CN113508190A - 多喷淋头化学气相沉积的反应器、方法及产品 - Google Patents

多喷淋头化学气相沉积的反应器、方法及产品 Download PDF

Info

Publication number
CN113508190A
CN113508190A CN202080017217.7A CN202080017217A CN113508190A CN 113508190 A CN113508190 A CN 113508190A CN 202080017217 A CN202080017217 A CN 202080017217A CN 113508190 A CN113508190 A CN 113508190A
Authority
CN
China
Prior art keywords
reactor
precursor
showerhead
chamber
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202080017217.7A
Other languages
English (en)
Other versions
CN113508190B (zh
Inventor
R·巴特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN113508190A publication Critical patent/CN113508190A/zh
Application granted granted Critical
Publication of CN113508190B publication Critical patent/CN113508190B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45519Inert gas curtains
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation by radiant heating of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/482Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation using incoherent light, UV to IR, e.g. lamps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • C23C16/545Apparatus specially adapted for continuous coating for coating elongated substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0026Apparatus for manufacturing conducting or semi-conducting layers, e.g. deposition of metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming copper oxide superconductor layers
    • H10N60/0436Processes for depositing or forming copper oxide superconductor layers by chemical vapour deposition [CVD]
    • H10N60/0464Processes for depositing or forming copper oxide superconductor layers by chemical vapour deposition [CVD] by metalloorganic chemical vapour deposition [MOCVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

一种形成千米级长度的高温超导体带的方法,其通过下述进行:将带纹理的带从卷到卷馈送通过反应器腔室;使高温超导体前体从定位在腔室中的长前体喷淋头流动,前体喷淋头沿带的方向伸长;使气体从前体喷淋头的任一侧上的第一和第二长气帘喷淋头流动;以及用来自反应器相对侧上的照明源照亮带的上表面,照明源定位成允许照明通过相应的一个气帘喷淋头下方和前体喷淋头下方,而到达带的上表面。

Description

多喷淋头化学气相沉积的反应器、方法及产品
技术领域
本申请根据35 U.S.C.§119主张2019年2月25日提交的美国临时申请第62/809,986号的优先权权益,此美国临时申请的内容全文以引用方式并入本文中。
本公开内容涉及具有多个喷淋头的多喷淋头金属有机化学气相沉积(MOCVD)反应器,其特别用于制造高温超导体(HTS)带或线,以及涉及用于制造HTS带或线的方法,以及可使用所公开的反应器和/或方法生产的HTS带或线。
背景技术
第二代高温超导体(HTS)带或线,由沉积在带纹理的金属带(通常为哈氏合金(Hastelloy)或不锈钢)上的稀土-钡-铜氧化物(REBCO)层组成。这些已经通过诸如脉冲激光沉积(PLD)和反应性共蒸发(RCE)之类的物理气相沉积技术,通过诸如金属有机沉积(MOD)之类的溶液技术以及通过金属有机化学气相沉积(MOCVD)来沉积。为了成功地用于商业用途,需要具有均匀特性的千米级长度的HTS带,并且其成本可与具有类似载流容量的铜缆线相当。迄今为止,还没有制造设备或方法能够足够成功满足这一需求。
已经提出使用光激发MOCVD来改善REBCO层的晶体品质,并因此改善HTS带的性能。另外,已经提示光激发能够在保持良好性能的同时增加生长速率。然而,还没有可以使用光激发来生产千米长度的HTS带的方法或反应器设计。另外,或者替代地,还未证明具有光激发的反应器在大的沉积区域(例如,诸如10cm x100cm的沉积区域)上可以获得高生长速率、均匀沉积和高反应器效率。因此,期望建立一种方法和/或反应器,其中可以使用光激发来生产千米长度的HTS带,和/或其中可以在大的沉积区域上获得均匀的沉积和高的反应器效率。特定而言,如果可以在方法和/或反应器中一起获得这些特性,由于可以合理的成本生产具有良好品质的千米长度的HTS带或线,因此认为可以成功地商业生产HTS带。
发明内容
根据本公开内容的一些方面,提供了多喷淋头化学气相沉积反应器。反应器包括被腔室壁包围的反应器腔室,腔室具有长度和宽度,长度大于宽度。腔室壁在腔室的沿长度方向的相对端处具有入口和出口密封端口,用于在所述带上沉积期间接收和输送带。腔室包含用于支撑所述带的支撑板。支撑板具有长度和宽度,长度大于宽度。
前体喷淋头位于腔室内,并且具有长度和宽度,长度大于宽度。前体喷淋头位于支撑板上方,前体喷淋头的长度尺寸与支撑板的长度尺寸平行。第一和第二气帘喷淋头在前体喷淋头的任一侧上位于腔室内。第一和第二气帘喷淋头分别具有长度和宽度,长度比宽度长。气帘喷淋头被定位成使气帘喷淋头的长度尺寸与前体喷淋头的长度尺寸平行对准。
反应器进一步包括位于腔室宽度的第一侧上的一个或多个第一照明源和位于腔室宽度的第二侧上的一个或多个第二照明源。照明源经过定位和对准以能够在沉积期间照亮带的上表面,此是通过在相应的气帘喷淋头下方和前体喷淋头下方将照明光束照射至上表面来进行。
根据本公开内容的其他方面,提供了一种形成千米级长度的高温超导体带的方法。所述方法包括:将带纹理的带从进料辊馈送通过具有腔室壁的反应器腔室到卷取辊;使高温超导体前体从定位在腔室中并面向带的上表面的长前体喷淋头流动,前体喷淋头沿带的中心线方向伸长;使气体从位于前体喷淋头的任一侧上并且在腔室中的第一和第二长气帘喷淋头流动,第一和第二长气帘喷淋头沿平行于带的中心线的方向伸长;以及用来自反应器相对侧上的一个或多个第一照明源和一个或多个第二照明源的照明来照亮带的上表面,照明源定位成允许照明通过相应的其中一个气帘喷淋头下方和前体喷淋头下方,而到达带的上表面。
在以下的具体实施方式中给出了其他特征和优点,这些特征和优点对本领域的技术人员而言,根据所作描述就容易看出,或者通过实施包括以下具体实施方式、权利要求书以及附图在内的本文所述的各个实施方式而被认识。
应当理解的是,前面的一般性描述和以下的详细描述都只是示例性的,且旨在提供理解要求保护的本公开和所附权利要求书的性质和特性的总体评述或框架。
包括的附图提供了对本公开原理的进一步理解,附图并入本说明书中并构成说明书的一部分。附图例示了一个或多个实施方式,并与说明书一起通过示例的方式用以解释本公开的原理和操作。应理解,在本说明书和附图中公开的本公开的各种特征可以任意组合和所有组合使用。作为非限制性实例,本公开的各个特征可以根据以下实施方式相互组合。
附图简单说明
以下是对附图中各图的简要描述。为了清楚和简明起见,附图不一定按比例绘制,附图的某些特征和某些视图可能按比例放大显示或以示意图方式显示。
在附图中:
图1是根据本公开内容的至少一个实例所述的反应器的截面平面图;
图2是沿图1中指示的线II-II截取的截面的示意图,其示出了一个或多个替代性实施方式中的一或多个,例如本公开内容的替代或任选特征;
图3是根据本公开内容的一个或多个实施方式,沿图1中指示的线III-III截取的截面示意图;和
图4是与图3相对应的截面示意图,其示出了一或多个替代性实施方式的另外的一个或多个特征。
具体实施方式
在以下的具体实施方式中将给出其他特征和优点,对本领域的技术人员而言,这些特征和优点根据所作描述就可以容易地看出,或者通过实施如以下描述中所述的实施方式,连同权利要求和附图而被认识。
文中所用的术语“和/或”在用于两项或更多项的罗列时,表示所列项中的任何一项可以单独使用,或者可以使用所列项中的两项或更多项的任意组合。例如,如果描述一种组合物含有组分A、B和/或C,则该组合物可只含有A;只含有B;只含有C;含有A和B的组合;含有A和C的组合;含有B和C的组合;或含有A、B和C的组合。
在本文中,相对的术语,例如第一和第二,顶部和底部等仅用于区分一个实体或行为与另一个实体或行为,而非必须要求或暗示这些实体或行为之间的任何实际的这种关系或顺序。
本领域技术人员和作出或使用本公开的技术人员能够对本公开进行修改。因此,应理解,附图所示和上文所述的实施方式仅用于例示的目的,并且不旨在限制本公开的范围,根据专利法的原则(包括等同原则)所解释,本公开的范围由所附权利要求限定。
出于本公开的目的,术语“连接”(所有形式的:连接、连接着的、相连接的等)一般意味着两个部件彼此直接或间接地结合。这种接合本质上可以是静止的或者本质上是可移动的。这种结合可以通过两个部件与任何另外的中间构件彼此一体地形成为单个整体来实现,或者通过该两个部件来实现。除非另有说明,否则这种接合本质上可以是永久性的,或者本质上可以是可移除的或可释放的。
如本文所用,术语“约”指量、尺寸、公式、参数和其他数量和特征不是精确的且无需精确的,而可按照要求是大致的和/或更大或者更小,如反映公差、转化因子、四舍五入、测量误差等,以及本领域技术人员所知的其他因子。当使用术语“约”来描述范围的值或端点时,应理解本公开包括所参考的具体值或者端点。无论说明书中的范围的数值或端点是否使用“约”列举,范围的数值或端点旨在包括两种实施方式:一种用“约”修饰,另一种未用“约”修饰。还应理解,每个范围的端点在与另一个端点有关及独立于另一个端点时都是重要的。
本文所用的术语“基本”、“基本上”及其变化形式旨在表示所述的特征等于或近似等于一数值或描述。例如,“基本上平面”的表面旨在表示表面是平面或大致平面。此外,“基本上”旨在表示两个数值相等或近似相等。在一些实施方式中,“基本上”可以表示彼此相差在约10%之内的值,例如彼此相差在约5%之内的值,或彼此相差在约2%之内的值。
本文所用的方向术语,例如上、下、右、左、前、后、顶、底,仅仅是参照绘制的附图而言,并不用来表示绝对的取向。
本文所用的术语“该”、“一个”或“一种”表示“至少一个(一种)”,并且不应局限为“仅一个(一种)”,除非有明确相反的说明。因此,例如,提到的“一种部件”包括具有两个或更多个这类部件的实施方式,除非上下文有另外明确的表示。
存在许多用于在金属带上沉积YBCO层的沉积方法。这些方法包括脉冲激光沉积(PLD)、反应性共蒸发(RCE)、金属有机沉积(MOD)和金属有机化学气相沉积(MOCVD)。在卷盘到卷盘过程中,已使用MOCVD在金属带上沉积YBCO。带为12毫米宽,且通过多次以在合理的时间内获得足够厚的层。因为沉积速率低,所以使用多次通过。在较高的沉积速率下,晶体品质下降,并且无法获得所需的效能(临界电流、临界温度、磁场性能等)。已使用光激发辅助沉积以较高的沉积速率获得高品质的层,但是遇到了金属有机前体的利用率差和YBCO厚度的均匀性差问题。
一般而言,本公开内容涉及具有多个喷淋头的金属有机化学气相沉积(MOCVD)反应器,其特别适合于制造高温超导体(HTS)带或线,并且涉及用于制造HTS带或线的方法。
公开了一种反应器,其能够通过具有一贯的高品质的光激发金属有机化学气相沉积,在千米长度的带纹理的金属带上进行高温超导体层(例如YBCO)的卷盘到卷盘沉积。反应器可以长时间运行,而不会显著的光激发衰减,从而能够生产千米级的带或线。
参照图1和图3,反应器10包括多个喷淋头40、50、60,其中前体喷淋头40被放置成在加工时相对更靠近带纹理的金属带20的上表面22的位置,该前体喷淋头40在金属带20的上表面22上方提供均匀的前体流,并且第一气帘喷淋头50和第二气帘喷淋头60在带20的任一侧上,在前体喷淋头40的任一侧上,提供气帘(惰性或另外的非反应性气帘)。气帘有助于防止沉积在光或辐射源72、82上或者沉积在窗口71、81上(光或辐射源透过此窗口在带纹理的金属带20的上表面上提供光或辐射)。光源72、82或窗口71、81可包括例如石英窗口或具有光学器件的发光二极管(LED),光学器件被构造为能够使来自LED的所有或大部分光透射通过喷淋头40、50、60和带20之间(特定而言为前体喷淋头40和带20之间)的狭窄间隙。
根据一个实施方式,如图3所指示的,第一组72的发光二极管将光照射在带20的一半上,而第二组82将光照射到另一半上,其中来自LED 76、86的辐射被镜子78、88反射,以形成相应的光束73、83(准直的或聚焦的),每个光束实际上照亮了带20的上表面22的一半。或者,如图1和图4中看到,反应器10和光束73、83也可以构造成使得光束73、83从两侧照亮带20的全部或大部分上表面22。
诸如通道(未示出)之类的加热机构被提供到反应器壁和反应器的其他部分,以允许加热反应器的部分和壁(例如通过传热流体的流动来加热),从而保持所有反应器壁与内部部件表面(LED或窗口除外)的温度足够高,以防止前体或反应副产物发生冷凝,但温度不会过高而造成他们分解(例如在300℃至400℃的范围内,或约350℃)。
参照图2,通过使电流流过带20,例如使电流通过两个导电辊90、92之间的带20,可将带20加热至沉积温度,所述导电辊90、92接触带20并连接至恒定电流源94。替代地或另外地,位于带20下方并且面向带20的下表面21的钨卤素灯120可用于加热带20。反应器10可包括外壳31。此外壳31中的压力(如果存在的话)高于反应器壳体30中的压力,并且此压力通过差动泵送来维持。带20通过一根或多根差动泵送的入口管和出口管16、18(各示出一个)进入和离开反应器壳体30。(类似地,如在一个或多个附图中所描绘的,带20通过差动泵送的管进入和离开外壳31。)
再次参考图1至图3,特别强调图3中的特征,带或线20从图3的纸平面移出,或如图1中箭头A所示向右移,从图2中的进给卷盘12到卷取卷盘14,带或线20的期望宽度尺寸在0.1至20cm、或1至15cm、或5至15cm、或8至12cm的范围内。卷盘12、14可以处于大气压或处于低真空(例如,低真空)。在反应器10与卷盘12、14所维持的压力之间可以有多个阶段的差动泵送。对于图3所示的反应器10的实施方式,如图2所示,通过使来自恒定电流源94的电流通过来加热带20(亦即没有也在图2中示出的任选的或替代的灯120)。
通过紧密间隔(及中央)的前体喷淋头40,载气中的前体在沿着长度范围为25至1000cm、或50至500cm、或60至300cm、或70至250cm、或80至150cm或约100cm的沉积区的多个点42处进料。前体喷淋头40的位置靠近(1至2cm)带纹理的带20。前体喷淋头40具有两个多孔板(在气流中串列放置,用作混合板和喷淋头),以便提供足够的压力差,并且使前体在带20的上表面上方均匀分布。两个另外的喷淋头50、60产生惰性气帘,其防止前体或反应副产物到达LED或窗口,LED光通过此窗口进入反应器10中。另外,将LED或窗口设置在净化凹部80中,以进一步抑制任何前体或反应副产物到达光源。两侧上的排气歧管(如图3所示)连接到真空泵(未示出),真空泵使用节流阀将反应器保持在所需压力。保持所有反应器壁与内部部件表面(LED除外)的温度足够高(例如350℃),以防止前体或反应副产物发生冷凝,但温度不会过高而造成他们分解。带20的温度由感测带的底表面或顶表面的一或多个高温计来监测和控制(图2所示的顶表面监测)。
前体喷淋头40产生驻点流,以在10cm宽的金属(哈氏合金(Hastelloy)、不锈钢等等)带20上获得均匀的YBCO层,同时实现高前体利用率。带20可以更窄或更宽,在这种情况下,需要更窄或更宽的前体喷淋头40。在此设计中,前体喷淋头40的长度期望为100cm长,但是取决于沉积区的期望长度,此长度可以更短或更长。光激发期望由在385-405nm处发射的发光二极管(LED)提供(例如可以将波长调整为更短或更长)。来自反应器一侧上的LED的光束被引导到一半的带上。可以通过使电流通过带或放置在带下方的钨卤素灯,来完成带加热。在图2中示出了反应器10的示意图,其中带20通过使电流通过而被加热。
如在图1和3中可以看到的,通过将两个气帘喷淋头50、60放置在前体喷淋头40的任一侧上以提供惰性或另外的非反应性气体的气帘,大大地最小化或甚至完全避免了在LED上的沉积。另外,将窗口或LED以及相关的光学器件72、82放置在气体净化凹部80中,以提供额外的保护而不使前体或反应副产物沉积在它们上。例如,如图2所示,根据一个实施方式,光源72、82可以是具有抛物面反射器76、86的LED 76、86的阵列,抛物面反射器76、86始终沿着沉积区将准直光束73、83引导到基本上一半(相应的一半)的带20上。将所有反应器壁和喷淋头加热至约350℃,以防止在其上沉积前体或反应副产物,从而无需在每次运行后清洁反应器。这也大大降低了颗粒落在带上的可能性。LED期望是水冷的。在光源72、82为窗口形式的实施方式中,还可能在反应器腔室的外部具有LED和光学器件,其中光通过UV透明窗口72、82进入。使用光学器件,可以将LED光束期望地调得足够高,以照亮带的一半,但也可以任选地将其侧向扇出以照亮带的5-10cm长度。
如图2和图3中所指示的,通过经发射率校正的高温计或通过一个或多个这种高温计P来监测带温度,指向带的上侧(图2)或下侧(图3)上。用气体净化高温计端口,以防止前体或反应副产物在高温计上的任何沉积。排气歧管EM经由反应器10任一侧上的排气端口100、110连接到腔室30,并连接到合适的真空泵(流动位置和方向如箭头VP所示),真空泵将反应器10保持在期望的压力下。主喷淋头和带之间的间隔期望为约1-2cm,优选为约1cm。由于格拉斯霍夫(Grashof)数与间距的立方成正比,因此这种相对较小的间距确保了低的格拉斯霍夫数。在足够低的格拉斯霍夫数下,避免了浮力引起的对流。由于边界层和边界层上方的前体的浓度在带20的整个宽度上是恒定的,因此所使用的所得驻流点流动几何确保了均匀的沉积。
带20期望地透过差动泵送的腔室/外壳31(图2)带入反应器中,以便能够使进给和卷取卷盘12、14在大气压下。电流通过期望的水冷、高导电性圆柱形电极90、92馈送到带或从带中拉出。在一些实施方式中,电极90、92被配置成与地面及/或其余的反应器部件/部分电隔离。电极表面经过高度抛光,以确保良好的接触。从恒定电流源94馈送电流,使得接触电阻的任何变化都无关紧要。主喷淋头40或前体喷淋头40具有两个多孔板44、46,以确保来自喷淋头40的均匀流动。最外面的喷淋头板46具有约0.6-1mm(优选0.8mm)直径的孔,并且他们的长度约为0.5至1cm。孔的密度为15至20个/cm2。内喷淋头板44的孔直径为1-2mm,长0.5至1cm,且密度为4至20个/cm2。气体经由歧管(未示出)在沿着喷淋头40的多个端口42处馈送到主喷淋头,以便可将其均匀分布在内部喷淋头板44上方。提供气帘(期望为惰性气体或Ar气帘)的两个外喷淋头或气帘喷淋头50、60具有板54、64,其板54、64的孔径、长度和密度与前体喷淋头40中的内喷淋头板46相似。气体,期望地为Ar,经由歧管(未示出)在沿着相应的喷淋头50、60的多个端口52、62处被馈送到这些外喷淋头50、60,以便将其均匀地分布在相应的多孔板54、64的上方。板32(支撑板)将反应器腔室30分成两部分。在带20的底部及其边缘处,带和板32(支撑板)之间的间距期望约为1mm。支撑板32中的一个或多个槽或孔33允许气体(惰性净化气体)被均匀地馈送到带20下方。此流动防止任何前体或反应副产物沉积在带20的下侧上或进入反应腔室30的底部。在一些实施方式中,支撑板被配置成与带成间隔关系(例如非接触),并且支撑板被配置成支撑一条或多条气体净化管线,气体净化管线被配置成穿过支撑板并且被指向带的下表面。在一些实施方式中,将带直接用电流加热(即,与支撑板直接接触)或用卤素灯加热(即,不与支撑板直接接触)。在不直接接触的配置中,支撑板被配置为允许将净化气体朝向带的背面。对于使用基座加热的实施方式,基座在本文中也被称为支撑板,并且在这种情况下,在基座/支撑板的任一侧上可以存在另外的热隔离的“支撑板”。如果将支撑板用作在电流加热的情况下的支撑板,则将沿着带的长度以规则的间隔配置/放置额外的绝缘材料。模型化指示,沉积均匀度约为1.7%,且反应器效率约为40%。
带20可替代地或附加地使用放置在带20下方的钨卤素灯120加热,如图2所示。可以在板32的中间区段(例如由虚线37、38描绘的中间区段36)中使用熔融石英窗口,以允许灯辐射照射在带20的底表面上。一个或多个槽或孔33(在多个的情况下沿着沉积区均匀地间隔开)允许净化带20和石英窗口之间的空间。惰性净化气体通过不允许前体和反应副产物进入带20和窗口之间的空间,来防止沉积在石英窗口上。
期望由一个PID控制器控制一组灯120,此PID控制器从监测带20的顶表面或底表面的经发射率校正的高温计P获得反馈。沿沉积区的长度放置经发射率校正的光学高温计,以向位于其下方的特定灯组提供反馈。多区加热区能够调整沿着带的温度分布。高温计P可以定位成监测带的顶表面或底表面的温度。如果高温计监测顶表面,则在喷淋头内制造窄直径的净化端口,该端口的一端由熔融石英窗口密封,如图2所示。如果将高温计放置在带的下方以监测带的背面(图3),则高温计管的尖端应远离带足够远,以使灯的辐射不会出现阴影。另外,高温计管的内表面应粗糙,以使反射光不会因沿内壁的多次反射而向下传播到高温计。
带还可以通过与带接触放置的电加热基座(加热器)进行加热。基座和带路径需要弯曲,以保持基座和带之间的良好接触。在一些实施方式中,曲线的半径在约20至50m之间,优选地为25m。在一些实施方式中,为了在带和喷淋头之间保持恒定的高度,喷淋头也被弯曲
可以使用组合方法来加热带,例如用钨卤素灯从下面加热带,并且还通过电流通过来加热,如图2所示。
使用线性阵列的透射玻璃柱面透镜或线性反射准直仪,例如可从Chromasens(德国康斯坦茨)获得的准直仪。因此,如图4中(对于宽度)以及图1(对于长度与宽度)的光束73、83的图解中看到,可以将来自LED线性阵列的光在一个维度上准直以照亮带的整个长度和宽度。这可以通过在腔室两侧上使用LED来完成。来自腔室任一侧的线性或(略微)聚焦的光束73、83可以(并且期望如此)完全重迭,从而促进良好的覆盖和均匀性。透射透镜的线性阵列是透镜的阵列或单个长条形柱面玻璃透镜也可以代替沉积腔室侧面中的透明窗口71、81,作为另一个替代方面。
可以起作用的柱面透镜的一个实施方式是由N-BK7制造的K&S OPTICS(美国纽约州格林)100-200柱面平凸透镜,其焦距为10mm,且直径为12.5mm。可以将透镜放置在距LED大约10mm的位置,以捕获来自LED的超过一半的光,并将其准直成大约10mm宽的线性光束。
可从THORLABS(美国新泽西州牛顿)获得的替代透镜LJ1878L2-A具有类似的聚焦特性。THORLABS透镜具有一个优点,即,用于350至700nm波长范围的抗反射涂层,涂层包含沉积腔室最感兴趣的波长。
线性反射实施方式可以使用类似于例如来自CHROMASENS的C型或D型反射器的反射器。反射器的具体形式的细节可以定制成沉积腔室的最终形式,因此可以在光照明的均匀性和效率之间进行适当的权衡。
金属涂层的选择对于反射元件很重要。对于短于500nm的波长,铝通常是低损耗的选择。在更长的波长下,银和金是首选。如果需要在宽的波长范围(包括高于和低于500nm的波长)上使用一种材料,则铝通常是优选的,因为铝具有均匀的低损耗。
LED波长的选择:可构建具有多种波长的LED阵列,选择这些波长以优化反应和沉积过程。对于此YCBO反应器,可以使用从UV(紫外)到可见的一系列波长。一个实施方式具有沿着LED阵列的长度重复的3波长LED组,此组中的365nm、385nm和405nm LED在近UV和最短的蓝波长范围内提供完整的光谱覆盖。可以使用其他类型的光源(如激光)来制定相同类型的波长多样性方案。
尽管为了说明给出了示例性的实施方式和实施例,但是前面的描述并不旨在以任何方式限制本公开和所附权利要求书的范围。因此,可以对上述实施方式和实施例进行修改和变动而基本上不偏离本公开的精神和各种原理。所有这些变动和修改旨在包括在本公开和所附权利要求保护的范围内。

Claims (18)

1.一种多喷淋头化学气相沉积反应器,其包括:
反应器腔室,所述反应器腔室由腔室壁包围,所述腔室具有长度和宽度,所述长度大于所述宽度,所述腔室壁在长度方向上的腔室的相对端处具有入口密封端口和出口密封端口,以用于在带上进行沉积期间,接收和输送所述带;
在所述腔室内的支撑板,所述支撑板用于支撑所述带,所述支撑板具有长度和宽度,所述长度大于所述宽度;
位于腔室内的前体喷淋头,所述前体喷淋头具有长度和宽度,所述长度大于所述宽度,前体喷淋头位于支撑板上方,并且前体喷淋头的长度尺寸与支撑板的长度尺寸平行;
位于前体喷淋头的任一侧上的第一和第二气帘喷淋头,所述第一和第二气帘喷淋头各自具有长度和宽度,所述长度比所述宽度长,气帘喷淋头的长度尺寸平行于前体喷淋头的长度尺寸对准;
位于腔室宽度的第一侧上的一个或多个第一照明源以及位于腔室宽度的第二侧上的一个或多个第二照明源,所述第一照明源和第二照明源经过定位和对准,以能够在沉积期间照亮所述带的上表面,这通过在相应的气帘喷淋头下方和前体喷淋头下方将照明光束照射至所述上表面来进行。
2.如权利要求1所述的反应器,其中,所述一个或多个第一照明源位于腔室的第一侧中的一个或多个第一凹部内,并且所述一个或多个第二照明源位于腔室的第二侧中的一个或多个第二凹部内。
3.如权利要求2所述的反应器,其中,所述一个或多个第一凹部和所述一个或多个第二凹部配备有与相应凹部的内部连通的相应气体端口。
4.如权利要求1-3中任一项所述的反应器,其中,支撑板包括位于所述带下方的一个或多个槽或端口,以用于在所述带与支撑板之间输送净化气流。
5.如权利要求1-4中任一项所述的反应器,其中,前体喷淋头宽于10mm。
6.如权利要求1-5中任一项所述的反应器,其中,前体喷淋头比气帘喷淋头更靠近与所述上表面重合的平面。
7.如权利要求1-6中任一项所述的反应器,其中,前体喷淋头位于距离所述上表面0.8至2cm内。
8.如权利要求1-6中任一项所述的反应器,其中,前体喷淋头位于距离所述上表面0.8至1.2cm内。
9.如权利要求1-8中任一项所述的反应器,其中,前体喷淋头包括一个或多个多孔混合器-分配器板。
10.如权利要求9中任一项所述的反应器,其中,前体喷淋头包括至少两个多孔混合器-分配器板,包括具有第一孔径的第一混合器-分配器板和具有第二孔径的第二混合器-分配器板,第二混合器-分配器板位于第一混合器-分配器板与支撑板之间,第一孔径大于第二孔径。
11.如权利要求1-10中任一项所述的反应器,其还包括第一和第二导电滚筒或辊,其被定位成接触所述带以通过使电流沿着所述带通过来提供对所述带的加热。
12.如权利要求11所述的反应器,其还包括连接到第一和第二导电滚筒或辊的恒定电流源。
13.如权利要求1-12中任一项所述的反应器,其还包括位于支撑台下方的辐射源,其用于加热所述带。
14.如权利要求1-13中任一项所述的反应器,其还包括一个或多个温度传感器,所述温度传感器经定位以感测所述带的温度。
15.如权利要求14所述的反应器,其中,所述一个或多个温度传感器包括面向所述上表面定位的一个或多个高温计。
16.如权利要求14所述的反应器,其中,所述一个或多个温度传感器包括面向所述带的下表面定位的一个或多个高温计。
17.一种形成千米级长度的高温超导体带的方法,所述方法包括:
将带纹理的带从进料辊馈送通过具有腔室壁的反应器腔室而到达卷取辊;
使高温超导体前体从面向所述带的上表面并位于腔室中的长前体喷淋头流动,该前体喷淋头在沿着所述带的中心线的方向上伸长;
使气体从位于前体喷淋头的任一侧上并位于腔室中的第一和第二长气帘喷淋头流动,所述第一和第二长气帘喷淋头在与带的中心线平行的方向上伸长;
用来自一个或多个第一照明源和一个或多个第二照明源的照明来照亮所述带的上表面,所述照明源被定位成允许照明通过相应的一个气帘喷淋头下方和前体喷淋头下方而到达所述带的上表面。
18.如权利要求17所述的方法,其中,馈送所述带是连续地馈送所述带。
CN202080017217.7A 2019-02-25 2020-02-25 多喷淋头化学气相沉积的反应器、方法及产品 Active CN113508190B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201962809986P 2019-02-25 2019-02-25
US62/809,986 2019-02-25
PCT/US2020/019632 WO2020176462A1 (en) 2019-02-25 2020-02-25 Multi-showerhead chemical vapor deposition reactor, process and products

Publications (2)

Publication Number Publication Date
CN113508190A true CN113508190A (zh) 2021-10-15
CN113508190B CN113508190B (zh) 2024-06-25

Family

ID=72239874

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080017217.7A Active CN113508190B (zh) 2019-02-25 2020-02-25 多喷淋头化学气相沉积的反应器、方法及产品

Country Status (7)

Country Link
US (1) US20220037577A1 (zh)
EP (1) EP3931368A4 (zh)
JP (1) JP7565934B2 (zh)
KR (1) KR20210122308A (zh)
CN (1) CN113508190B (zh)
TW (1) TW202104634A (zh)
WO (1) WO2020176462A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024191656A1 (en) * 2023-03-15 2024-09-19 Silfex, Inc. Porous showerheads for substrate processing systems

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811684A (en) * 1984-11-26 1989-03-14 Semiconductor Energy Laboratory Co., Ltd. Photo CVD apparatus, with deposition prevention in light source chamber
US5252366A (en) * 1990-01-24 1993-10-12 The United States Of America As Represented By The Secretary Of The Air Force Chemical vapor deposition method using an actively cooled effuser to coat a substrate having a heated surface layer
US20020155219A1 (en) * 1999-06-11 2002-10-24 Shulin Wang Plasma treatment of a titanium nitride film formed by chemical vapor deposition
US20040247780A1 (en) * 2003-06-05 2004-12-09 Venkat Selvamanickam Ion beam-assisted high-temperature superconductor (HTS) deposition for thick film tape
US20040247779A1 (en) * 2003-06-05 2004-12-09 Venkat Selvamanickam Ultraviolet (UV) and plasma assisted metalorganic chemical vapor deposition (MOCVD) system
US20040255855A1 (en) * 2003-06-23 2004-12-23 Venkat Selvamanickam Metalorganic chemical vapor deposition (MOCVD) process and apparatus to produce multi-layer high-temperature superconducting (HTS) coated tape
US20040261708A1 (en) * 2003-06-26 2004-12-30 Venkat Selvamanickam Apparatus for and method of continuous HTS tape buffer layer deposition using large scale ion beam assisted deposition
US20050223984A1 (en) * 2004-04-08 2005-10-13 Hee-Gyoun Lee Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US20050223983A1 (en) * 2004-04-08 2005-10-13 Venkat Selvamanickam Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
KR20070098104A (ko) * 2006-03-31 2007-10-05 삼성전자주식회사 가스커튼을 구비한 박막증착장치
US8124170B1 (en) * 2004-01-23 2012-02-28 Metal Oxide Technologies, Inc Method for forming superconductor material on a tape substrate
KR20130026398A (ko) * 2011-09-05 2013-03-13 엘아이지에이디피 주식회사 샤워헤드 및 이를 이용한 화학기상 증착장치
US20140123900A1 (en) * 2012-11-02 2014-05-08 Industrial Technology Research Institute Gas shower device having gas curtain and apparatus for depositing film using the same
CN105225912A (zh) * 2014-06-27 2016-01-06 朗姆研究公司 半导体衬底处理装置中包含中央气体喷射器的陶瓷喷头
US20160002778A1 (en) * 2014-07-03 2016-01-07 Applied Materials, Inc. Substrate support with more uniform edge purge
US20170133202A1 (en) * 2015-11-09 2017-05-11 Lam Research Corporation Computer addressable plasma density modification for etch and deposition processes
WO2017216065A1 (de) * 2016-06-13 2017-12-21 Aixtron Se Vorrichtung und verfahren zum sequentiellen abscheiden einer vielzahl von schichten auf substraten, sowie aufnahmeeinheit zur verwendung in einer abscheidungsvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040016401A1 (en) 2002-07-26 2004-01-29 Metal Oxide Technologies, Inc. Method and apparatus for forming superconductor material on a tape substrate
US20110033638A1 (en) 2009-08-10 2011-02-10 Applied Materials, Inc. Method and apparatus for deposition on large area substrates having reduced gas usage
US20130273262A1 (en) 2012-04-13 2013-10-17 Applied Materials, Inc. Static deposition profile modulation for linear plasma source

Patent Citations (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811684A (en) * 1984-11-26 1989-03-14 Semiconductor Energy Laboratory Co., Ltd. Photo CVD apparatus, with deposition prevention in light source chamber
US5252366A (en) * 1990-01-24 1993-10-12 The United States Of America As Represented By The Secretary Of The Air Force Chemical vapor deposition method using an actively cooled effuser to coat a substrate having a heated surface layer
US20020155219A1 (en) * 1999-06-11 2002-10-24 Shulin Wang Plasma treatment of a titanium nitride film formed by chemical vapor deposition
US20120318196A1 (en) * 2002-07-26 2012-12-20 Alex Ignatiev System for forming superconductor material on a tape substrate
CN1798617A (zh) * 2003-06-05 2006-07-05 美国超能公司 用于厚膜带的离子束辅助高温超导体(hts)沉积
US20040247780A1 (en) * 2003-06-05 2004-12-09 Venkat Selvamanickam Ion beam-assisted high-temperature superconductor (HTS) deposition for thick film tape
US20040247779A1 (en) * 2003-06-05 2004-12-09 Venkat Selvamanickam Ultraviolet (UV) and plasma assisted metalorganic chemical vapor deposition (MOCVD) system
US20040255855A1 (en) * 2003-06-23 2004-12-23 Venkat Selvamanickam Metalorganic chemical vapor deposition (MOCVD) process and apparatus to produce multi-layer high-temperature superconducting (HTS) coated tape
US20100248970A1 (en) * 2003-06-26 2010-09-30 Superpower, Inc. Apparatus for and method of continuous hts tape buffer layer deposition using large scale ion beam assisted deposition
US20040261708A1 (en) * 2003-06-26 2004-12-30 Venkat Selvamanickam Apparatus for and method of continuous HTS tape buffer layer deposition using large scale ion beam assisted deposition
US8124170B1 (en) * 2004-01-23 2012-02-28 Metal Oxide Technologies, Inc Method for forming superconductor material on a tape substrate
US20050223983A1 (en) * 2004-04-08 2005-10-13 Venkat Selvamanickam Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US20100009064A1 (en) * 2004-04-08 2010-01-14 Superpower, Inc. Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
US20050223984A1 (en) * 2004-04-08 2005-10-13 Hee-Gyoun Lee Chemical vapor deposition (CVD) apparatus usable in the manufacture of superconducting conductors
KR20070098104A (ko) * 2006-03-31 2007-10-05 삼성전자주식회사 가스커튼을 구비한 박막증착장치
KR20130026398A (ko) * 2011-09-05 2013-03-13 엘아이지에이디피 주식회사 샤워헤드 및 이를 이용한 화학기상 증착장치
US20140123900A1 (en) * 2012-11-02 2014-05-08 Industrial Technology Research Institute Gas shower device having gas curtain and apparatus for depositing film using the same
CN103805964A (zh) * 2012-11-02 2014-05-21 财团法人工业技术研究院 能产生气幕的气体喷洒装置及其薄膜沉积装置
CN105225912A (zh) * 2014-06-27 2016-01-06 朗姆研究公司 半导体衬底处理装置中包含中央气体喷射器的陶瓷喷头
US20160002778A1 (en) * 2014-07-03 2016-01-07 Applied Materials, Inc. Substrate support with more uniform edge purge
CN106463365A (zh) * 2014-07-03 2017-02-22 应用材料公司 具有更均匀的边缘净化的基板支撑件
US20170133202A1 (en) * 2015-11-09 2017-05-11 Lam Research Corporation Computer addressable plasma density modification for etch and deposition processes
CN106972281A (zh) * 2015-11-09 2017-07-21 朗姆研究公司 用于蚀刻和沉积工艺的计算机可寻址等离子体密度修改
WO2017216065A1 (de) * 2016-06-13 2017-12-21 Aixtron Se Vorrichtung und verfahren zum sequentiellen abscheiden einer vielzahl von schichten auf substraten, sowie aufnahmeeinheit zur verwendung in einer abscheidungsvorrichtung

Also Published As

Publication number Publication date
JP2022521941A (ja) 2022-04-13
WO2020176462A1 (en) 2020-09-03
US20220037577A1 (en) 2022-02-03
CN113508190B (zh) 2024-06-25
KR20210122308A (ko) 2021-10-08
EP3931368A4 (en) 2022-11-09
EP3931368A1 (en) 2022-01-05
TW202104634A (zh) 2021-02-01
JP7565934B2 (ja) 2024-10-11

Similar Documents

Publication Publication Date Title
US6024799A (en) Chemical vapor deposition manifold
US10691145B2 (en) Multi-channel flow ratio controller and processing chamber
US8673081B2 (en) High throughput multi-wafer epitaxial reactor
JP5600125B2 (ja) 複数のウェハを同時に処理するためのリアクタおよび方法
EP2599115B1 (en) Heating arrangement and method for heating substrates
JP7175766B2 (ja) サセプタ支持体
CN113508190B (zh) 多喷淋头化学气相沉积的反应器、方法及产品
TW201812988A (zh) 具有多區溫度控制及多重清潔能力的基座
TW200927295A (en) Multi-gas concentric injection showerhead
US10271382B2 (en) Circular lamp arrays
KR20130055623A (ko) 선형 회분식 화학 기상 증착 시스템
KR20160121563A (ko) 주입 어셈블리를 갖는 상부 돔
WO2021167847A1 (en) Susceptor for a chemical vapor deposition reactor
JP2014165500A (ja) バッチ式基板処理装置
US20160033070A1 (en) Recursive pumping member
US20170037515A1 (en) Reflector and susceptor assembly for chemical vapor deposition reactor
JP6054733B2 (ja) 気相成長装置
JP2006070325A (ja) 高温用cvd装置
EP3184666B1 (en) System and method for gas phase deposition
KR101694750B1 (ko) 스프레이 열 분해용 노즐 및 이를 포함하는 박막 형성 장치
US20240363327A1 (en) Epi thermal profile tuning with lamp radiation shields
JPS61129816A (ja) 半導体製造装置
CN118266064A (zh) 处理基底的装置以及方法
JPS61131430A (ja) 半導体製造装置
JP2005150390A (ja) 加熱ステージ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: R. Bart

Inventor after: D.L. Butler

Inventor after: N.P. Claudius

Inventor after: J. A. lanstrand

Inventor after: A. Lao

Inventor after: N. Shastar

Inventor before: R. Bart

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant