CN113505967B - 一种基于实时故障率的配电网韧性提升方法 - Google Patents

一种基于实时故障率的配电网韧性提升方法 Download PDF

Info

Publication number
CN113505967B
CN113505967B CN202110625332.9A CN202110625332A CN113505967B CN 113505967 B CN113505967 B CN 113505967B CN 202110625332 A CN202110625332 A CN 202110625332A CN 113505967 B CN113505967 B CN 113505967B
Authority
CN
China
Prior art keywords
line
distribution network
toughness
load
power distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110625332.9A
Other languages
English (en)
Other versions
CN113505967A (zh
Inventor
于艾清
金彪
王育飞
张宇华
薛花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Electric Power University
Original Assignee
Shanghai Electric Power University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Electric Power University filed Critical Shanghai Electric Power University
Priority to CN202110625332.9A priority Critical patent/CN113505967B/zh
Publication of CN113505967A publication Critical patent/CN113505967A/zh
Application granted granted Critical
Publication of CN113505967B publication Critical patent/CN113505967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0639Performance analysis of employees; Performance analysis of enterprise or organisation operations
    • G06Q10/06393Score-carding, benchmarking or key performance indicator [KPI] analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Marketing (AREA)
  • Theoretical Computer Science (AREA)
  • Development Economics (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • Quality & Reliability (AREA)
  • Game Theory and Decision Science (AREA)
  • Operations Research (AREA)
  • Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明涉及一种基于实时故障率的配电网韧性提升方法,包括:根据影响配电网组件故障率的内外部因素,构建配电网组件故障率模型;根据配电网组件故障率模型,以元件组合的方式将电力系统划分成多个“馈线分区”,并计算得到各个分区的故障率以及平均故障恢复时间;根据各个分区的故障率以及平均故障恢复时间,求取得到电力系统韧性评估指标;根据电力系统韧性评估指标,确定配电网薄弱环节,并针对该薄弱环节进行韧性提升。与现有技术相比,本发明根据台风的走向、等级对配电网韧性进行实时评估,评估过程清晰简便,能够准确找到系统的薄弱环节,从而保证后续可靠地提升配电网韧性。

Description

一种基于实时故障率的配电网韧性提升方法
技术领域
本发明涉及电力系统分析技术领域,尤其是涉及一种基于实时故障率的配电网韧性提升方法。
背景技术
配电网作为电力网络的重要环节,承担着为工业、商业和家庭等用户输送电能的作用,直接影响到对用户的供电质量,一旦发生配电网供电异常,不仅对社会各行各业造成的经济损失巨大,还给人民生活带来不便,造成社会秩序混乱,甚至引起国防安全和社会动荡等严重后果。
随着电力系统在各行各业的渗透率越来越大,如何保证配电网的正常供电已成为一个全球性的问题。近年来,由于强台风、地震等自然灾害影响,配电网频繁发生大规模停电,在大扰动情况下如何提高电力系统的应变和恢复能力,是现阶段亟需解决的问题。在这种背景下,国内外学者引入了“韧性”概念来量化电力系统应对扰动时的承受能力,目前针对配电网的韧性评估,通常从定性评估和定量评估两方面去研究,定性评估通常考虑电力系统运行的不同方面,而定量评估往往基于对系统功能的量化;对于配电网韧性的提升措施,传统方法主要是进行线路加固,架空线路电缆化等,但是此类方法往往造价高昂,受地形因素影响较大,不能广泛应用。现阶段国内外学者对于配电网韧性的定义和评估还没有统一化的流程和规范。电力系统韧性评估是研究韧性理论的重要基础,也是面对各种干扰提高配电网韧性强度的理论指导。因此,如何规范地进行配电网韧性评估,以在此基础上有针对性地对配电网进行改善、提升韧性,将具有十分重要的理论价值和现实意义。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于实时故障率的配电网韧性提升方法,通过对配电网韧性进行实时清晰地评估,以准确找出配电网的脆弱环节,从而保证配电网韧性提升的可靠性。
本发明的目的可以通过以下技术方案来实现:一种基于实时故障率的配电网韧性提升方法,包括以下步骤:
S1、根据影响配电网组件故障率的内外部因素,构建配电网组件故障率模型;
S2、根据配电网组件故障率模型,以元件组合的方式将电力系统划分成多个“馈线分区”,并计算得到各个分区的故障率以及平均故障恢复时间;
S3、根据各个分区的故障率以及平均故障恢复时间,求取得到电力系统韧性评估指标;
S4、根据电力系统韧性评估指标,确定配电网薄弱环节,并针对该薄弱环节进行韧性提升。
进一步地,所述步骤S1具体包括以下步骤:
S11、通过构建台风模型,计算得到作用在线路上的最大风速,再根据台风与线路的相对位置,计算得到配电线路风载荷,之后根据风载荷计算得到实时导线应力;
S12、根据导线计算拉断力,得到导线最大张力值;
S13、根据实时导线应力以及导线最大张力值,确定线路的实时故障率。
进一步地,所述线路上的最大风速具体为:
Figure BDA0003101950370000021
其中,V为作用在线路上的最大风速,A1、A2为台风的最大风速系数,a和b分别为台风中心的横坐标和纵坐标,x和y分别为配电线路所在位置的横坐标和纵坐标,α1、α2为台风的衰减系数,β为配电线路与风向的夹角。
进一步地,所述配电线路风载荷具体为:
Figure BDA0003101950370000022
其中,N为配电线路风载荷,D为导线直径。
进一步地,所述实时导线应力具体为:
Figure BDA0003101950370000023
Figure BDA0003101950370000024
其中,σl为实时导线应力,Tl为导线张力,Sl为导线的截面积,Tg为导线自身重力,Hd为水平方向导线最高安装点与导线弧垂的距离,ω为高差角,即导线两端连线与水平方向的夹角。
进一步地,所述导线最大张力值具体为:
Figure BDA0003101950370000031
其中,Tmax为导线的最大张力值,T0为计算拉断力,ε为新线系数,通常取0.95,τ为安全系数。
进一步地,所述线路的实时故障率具体为:
Figure BDA0003101950370000032
其中,
Figure BDA0003101950370000033
为某一段线路故障概率,是关于风速V的函数,a、b分别为地形系数和线路老化系数,a取值为0.82~1.6,b取值为1~1.3,
Figure BDA0003101950370000034
为在风速V下的实时导线应力。
进一步地,所述步骤S2具体包括以下步骤:
S21、采用馈线分区的方式,将每一条线路及线路上的各元件进行组合,之后将网络结构划分为多个分区;
S22、根据元件之间的串联关系,分别计算每个分区的故障率以及平均故障恢复时间。
进一步地,所述分区的故障率以及平均故障恢复时间具体为:
Figure BDA0003101950370000035
Figure BDA0003101950370000036
其中,λ′z为某一分区故障率,t′z为某一分区对应的平均故障恢复时间,z为分区个数,
Figure BDA0003101950370000037
为某一线路故障率,
Figure BDA0003101950370000038
为该线路平均故障修复时间,hz为分区元件类型数,ij为元件类型编号,mi为第ij种类型元件个数,
Figure BDA0003101950370000039
为第ij种类型元件故障率,
Figure BDA00031019503700000310
为该类型元件平均修复时间。
进一步地,所述步骤S3具体是根据各分区的故障率,求取在对应平均故障恢复时间内的负荷损失量,以作为电力系统韧性评估指标,其中,负荷损失量的计算公式具体为:
Figure BDA0003101950370000041
其中,n为分区集合,pz为某一分区平均负荷损失量,Δp′z为故障时单位时间负荷损失量,R为所有分区平均负荷损失量的总和,即为电力系统韧性评估指标。
进一步地,所述步骤S4具体是根据电力系统韧性评估指标中各分区平均负荷损失量的数值大小,以确定配电网薄弱环节,其中,平均负荷损失量的数值越大,则表明该分区越薄弱。
进一步地,所述步骤S4具体是采用线路改造或接入储能装置的方式进行韧性提升,其中,线路改造是直接对平均负荷损失量最大的分区进行改造;
接入储能装置则是以电网运行、网损成本最低作为目标,结合储能规划约束条件,以构建储能规划模型,从而确定储能安装位置及安装能量,所述储能规划模型具体为:
目标函数:
min C=Cinv+Cload+Closs
Cinv=ρEload(CES+Cr)
配电网有功/无功功率约束:
Figure BDA0003101950370000042
Figure BDA0003101950370000043
线路的潮流限制约束:
Figure BDA0003101950370000044
Figure BDA0003101950370000045
储能放电约束和初始容量约束:
Figure BDA0003101950370000046
Figure BDA0003101950370000047
Figure BDA0003101950370000048
节点负荷约束:
Figure BDA0003101950370000049
Figure BDA00031019503700000410
支路上储能安装数量约束:
Figure BDA0003101950370000051
其中,Cinv为储能初始总投资费用,CES为储能单位容量基础设备成本,Cr为运营维护成本,ρ为系统风险指数,具体的物理含义为配电网在台风天气下的所有分区的平均负荷损失量总和与负荷总量的比例关系,系统的韧性强度越低,ρ的值就越大,表示投资者心理越谨慎保守,越希望通过增加储能投资来提高配电网韧性,Eload为系统初始负荷总容量,Cload为负荷的总运行成本,Closs为系统接入储能配置后的总网损成本;
L为配电线路集合,PG,t、PES,t、QG,t、QES,t分别为电源、储能装置输出的有功及无功总容量,
Figure BDA0003101950370000052
分别为所有支路负荷有功和无功总量,
Figure BDA0003101950370000053
Figure BDA0003101950370000054
分别为所有支路有功和无功损耗总量,
Figure BDA0003101950370000055
分别为各支路上有功和无功传输容量,
Figure BDA0003101950370000056
分别为线路传输容量的最小和最大限制值,
Figure BDA0003101950370000057
为第k条支路上储能设备实时放电值,
Figure BDA0003101950370000058
为初始放电约束限定值,
Figure BDA0003101950370000059
为可能安装的储能总容量,
Figure BDA00031019503700000510
分别为储能最小和最大荷电状态值,
Figure BDA00031019503700000511
为储能设备剩余电量,
Figure BDA00031019503700000512
分别为各支路的有功和无功损耗,
Figure BDA00031019503700000513
分别为各支路有功和无功损耗限定值,
Figure BDA00031019503700000514
为每条支路上储能安装个数限制。
与现有技术相比,本发明结合影响配电网组件故障率的内外部因素,以构建出配电网组件故障率模型,再通过将电力系统划分为多个馈线分区,以得到各个分区对应的故障率以及平均故障修复时间,进而求取得到各个分区对应的平均负荷损失量以及所有分区的平均负荷损失量总和,由此实现对配电网韧性进行评估,从而能够准确找出配电网的薄弱环节,保证后续提升配电网韧性的可靠性和有效性。
附图说明
图1为本发明的方法流程示意图;
图2为实施例中配电网韧性评估及提升过程示意图;
图3为本发明配电网韧性曲线概念图;
图4为实施例中小型台区配电网运行模型图;
图5为实施例中台风登陆后第八时段各线路的有效风速图;
图6为实施例中台风登陆后第八时段各线路的故障率图;
图7为实施例中原始配电网各分区韧性指标图;
图8为实施例中台风天气下系统各分区韧性指标图;
图9为实施例中线路改造后各分区韧性指标图;
图10为实施例中储能装置ES接入配电网后各支路损耗变化曲线图;
图11为实施例中接入储能后的各分区韧性指标图。
具体实施方式
下面结合附图和具体实施例对本发明进行详细说明。
实施例
如图1所示,一种基于实时故障率的配电网韧性提升方法,包括以下步骤:
S1、根据影响配电网组件故障率的内外部因素,构建配电网组件故障率模型;
S2、根据配电网组件故障率模型,以元件组合的方式将电力系统划分成多个“馈线分区”,并计算得到各个分区的故障率以及平均故障恢复时间;
S3、根据各个分区的故障率以及平均故障恢复时间,求取得到电力系统韧性评估指标;
S4、根据电力系统韧性评估指标,确定配电网薄弱环节,并针对该薄弱环节进行韧性提升。
具体的,如图2所示,主要包括以下过程:
一、根据影响配电网组件故障率的内外部因素,构建配电网组件故障率模型。
(1)外部因素:首先建立台风模型,作用在配电线路上的有效风速计算方法为:
Figure BDA0003101950370000061
其中,V为作用在线路上的最大风速,A1、A2为最大风速系数,a、b为台风中心的横纵坐标,x、y为配电线路所在位置的横纵坐标,α1、α2为台风的衰减系数,β为线路与风向的夹角。
再根据台风与线路的相对位置来求出配电线路风载荷
Figure BDA0003101950370000062
根据风载荷计算实时导线应力
Figure BDA0003101950370000063
其中,Tg为导线自身重力(实际计算时可以忽略),N为导线荷载值,Hd为水平方向导线最高安装点与导线弧垂的距离,ω为高差角,即导线两端连线与水平方向的夹角,将影响故障率的地理因素具象化,采用地形系数a(a取值为0.82~1.6)来描述地理环境对配电线路的影响程度。
(2)内部因素:在配电网中,为了配电网的安全运行,导线的物理强度有特定的设计规范。导线的最大张力值与其计算拉断力值存在相对的比例关系,两者间的关系式为:
Figure BDA0003101950370000071
其中,T0为计算拉断力,ε为新线系数,通常取0.95,τ为安全系数,Tmax为导线的最大张力值,线路老化因素影响程度用系数b来表示,取值1~1.3。
(3)线路的实时故障率定义为:
Figure BDA0003101950370000072
其中,a、b分别为地形系数和线路老化系数,
Figure BDA0003101950370000073
为实时导线应力,Tmax为导线最大张力,
Figure BDA0003101950370000074
为某一段线路故障概率,是关于风速V的函数。
二、根据故障率模型,以元件组合的方式将电力系统划分成多个“馈线分区”,计算各分区的故障率及平均故障恢复时间。采用“馈线分区”的方式,将每一条线路及线路上的低压断路器、负荷等元件组合(假设台风仅影响输电线路,线路上的其他元件故障率以配电网正常运行时为准),把网络结构划分为多个分块,并根据元件之间的串联关系计算每个分区的故障次数及修复时间。计算公式为:
Figure BDA0003101950370000075
Figure BDA0003101950370000076
其中,λz′为某一分区故障率,z为分区个数,
Figure BDA0003101950370000077
为某一线路故障率,
Figure BDA0003101950370000078
为该线路平均故障修复时间,hz为分区元件类型数,ij表示元件类型编号,mi表示第ij种类型元件个数,
Figure BDA0003101950370000079
为第ij种类型元件故障率,
Figure BDA00031019503700000710
为该类型元件平均修复时间。
三、根据故障率,求在恢复时间内负荷的损失量并作为电力系统韧性评估指标。配电网韧性曲线概念如图3所示,具体的计算方法为:
Figure BDA00031019503700000711
式中,n为分区集合,pz为某一分区平均负荷损失量,R为所有分区的平均负荷损失量的总和,λ′z为该分区故障率,t′z为故障平均修复时间,Δp′z为故障时单位时间负荷损失量。
四、根据求得的韧性评估指标,确定配电网薄弱环节,并根据系统的薄弱环节,采用不同方案进行韧性提升并用ETAP软件进行仿真验证,本实施例采取的两种韧性提升措施分别为线路改造和接入储能装置。
其中,线路改造的位置选择依据韧性指标确定,选取韧性强度最低(即对应平均负荷损失量最大)的分区进行改造;
接入储能装置时,则风险系数由韧性指标确定,以约束储能装置的总容量,同时,以电网运行、网损成本最低为目标,确定储能的最终位置及容量,储能的具体规划方案如下:
min C=Cinv+Cload+Closs
Cinv表示储能初始总投资费用,计算公式为Cinv=ρEload(CES+Cr),其中包括储能单位容量基础设备成本CES和运营维护成本Cr,ρ为系统风险指数,根据韧性指标确定,具体的物理含义为配电网在台风天气下的负荷损失量与负荷总量的比例关系,系统的韧性强度越低,ρ的值就越大,表示投资者心理越谨慎保守,越希望通过增加储能投资来提高配电网韧性,Eload为系统初始负荷总容量,Cload为负荷的总运行成本,Closs为系统接入储能配置后的总网损成本。
储能规划约束条件包括:
Figure BDA0003101950370000081
Figure BDA0003101950370000082
Figure BDA0003101950370000083
Figure BDA0003101950370000084
Figure BDA0003101950370000085
Figure BDA0003101950370000086
Figure BDA0003101950370000087
Figure BDA0003101950370000088
Figure BDA0003101950370000089
Figure BDA00031019503700000810
式中:L表示配电线路集合,式(1)、(2)为配电网有功/无功功率约束,
Figure BDA00031019503700000811
为第k段线路的潮流限制约束值,式(5)、(6)、(7)为储能的放电约束、初始容量约束以及荷电状态约束,式(8)、(9)为节点负荷约束,
Figure BDA0003101950370000091
为每条支路上储能安装个数限制,利用遗传算法求解,可获得满足目标函数条件下的储能规划方案,具体的,PG,t、PES,t、QG,t、QES,t分别为电源、储能装置输出的有功/无功总容量;
Figure BDA0003101950370000092
为所有支路负荷有功/无功总量;
Figure BDA0003101950370000093
为所有支路有功/无功损耗总量;
Figure BDA0003101950370000094
为各支路上有功/无功传输容量,
Figure BDA0003101950370000095
为线路传输容量最小最大值限制值;
Figure BDA0003101950370000096
为第k条支路上储能设备实时放电值,
Figure BDA0003101950370000097
为初始放电约束限定值;
Figure BDA0003101950370000098
为可能安装的储能总容量;
Figure BDA0003101950370000099
Figure BDA00031019503700000910
分别为储能最小最大荷电状态值,
Figure BDA00031019503700000911
为储能设备剩余电量;
Figure BDA00031019503700000912
为各支路的有功/无功损耗;
Figure BDA00031019503700000913
为各支路有功/无功损耗限定值。
本实施例中,某小型台区模型如图4所示,为了使研究结果普遍化,以该地区的平均强风水平为例,强风以每小时25km的速度向东南方向移动。以变压器输出端作为原点,建立矩形坐标系。台风中心起始点坐标为(305km,-15km)。导线类型为LJ-35,新线系数为ε为1,安全系数τ为2.5。虚线区域L1、L2、L3分别为不同地形地区,其地形系数取值分别为a1=1.2,a2=1,a3=0.92。线路老化系数b取值为1。基于上述的故障率模型,以台风登陆后的第八时段为例,各线路的有效风速以及对应的故障率分别如图5、6所示。基于上述的馈线分区过程,得到实施例中各分区的故障率如下表所示,分别为原始状态配电网(表1)和台风天气下配电网(表2)的运行情况。
表1
分区编号 故障率(次/年) 平均修复时间(h)
1 0.816 8.73
2 0.8225 9.4
3 0.801 10.14
4 0.7845 10.74
5 0.808 11.2
6 0.844 11.06
7 0.754 10.11
8 0.794 10
9 0.7805 10.76
10 0.788 11.28
11 0.8915 11.39
12 0.883 11.91
13 0.807 12.28
表2
Figure BDA00031019503700000914
Figure BDA0003101950370000101
基于各分区的故障率以及故障平均修复时间,计算得到原始配电网的总韧性指标为
Figure BDA0003101950370000102
台风灾害下系统的韧性指标为Rwind=184,其中,各分区对应的韧性指标数据如图7和图8所示,分析数据可知,在极端天气条件下,与正常运行情况相比,配电网负荷损失增加,整个系统韧性急剧下降。尤其是分区1、6、11对应的C1、C6和C11这3条线路最易受到极端天气影响,负荷的损失量相对较多。因此,根据仿真结果,为了提升系统的整体韧性,需改善系统的薄弱环节。
本实施例采用架空线路电缆化以及接入储能装置两种方式进行配电网韧性提升:
方案一:将C1、C6和C11这3条线路替换成等长度的电缆。得到的仿真结果如图9所示。从图中可以看出,1、6、11这3个分区的负荷损失量大大减少,系统整体的韧性指标Rcable=86.691,系统韧性强度较极端天气灾害下提升了53%。
方案二:根据计算得出的配电网韧性指标,台风天气下负荷损失量占总负荷量的28.4%,设置此时风险系数ρ为0.3,利用遗传算法求解储能规划模型,得到的储能规划方案如表3所示,储能总投资成本为18.472万元。
表3
编号 位置 容量
ES1 节点6 70kW
ES2 节点9 50kW
ES3 节点12 154kW
系统各支路损耗如图10所示,在接入储能装置后,系统总网损从26.06kW降低到11.61kW,各支路网损得到明显改善,为验证结果的准确性,实施例采用ETAP进行仿真。在仿真模型中分别设置容量为70kW、50kW和154kW的储能装置,安装于节点6、9和12处,得到的仿真结果如图11所示,此时系统的韧性指标值RES为83.528。对比两种方案韧性提升方案可知,接入储能设备的方案比架空线路电缆化方案稍有提升,方案一只对改善后的分区有韧性提升效果,其他分区韧性指标不变,而方案二能够辐射到多个分区,可以对在储能安装位置附近的线路起到韧性提升效果,若以电缆每公里5万元计算,电缆化方案总投资成本为42万元,远远高于储能的投资成本。因此,在成本受限的条件下,方案二要优于方案一。
综上所述,本发明提出的技术方案能根据台风的走向、等级对配电网韧性进行实时评估,评估过程清晰简便,且能准确有效找到配电网的脆弱环节,采取的改善措施在最大化提升配电网韧性的同时能最小化投资成本。

Claims (1)

1.一种基于实时故障率的配电网韧性提升方法,其特征在于,包括以下步骤:
S1、根据影响配电网组件故障率的内外部因素,构建配电网组件故障率模型;
S2、根据配电网组件故障率模型,以元件组合的方式将电力系统划分成多个“馈线分区”,并计算得到各个分区的故障率以及平均故障恢复时间;
S3、根据各个分区的故障率以及平均故障恢复时间,求取得到电力系统韧性评估指标;
S4、根据电力系统韧性评估指标,确定配电网薄弱环节,并针对该薄弱环节进行韧性提升;
其中,所述步骤S1具体包括以下步骤:
S11、通过构建台风模型,计算得到作用在线路上的最大风速,再根据台风与线路的相对位置,计算得到配电线路风载荷,之后根据风载荷计算得到实时导线应力;
S12、根据导线计算拉断力,得到导线最大张力值;
S13、根据实时导线应力以及导线最大张力值,确定线路的实时故障率;
所述线路上的最大风速具体为:
Figure FDA0003495509360000011
其中,V为作用在线路上的最大风速,A1、A2为台风的最大风速系数,a和b分别为台风中心的横坐标和纵坐标,x和y分别为配电线路所在位置的横坐标和纵坐标,α1、α2为台风的衰减系数,β为配电线路与风向的夹角;
所述配电线路风载荷具体为:
Figure FDA0003495509360000012
其中,N为配电线路风载荷,D为导线直径;
所述实时导线应力具体为:
Figure FDA0003495509360000013
Figure FDA0003495509360000014
其中,σl为实时导线应力,Tl为导线张力,Sl为导线的截面积,Tg为导线自身重力,Hd为水平方向导线最高安装点与导线弧垂的距离,ω为高差角,即导线两端连线与水平方向的夹角;
所述导线最大张力值具体为:
Figure FDA0003495509360000021
其中,Tmax为导线的最大张力值,T0为计算拉断力,ε为新线系数,通常取0.95,τ为安全系数;
所述线路的实时故障率具体为:
Figure FDA0003495509360000022
其中,
Figure FDA0003495509360000023
为某一段线路故障概率,是关于风速V的函数,a、b分别为地形系数和线路老化系数,a取值为0.82~1.6,b取值为1~1.3,
Figure FDA0003495509360000024
为在风速V下的实时导线应力;
所述步骤S2具体包括以下步骤:
S21、采用馈线分区的方式,将每一条线路及线路上的各元件进行组合,之后将网络结构划分为多个分区;
S22、根据元件之间的串联关系,分别计算每个分区的故障率以及平均故障恢复时间;
所述分区的故障率以及平均故障恢复时间具体为:
Figure FDA0003495509360000025
Figure FDA0003495509360000026
其中,λ′z为某一分区故障率,t′z为某一分区对应的平均故障恢复时间,z为分区个数,
Figure FDA0003495509360000027
为某一线路故障率,
Figure FDA0003495509360000028
为该线路平均故障修复时间,hz为分区元件类型数,ij为元件类型编号,mi为第ij种类型元件个数,
Figure FDA0003495509360000029
为第ij种类型元件故障率,
Figure FDA00034955093600000210
为该类型元件平均修复时间;
所述步骤S3具体是根据各分区的故障率,求取在对应平均故障恢复时间内的负荷损失量,以作为电力系统韧性评估指标,其中,负荷损失量的计算公式具体为:
Figure FDA0003495509360000031
其中,n为分区集合,pz为某一分区平均负荷损失量,Δp′z为故障时单位时间负荷损失量,R为所有分区平均负荷损失量的总和,即为电力系统韧性评估指标;
所述步骤S4具体是根据电力系统韧性评估指标中各分区平均负荷损失量的数值大小,以确定配电网薄弱环节,其中,平均负荷损失量的数值越大,则表明该分区越薄弱;
所述步骤S4具体是采用线路改造或接入储能装置的方式进行韧性提升,其中,线路改造是直接对平均负荷损失量最大的分区进行改造;
接入储能装置则是以电网运行、网损成本最低作为目标,结合储能规划约束条件,以构建储能规划模型,从而确定储能安装位置及安装能量,所述储能规划模型具体为:
目标函数:
minC=Cinv+Cload+Closs
Cinv=ρEload(CES+Cr)
配电网有功/无功功率约束:
Figure FDA0003495509360000032
Figure FDA0003495509360000033
线路的潮流限制约束:
Figure FDA0003495509360000034
Figure FDA0003495509360000035
储能放电约束和初始容量约束:
Figure FDA0003495509360000036
Figure FDA0003495509360000037
Figure FDA0003495509360000038
节点负荷约束:
Figure FDA0003495509360000039
Figure FDA00034955093600000310
支路上储能安装数量约束:
Figure FDA0003495509360000041
其中,Cinv为储能初始总投资费用,CES为储能单位容量基础设备成本,Cr为运营维护成本,ρ为系统风险指数,具体的物理含义为配电网在台风天气下的所有分区的平均负荷损失量总和与负荷总量的比例关系,系统的韧性强度越低,ρ的值就越大,表示投资者心理越谨慎保守,越希望通过增加储能投资来提高配电网韧性,Eload为系统初始负荷总容量,Cload为负荷的总运行成本,Closs为系统接入储能配置后的总网损成本;
L为配电线路集合,PG,t、PES,t、QG,t、QES,t分别为电源、储能装置输出的有功及无功总容量,
Figure FDA0003495509360000042
分别为所有支路负荷有功和无功总量,
Figure FDA0003495509360000043
Figure FDA0003495509360000044
分别为所有支路有功和无功损耗总量,
Figure FDA0003495509360000045
分别为各支路上有功和无功传输容量,
Figure FDA0003495509360000046
分别为线路传输容量的最小和最大限制值,
Figure FDA0003495509360000047
为第k条支路上储能设备实时放电值,
Figure FDA0003495509360000048
为初始放电约束限定值,
Figure FDA0003495509360000049
为可能安装的储能总容量,
Figure FDA00034955093600000410
分别为储能最小和最大荷电状态值,
Figure FDA00034955093600000411
为储能设备剩余电量,
Figure FDA00034955093600000412
分别为各支路的有功和无功损耗,
Figure FDA00034955093600000413
分别为各支路有功和无功损耗限定值,
Figure FDA00034955093600000414
为每条支路上储能安装个数限制。
CN202110625332.9A 2021-06-04 2021-06-04 一种基于实时故障率的配电网韧性提升方法 Active CN113505967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110625332.9A CN113505967B (zh) 2021-06-04 2021-06-04 一种基于实时故障率的配电网韧性提升方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110625332.9A CN113505967B (zh) 2021-06-04 2021-06-04 一种基于实时故障率的配电网韧性提升方法

Publications (2)

Publication Number Publication Date
CN113505967A CN113505967A (zh) 2021-10-15
CN113505967B true CN113505967B (zh) 2022-05-20

Family

ID=78009260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110625332.9A Active CN113505967B (zh) 2021-06-04 2021-06-04 一种基于实时故障率的配电网韧性提升方法

Country Status (1)

Country Link
CN (1) CN113505967B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160010797A (ko) * 2014-07-18 2016-01-28 (주)지아이 방재력 비용지수 평가방법
CN107230015A (zh) * 2017-05-25 2017-10-03 天津大学 一种基于系统信息熵的配电网韧性评估方法
CN110535144A (zh) * 2019-09-27 2019-12-03 国网甘肃省电力公司经济技术研究院 风沙天气下含多类型负荷的智能配电网韧性定量分析方法
CN110571807A (zh) * 2019-10-15 2019-12-13 华北电力大学 极端自然灾害下计及储能配置韧性配电网规划方法及系统
CN110970891A (zh) * 2019-10-29 2020-04-07 国网山东省电力公司青岛供电公司 极端天气下基于多能协调的配电网弹性提升方法
CN112001626A (zh) * 2020-08-21 2020-11-27 广东电网有限责任公司广州供电局 一种台风天气下的配电网韧性评价方法、存储介质及设备
CN112001625A (zh) * 2020-08-21 2020-11-27 天津大学 一种冰灾下输电系统的全时段韧性增强方法
CN112242701A (zh) * 2020-11-03 2021-01-19 上海电力大学 一种基于配电网多故障抢修任务的分配方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160010797A (ko) * 2014-07-18 2016-01-28 (주)지아이 방재력 비용지수 평가방법
CN107230015A (zh) * 2017-05-25 2017-10-03 天津大学 一种基于系统信息熵的配电网韧性评估方法
CN110535144A (zh) * 2019-09-27 2019-12-03 国网甘肃省电力公司经济技术研究院 风沙天气下含多类型负荷的智能配电网韧性定量分析方法
CN110571807A (zh) * 2019-10-15 2019-12-13 华北电力大学 极端自然灾害下计及储能配置韧性配电网规划方法及系统
CN110970891A (zh) * 2019-10-29 2020-04-07 国网山东省电力公司青岛供电公司 极端天气下基于多能协调的配电网弹性提升方法
CN112001626A (zh) * 2020-08-21 2020-11-27 广东电网有限责任公司广州供电局 一种台风天气下的配电网韧性评价方法、存储介质及设备
CN112001625A (zh) * 2020-08-21 2020-11-27 天津大学 一种冰灾下输电系统的全时段韧性增强方法
CN112242701A (zh) * 2020-11-03 2021-01-19 上海电力大学 一种基于配电网多故障抢修任务的分配方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
计及冰灾影响的电力系统韧性评估与提升方法;郭伟等;《电力系统及其自动化学报》;20210413;第1-7页 *

Also Published As

Publication number Publication date
CN113505967A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN105353256B (zh) 一种输变电设备状态异常检测方法
CN107623319B (zh) 一种基于多评价指标的电网关键线路辨识方法
CN107992962B (zh) 一种基于熵权法的输电线路防雷措施优化选择方法
CN107578169B (zh) 一种台风灾害条件下的电网关键线路识别方法及装置
CN108512226B (zh) 一种灾害下电力系统恢复力评估的方法
CN107292478B (zh) 一种灾害对配电网影响态势的获取方法
CN109359896B (zh) 一种基于svm的电网线路故障风险预警方法
CN110826842A (zh) 一种台风场景下的配电网风险控制方法
CN102609792A (zh) 一种特高压交直流输电方式适用选择方法及其装置
CN112116276B (zh) 一种计及电气主设备时变状态的变电站运行风险评估方法
CN115169931B (zh) 一种基于数字孪生的输电线路安全状态评估方法
CN112924817A (zh) 一种基于深度神经网络的配电网故障精确定位方法
CN114692505A (zh) 一种电容式电压互感器误差预测方法及装置
CN110070223A (zh) 一种应用于新建风电场的短期功率预测方法
CN107391838B (zh) 塔线系统不均匀覆冰最严重情况的寻优方法
CN113569411A (zh) 一种面向灾害天气的电网运行风险态势感知方法
CN112986731A (zh) 计及地震不确定性的电气互联系统韧性评估与提升方法
CN116167609A (zh) 基于神经网络模型的电力系统风险评估方法
CN106356846A (zh) 一种基于时间的初期电网连锁故障模拟仿真方法
CN108694479A (zh) 考虑天气对检修间隔时间影响的配电网可靠性预测方法
CN113505967B (zh) 一种基于实时故障率的配电网韧性提升方法
CN113609721B (zh) 多类型极端灾害电气互联系统韧性计算方法及装置
CN117150808A (zh) 一种强对流天气下输电线路韧性评估方法、系统及设备
CN117236030A (zh) 台风灾害下考虑级联过载故障发生的电力系统韧性评估建模方法
CN115809836B (zh) 考虑分布式储能应急供电能力的配电网韧性规划的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant