 1.14 |
<![CDATA[0.5%TsnN<sub>4444</sub>]]> | 0.117 | 0.41 |
<![CDATA[0.5%TsnP<sub>4444</sub>]]> | 0.126 | 0.55 |
表3:添加0.5%四种离子液体的水溶液与纯水在钢/铜摩擦副上的摩擦对比
样品 | 平均摩擦系数 | <![CDATA[平均磨损体积(*10<sup>-2</sup>mm<sup>3</sup>)]]> |
纯水 | 0.578 | 33.01 |
<![CDATA[0.5%TsN<sub>4444</sub>]]> | 0.295 | 2.07 |
<![CDATA[0.5%TsP<sub>4444</sub>]]> | 0.342 | 1.27 |
<![CDATA[0.5%TsnN<sub>4444</sub>]]> | 0.117 | 2.47 |
<![CDATA[0.5%TsnP<sub>4444</sub>]]> | 0.219 | 1.94 |
表4:添加0.5%四种离子液体的水溶液与纯水在钢/铝摩擦副上的摩擦对比
样品 | 平均摩擦系数 | <![CDATA[平均磨损体积(*10<sup>-2</sup>mm<sup>3</sup>)]]> |
纯水 | 0.437 | 4.98 |
<![CDATA[0.5%TsN<sub>4444</sub>]]> | 0.226 | 3.63 |
<![CDATA[0.5%TsP<sub>4444</sub>]]> | 0.238 | 2.35 |
<![CDATA[0.5%TnsN<sub>4444</sub>]]> | 0.114 | 1.56 |
<![CDATA[0.5%TsnP<sub>4444</sub>]]> | 0.116 | 1.55 |
实施例5:本发明所提供离子液体水溶液作为钢/钢摩擦副润滑剂的极压承载性能试验研究
采用四球摩擦试验机依照国标GB/T 3142-1982所述方法测定了本发明所提供的离子液体水溶液的最大无卡咬负荷与最大烧结负荷。同时,采用SRV-V微振动摩擦磨损试验机测试了该水溶液在变载和变频条件下的摩擦学性能。采用以上数据表征本发明所提供的离子液体的极压承载性能。表5为添加了0.5%的本发明所提供的离子液体的水溶液与对照样纯水作为钢/钢摩擦副润滑剂的最大无卡咬负荷和最大烧结负荷,图6为添加了0.5%的本发明所提供的离子液体的水溶液与对照样纯水在钢/钢摩擦副上的最大载荷折线图(a)和变频平均摩擦系数折线图(b)。由表5、图6数据可知,本发明所提供的离子液体,特别是修饰后的离子液体可以显著提高水的极压承载能力。
表5:添加0.5%四种离子液体的水溶液与纯水的最大无卡咬负荷和最大烧结负荷对比
样品 | 最大无卡咬负荷(N) | 最大烧结负荷(N) |
纯水 | 98 | 314 |
<![CDATA[0.5%TsN<sub>4444</sub>]]> | 196 | 1235 |
<![CDATA[0.5%TsP<sub>4444</sub>]]> | 245 | 1235 |
<![CDATA[0.5%TsnN<sub>4444</sub>]]> | 490 | 1235 |
<![CDATA[0.5%TsnP<sub>4444</sub>]]> | 833 | 1568 |
实施例6:本发明所提供离子液体水溶液对铸铁条腐蚀的试验研究
遵循国标GB 6144-2010所述方法评价了本发明所提供的离子液体的腐蚀性。图7为添加了0.5%的本发明所提供的离子液体的四种水溶液与对照样纯水的铸铁条腐蚀试验结果,由图7可以看出,本发明所提供的离子液体,特别是修饰后的离子液体能大幅度降低水对摩擦基底的腐蚀。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,其保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内,本发明的保护范围以权利要求书为准。
Claims (10)
2.一种如权利要求1所述离子液体化合物的制备方法,其特征在于,该方法包括如下步骤:
TsP4444的制备:将变色酸与四丁基氢氧化磷混合,室温下搅拌反应20-30h,然后在60℃下减压蒸馏0.8-1h,并在60℃下真空干燥20-30h,获得最终产物TsP4444;
TsnN4444或TsnP4444的制备:将4,5-二磺酰氧基萘-2,7-二磺酸二钠盐与四丁基溴化胺或四丁基溴化磷加入去离子水中,室温下搅拌反应20-30h,反应结束后,用二氯甲烷萃取反应液,再用去离子水洗涤有机层,并用无水Na2SO4干燥有机层,然后减压蒸馏下去除溶剂后,将目标离子液体在150℃下干燥20-30h,获得最终产物TsnN4444或TsnP4444。
3.根据权利要求2所述离子液体化合物的制备方法,其特征在于,TsP4444的制备步骤中,变色酸与四丁基氢氧化磷的摩尔比为1:2。
4.根据权利要求2所述离子液体化合物的制备方法,其特征在于,TsnN4444或TsnP4444的制备中,4,5-二磺酰氧基萘-2,7-二磺酸二钠盐与四丁基溴化胺或四丁基溴化磷的摩尔比为1:2。
5.一种如权利要求1所述离子液体化合物作为水基润滑添加剂的应用。
6.一种如权利要求1所述离子液体化合物作为水基润滑添加剂在降低水对摩擦基底腐蚀中的应用。
7.一种如权利要求1所述离子液体化合物作为水基润滑添加剂在提高水在钢/钢摩擦副上的极压承载能力中的应用。
8.根据权利要求5或6或7所述的应用,其特征在于,所述离子液体化合物作为水基润滑添加剂时的使用浓度为0.1-3.0%,
9.根据权利要求8所述的应用,其特征在于,所述离子液体化合物作为水基润滑添加剂时的使用浓度为0.5%。
10.根据权利要求5或6或7所述的应用,其特征在于,所述的水基润滑添加剂为钢/钢、钢/铜或钢/铝摩擦副上的水基润滑添加剂。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110964361.8A CN113527149B (zh) | 2021-08-22 | 2021-08-22 | 一种离子液体水基润滑添加剂及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110964361.8A CN113527149B (zh) | 2021-08-22 | 2021-08-22 | 一种离子液体水基润滑添加剂及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113527149A CN113527149A (zh) | 2021-10-22 |
CN113527149B true CN113527149B (zh) | 2023-05-09 |
Family
ID=78122733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110964361.8A Active CN113527149B (zh) | 2021-08-22 | 2021-08-22 | 一种离子液体水基润滑添加剂及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113527149B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114656588B (zh) * | 2022-05-06 | 2023-03-28 | 中国科学院兰州化学物理研究所 | 一种聚离子液体及其制备方法和应用、润滑增粘添加剂、超分子凝胶润滑剂 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4260499A (en) * | 1978-08-25 | 1981-04-07 | Texaco Inc. | Water-based lubricants |
CN103666643A (zh) * | 2012-09-14 | 2014-03-26 | 中国科学院兰州化学物理研究所 | 阴离子功能化的咪唑离子液体润滑油添加剂及其制备方法 |
CN103756754A (zh) * | 2014-02-19 | 2014-04-30 | 南京林业大学 | 一种添加改性纳米锌粉和离子液体的润滑油及其制备方法 |
CN104830404A (zh) * | 2015-05-13 | 2015-08-12 | 南京欧美加新材料有限公司 | 一种含离子液体、改性纳米锌粉和石墨烯的润滑油组合物的制备方法 |
CN109824467A (zh) * | 2019-03-27 | 2019-05-31 | 太原理工大学 | 一种利用离子液体催化制备多烷基萘的方法及其应用 |
CN110423639A (zh) * | 2019-06-13 | 2019-11-08 | 徐武警 | 一种多功能润滑油添加剂及其应用 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009039626A1 (de) * | 2009-09-01 | 2011-03-03 | KLüBER LUBRICATION MüNCHEN KG | Schmierstoffe auf Wasserbasis |
-
2021
- 2021-08-22 CN CN202110964361.8A patent/CN113527149B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4260499A (en) * | 1978-08-25 | 1981-04-07 | Texaco Inc. | Water-based lubricants |
CN103666643A (zh) * | 2012-09-14 | 2014-03-26 | 中国科学院兰州化学物理研究所 | 阴离子功能化的咪唑离子液体润滑油添加剂及其制备方法 |
CN103756754A (zh) * | 2014-02-19 | 2014-04-30 | 南京林业大学 | 一种添加改性纳米锌粉和离子液体的润滑油及其制备方法 |
CN104830404A (zh) * | 2015-05-13 | 2015-08-12 | 南京欧美加新材料有限公司 | 一种含离子液体、改性纳米锌粉和石墨烯的润滑油组合物的制备方法 |
CN109824467A (zh) * | 2019-03-27 | 2019-05-31 | 太原理工大学 | 一种利用离子液体催化制备多烷基萘的方法及其应用 |
CN110423639A (zh) * | 2019-06-13 | 2019-11-08 | 徐武警 | 一种多功能润滑油添加剂及其应用 |
Non-Patent Citations (1)
Title |
---|
M.Salomé Rodríguez-Morgade et al..Ti(IV) phthalocyanines for dye sensitized solar cells..J.Porphyrins Phthalocyanines..2013,第17卷第818-820页. * |
Also Published As
Publication number | Publication date |
---|---|
CN113527149A (zh) | 2021-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Donato et al. | A review on alternative lubricants: Ionic liquids as additives and deep eutectic solvents | |
Yamin et al. | Statistical analysis and optimization of the corrosion inhibition efficiency of a locally made corrosion inhibitor under different operating variables using RSM | |
Zheng et al. | Anticorrosion and lubricating properties of a fully green lubricant | |
CN113527149B (zh) | 一种离子液体水基润滑添加剂及其制备方法和应用 | |
CN110862356B (zh) | 苯并三氮唑功能化的季铵盐离子液体及其制备方法和应用 | |
CN112062729B (zh) | 一种功能化季铵盐离子液体及其制备方法和应用 | |
EP1690960A9 (en) | Corrosion inhibitors comprising nitrogen functionality | |
Yu et al. | Lignin composite ionic liquid lubricating material as a water-based lubricating fluid additive with excellent lubricating, anti-wear and anti-corrosion properties | |
CN109608312B (zh) | 氢氟醚化合物及其制备方法和应用 | |
Zu et al. | Structure design and performance investigation of 2-mercapto-5-methyl thiadiazole based ionic liquids as lubricants and corrosion inhibitors | |
Öztürk | Synthesis and corrosion inhibition behavior of novel amide-based quarternary di-cationic surfactants on carbon steel in HCl solutions | |
CN111876223A (zh) | 一种改性碳纳米管离子液体层状液晶润滑剂及其制备方法 | |
EP4049994A1 (en) | Ester compound and preparation method therefor and uses thereof | |
Yue et al. | Tribological behavior of environmentally friendly borate ionic liquids with low corrosion degree | |
CN107827926A (zh) | 小分子功能化的表面活性剂及其制备方法和应用 | |
CN112142778A (zh) | 一种兼具油溶性和水溶性的离子液体及其制备方法与应用 | |
CN113816915B (zh) | 一种无腐蚀性离子液体水基润滑添加剂及其制备方法和应用 | |
Khalil et al. | Preparation and evaluation of Azo phenol as corrosion inhibitor for carbon steel in acid solution | |
CN108251847B (zh) | 一种含苯并三氮唑复合防腐剂及其制备方法 | |
CN105887102A (zh) | 磷酸酯功能化的季铵盐缓蚀剂及其制备方法 | |
KR101827503B1 (ko) | 디알킬 디티오포스페이트 그룹을 포함하는 디카르복실산 유도체 및 이를 포함하는 내마모제 및 윤활제 조성물 | |
CN115073393B (zh) | 一种无卤素杂环磺酸离子液体的制备及其作为钛合金润滑剂的应用 | |
CN102060776A (zh) | 一种含位阻酚的抗氧化离子液体及其制备方法和应用 | |
CN116926558A (zh) | 一种氧醚基黄原酸酯类金属缓蚀剂及其制备方法与应用 | |
CN110423639A (zh) | 一种多功能润滑油添加剂及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |