CN113609721B - 多类型极端灾害电气互联系统韧性计算方法及装置 - Google Patents

多类型极端灾害电气互联系统韧性计算方法及装置 Download PDF

Info

Publication number
CN113609721B
CN113609721B CN202110789628.4A CN202110789628A CN113609721B CN 113609721 B CN113609721 B CN 113609721B CN 202110789628 A CN202110789628 A CN 202110789628A CN 113609721 B CN113609721 B CN 113609721B
Authority
CN
China
Prior art keywords
toughness
disaster
index
calculating
potential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110789628.4A
Other languages
English (en)
Other versions
CN113609721A (zh
Inventor
侯恺
王晗
贾宏杰
余晓丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202110789628.4A priority Critical patent/CN113609721B/zh
Publication of CN113609721A publication Critical patent/CN113609721A/zh
Application granted granted Critical
Publication of CN113609721B publication Critical patent/CN113609721B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • G06F17/18Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Analysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Biology (AREA)
  • Computer Hardware Design (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Operations Research (AREA)
  • Probability & Statistics with Applications (AREA)
  • Evolutionary Computation (AREA)
  • Algebra (AREA)
  • Geometry (AREA)
  • Databases & Information Systems (AREA)
  • Software Systems (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种多类型极端灾害电气互联系统韧性计算方法及装置,方法包括:应用电气互联系统解耦优化算法计算系统在各阶故障下最优负荷削减,求得IISE法所定义的影响增量,构建复用影响增量库;通过反复调用影响增量库计算各个潜在极端灾害场景下的失负荷期望值,根据失负荷期望值计算各潜在灾害场景下的韧性指标;以潜在极端灾害场景概率为权重,计算各潜在灾害场景下的系统级指标rsys和元件级指标rm的加权和,得到面向规划的韧性指标Rsys和Rm,根据韧性指标Rm计算得到经济性指标,根据韧性指标Rm和经济性指标对元件强化优先级进行排序,制订韧性提升方案。装置包括:处理器和存储器。本发明显著提高了韧性指标的计算速度。

Description

多类型极端灾害电气互联系统韧性计算方法及装置
技术领域
本发明涉及电气互联系统领域,尤其涉及一种基于复用影响增量库的多类型极端灾害电气互联系统韧性计算方法及装置。
背景技术
在规划尺度上,一些地区的电气互联系统需要面对不止一种常见的极端自然灾害,例如中国台湾地区每年都会发生多起地震和台风灾害。韧性电气互联系统需要在所有可能发生的极端灾害,而不是仅仅某一次或某一类极端灾害面前保持足够的韧性,因此有必要对计及多类型极端灾害的电气互联系统进行韧性评估,从而避免只考虑单一类型极端灾害得出的片面规划结论。
韧性,指的是系统抵御极端自然灾害并快速恢复到正常供能状态的能力。而对于电气互联系统这一典型的输能网而言,韧性更侧重于系统抵御灾害的能力[1]。现有的电气互联系统韧性评估方法首先将元件的故障概率表示为极端灾害强度的函数,然后采用极端灾害可能造成的故障状态的失负荷期望值作为韧性评估指标,以此来反映系统在极端灾害下的韧性水平。为了更全面地考虑一个区域内可能发生的极端灾害,面向规划的韧性评估方法[2]对极端灾害的各个参数进行枚举,得到潜在极端灾害场景集,然后将各潜在极端灾害场景的概率与失负荷期望值相乘后求和,所得韧性指标计及了灾害发生的不确定性。各类极端自然灾害的模型构建已有研究,例如,文献[2]和GB18306-2015《中国地震动参数区划图》分别介绍了台风和地震的各参数分布。但是,目前尚无在长时间规划尺度下考虑多种类型极端灾害的电气互联系统韧性研究。
电气互联系统常用的计算失负荷期望值的方法可以分为两类:蒙特卡洛模拟法和以状态枚举法为代表的分析法。
蒙特卡洛模拟法(MCS)通过抽样电气互联系统内各元件在地震灾害下的运行状态,得到故障状态及其影响,进而计算出系统失负荷期望值。为了确保计算结果具有一定的精度,蒙特卡洛模拟法需要增加模拟次数,这将会导致计算效率的降低。此外,分析不同的潜在极端灾害场景时,元件失效概率会发生变化,蒙特卡洛模拟法必须重新抽取故障状态,这限制了蒙特卡罗模拟法在面向规划的韧性评估中的应用。
分析法以状态枚举法为代表。传统的状态枚举法(SE)通过枚举极端灾害下系统所有可能的故障状态,计算各个故障状态的发生概率和影响,进而求得系统失负荷期望值。在实际应用中,随着故障元件数量的增加,所要枚举的故障状态的个数呈指数增长。为了提高计算效率,状态枚举法通常会忽略高阶故障状态,然而这会导致计算结果精度的下降。作为SE法的改进方法,基于影响增量的状态枚举法(IISE)[3]将高阶故障状态的失负荷量转移到相关的低阶故障状态的失负荷量中,并提高了低阶故障状态在韧性指标中所占的比例。此外,IISE法求得的各阶影响增量在元件失效概率改变时可以重复使用,从而迅速计算各个潜在灾害场景下的系统的失负荷期望值。然而,目前尚无研究将IISE方法的高精度、可复用的特点运用到计及多类型极端灾害的韧性评估中。
参考文献
[1]阮前途、谢伟、许寅、华斌、宋平、和敬涵、张琪祁.韧性电网的概念与关键特征[J].中国电机工程学报,2020,v.40;No.656(21):4-15.
[2]Liu X,Hou K,Jia H,et al.A Planning-oriented Resilience AssessmentFramework for Transmission Systems under Typhoon Disasters[J].IEEETransactions on Smart Grid,2020,PP(99).
[3]侯恺.电力系统可靠性评估方法改进与应用研究[D].2016.
发明内容
本发明提供了一种多类型极端灾害电气互联系统韧性计算方法及装置,本发明首先对多类型极端灾害(以台风和地震为例)的关键参数进行组合枚举,从而生成能充分体现电气互联系统受灾影响的灾害场景数据库;其次,提出了面向规划的元件级指标和经济性指标以协助规划人员制订最合适的韧性提升方案;接着,通过重复调用影响增量数据库计算各潜在极端灾害场景下的失负荷期望值,从而显著提高韧性指标的计算速度,详见下文描述:
第一方面,一种多类型极端灾害电气互联系统韧性计算方法,所述方法基于复用影响增量库,所述方法包括以下步骤:
1)根据各类型灾害的攻击模型推算每个潜在极端灾害场景下电气互联系统的元件失效概率,将潜在灾害场景的关键信息存储起来,建立灾害场景数据库;
2)应用电气互联系统解耦优化算法计算系统在各阶故障下最优负荷削减,求得IISE法所定义的影响增量,构建复用影响增量库;
3)通过反复调用影响增量库计算各个潜在极端灾害场景下的失负荷期望值,根据失负荷期望值计算各潜在灾害场景下的韧性指标;
4)以潜在极端灾害场景概率为权重,计算各潜在灾害场景下的系统级指标rsys和元件级指标rm的加权和,得到面向规划的韧性指标Rsys和Rm,根据韧性指标Rm计算得到经济性指标,根据韧性指标Rm和经济性指标对元件强化优先级进行排序,制订韧性提升方案。
在一种实施方式中,所述步骤1)之前还包括:
将各类极端灾害的关键参数可行域划分为多个取值区间,对取值区间进行组合枚举得到所有可能发生的极端灾害场景及发生概率;并引入灾害权重使得所有枚举场景概率之和为1。
在一种实施方式中,所述方法还包括:
计算韧性指标时,复用影响增量库提供的影响增量在灾害场景数据库描述的不同潜在极端灾害场景下被反复调用;
面向规划的韧性指标中,Rsys用于计算电气互联系统抵御潜在极端灾害的韧性,韧性指标Rm和经济性指标被用于协助制订电气互联系统韧性提升策略。
在一种实施方式中,所述元件级指标为:
rm=rsys-rsys|pm=p′m
式中,Pm′为元件m强化后的失效概率,rsys|pm=p′m表示元件m故障概率降为Pm′后的系统级韧性指标。
在一种实施方式中,所述经济性指标为:
式中,Hm指对元件m采取的强化措施,c(Hm)代表Hm的强化成本。
第二方面,一种多类型极端灾害电气互联系统韧性计算装置,其特征在于,所述装置包括:处理器和存储器,所述存储器中存储有程序指令,所述处理器调用存储器中存储的程序指令以使装置执行第一方面中的任一项所述的方法步骤。
第三方面,一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时使所述处理器执行第一方面中的任一项所述的方法步骤。
本发明提供的技术方案的有益效果是:
1、对各类灾害的关键参数进行组合枚举,从而生成多类型灾害场景数据库,以便实施面向规划的韧性值计算;
2、将IISE方法应用到计及多类型极端灾害的韧性计算中,通过在计算过程中反复调用影响增量库,实现计算效率的显著提升;
3、将本方法应用在中国台湾临海地震区的测试系统上,验证了该方法的可行性;算例结果表明,本方法能够全面提升电气互联系统的韧性,而经济性指标则可以在预算不足的情况下指导制订最具性价比的韧性提升方案。
附图说明
图1为台风行进示意图;
图2为地震烈度分布图;
图3为台风w的发生概率示意图;
图4为三级潜在震源区划分方案示意图;
图5为地震场景e的发生概率示意图;
图6为多类型灾害场景数据库示意图;
图7为基于E[Qshed]的韧性计算示意图;
图8为电气互联系统负荷削减优化算法框架示意图;
图9为计及多类型极端灾害的韧性计算框架示意图;
图10为电气互联测试系统拓扑图;
图11为电气互联测试系统地理位置示意图;
图12为地震es的烈度分布图;
图13为复用影响增量库方法和MCS方法的韧性计算时间对比图;
图14为多类型极端灾害电气互联系统韧性计算装置的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面对本发明实施方式作进一步地详细描述。
一、灾害攻击模型
极端灾害主要包括:极端天气灾害和极端地质灾害,前者通常难以破坏深埋地下的天然气系统元件,而后者则同时冲击影响天然气系统元件和电力系统元件。为便于分析,本研究只考虑典型的天气灾害和典型的地质灾害,即台风与地震。事实上,这两类常见极端灾害正是临海地震区所面临的占主导地位的极端灾害。
为研究台风或地震对电气互联系统的影响,本研究首先介绍台风与地震的攻击模型。
以台风登陆为起始时刻,则台风攻击模型可表示为:
ΔH(t)=ΔH0-0.677[1+sin(ξ-θ)]t (1)
rmax(t)=1.119×103ΔH(t)-0.805 (2)
式中,ΔH(t)是t时刻(hour)的中心气压差,ΔH0是初始中心气压差,单位均为hPa;ξ是海岸线与正北方向的顺时针夹角,θ是台风行进方向与正北方向的顺时针夹角;rmax(t)是时刻t的最大风速半径,单位为km;vrmax(t)是时刻t的最大风速(m/s),vT是台风行进速度(km/h),vd(t)是t时刻与风眼相距d(t)的点的实时风速(m/s);T是台风持续时间,上限设置为240小时。
如图1所示,台风在海岸线登陆,并以速度vT沿角度θ朝着大陆腹地行进。由式(4)可知,图中点(xd,yd)的实时风速在t1时刻和t2时刻分别为vrmax(t1)[rmax(t1)/d(t1)]和vrmax(t2)[d(t2)/rmax(t2)]。
本研究假定台风只对架空线路造成破坏,而架空线路则是由一系列杆塔和将相邻杆塔连接起来的众多输电线段组成。根据杆塔与输电线段中点的地理位置可以求出所有架空线路构件遭受的实时风速,进而可得t时刻杆塔和输电线段的失效概率:
式中,λa(t)和λb(t)分别是杆塔a和输电线段b在t时刻的失效概率;va(t)和vb(t)分别是杆塔a和输电线段b的实时风速;vd,tw和vd,l分别是杆塔和输电线段的设计风速;γ是模型系数,在本方法中取0.4;Δl是相邻杆塔间距,即输电线段的长度,单位为km。
由式(6)-式(7)可求得台风期间架空输电线路构件的累积失效概率为:
式中,pa和pb分别为杆塔a和输电线段b的累积失效概率;N是时间段的数量,Δt是时间段长度,k为各个时间段的编号。
同一条架空线路的杆塔和输电线段组成了一个串联系统,则架空线路m的累积失效概率可表示为:
式中,a∈m代表所有属于m的杆塔;b∈m代表所有属于m的输电线段。
地震震级描述了地震自身强度,烈度则描述了地震灾区各位置的受灾程度。以中国地震烈度表为烈度参考,6度以下烈度不会对设施构成威胁,8度以上烈度往往范围极小,因此本研究只考虑烈度为6、7、8度的区域。烈度椭圆衰减模型将等烈度线视为一系列同轴同向的椭圆。沿着长轴或短轴方向,任意一点的椭圆烈度为:
I=AL/S+BL/SM+CL/Slg(r+rL/S) (10)
式中,M是地震震级,r是该点的震中距,AL/S、BL/S、CL/S和rL/S分别为长轴/短轴方向烈度的回归参数。
根据式(10)可以推算等烈度线的椭圆半径,而等烈度线的长轴方向则与最近的活动断裂方向一致。烈度为(I+0.5)的等烈度线和烈度为(I-0.5)的等烈度线包围的区域记作烈度I区,并假定该区域内各点烈度均为I。由此可知点(xd,yd)的烈度为Id需满足以下判据:
式中,||·||是欧几里得范数,和/>是烈度Id区外边界椭圆的焦点,/>是烈度I区外边界椭圆的长轴半径。
如图2所示,烈度分布图由一系列多层嵌套的椭圆组成。根据判据(11),图中点(x*,y*)的烈度可以断定为6度。
本研究假定地震灾害可能对电气互联系统中的变压器、架空输电线路和燃气管道造成损坏。其中变压器在不同地震烈度下的失效概率可以根据历史数据直接得出。架空输电线路的失效概率则取决于杆塔,因为输电线段能通过低频振荡解耦地震能量。架空线路m在地震灾害下的失效概率可表示为:
式中,pa是杆塔a的失效概率,其与地震烈度的关系可根据历史数据得到。
燃气管道可分为数个管段,各小段的位置设定为其中点。由此可知燃气管道n的失效概率为:
式中,a′∈n为所有属于燃气管道n的管段;pa′是地震灾害下管段a′的失效概率,可由下式求出:
式中,Rf是震害率,Cd和Cg分别为管径影响系数和场地土影响系数,ΔL是管段的长度。
二、韧性指标
鲁棒性是电气互联系统最重要的韧性属性之一,因此在一次特定的灾害场景下系统级韧性指标rsys可表示为:
rsys=E[Qshed] (15)
式中,E[Qshed]是负荷损失期望(MW),其中气负荷损失根据天然气热值被转化为等效的电负荷。
单次特定的灾害场景下的元件级韧性指标rm记作针对元件m的强化措施效果,其可以表示为:
rm=rsys-rsys|pm=p′m (16)
式中,Pm′为元件m强化后的失效概率,rsys|pm=p′m表示元件m故障概率降为Pm′后的系统级韧性指标。
记潜在极端灾害场景集合为TD,为了满足规划需求,所有属于TD的极端灾害场景下的电气互联系统的韧性均要考虑到,面向规划的系统级韧性指标Rsys和元件级韧性指标Rm可表示为:
式中,N是TD中的灾害场景的个数,di是属于TD的灾害场景,P(di)是灾害di的发生概率,rsys(di)和rm(di)分别是在灾害di下的系统级指标和元件级指标。
经济性有时会成为制订元件强化方案的制约因素,为此本发明实施例提出用经济性韧性指标Cm来描述元件m强化措施的费效比,可表示为:
式中,Hm指对元件m采取的强化措施,c(Hm)代表Hm的强化成本。
三、灾害场景数据库
为求解面向规划的韧性指标,需要枚举潜在灾害场景从而构建灾害场景数据库。台风关键参数包括:登陆点坐标(x0,y0)、行进方向θ、初始中心气压差ΔH0和移动速度vT;地震关键参数则包括:震级M和震中坐标(x,y)。本研究将灾害的各个关键参数的可行域等分为数个区间,然后对这些取值区间组合枚举从而生成潜在灾害场景。
四、潜在台风场景的枚举
台风的登陆点沿海岸线均匀分布,行进方向遵循双正态分布,而初始中心气压差和移动速度遵循对数正态分布。对潜在台风灾害场景w而言,其登陆点坐标(x0,w,y0,w)、行进方向θw、初始中心气压差ΔH0,w和移动速度vT,w的概率分别为:
式中,S是海岸线的长度,ds、dθ、dH、dv分别是台风四个关键参数可行域的等分区间长度,μH、σH、μv、σv、μ1、σ1、μ2、σ2、q均为分布参数。
如图3所示,风暴w的发生概率由各灾害参数的取值概率组成:
Pw=Pr(x0,w,y0,w)Prw)Pr(ΔH0,w)Pr(vT,w) (21)
五、潜在地震场景的枚举
GB18306-2015《中国地震动参数区划图》提出描述地震活动的三级潜在震源区划分方案。如图4所示,首先在地震统计区内划分出背景源,然后在背景源内沿活动断裂划分出构造源,最后得到构造源A、B和背景源C、D。背景源的震级上限小于其所包含的构造源,而地震统计区的震级上限等于所有构造源震级上限的最大值。
将震级可行域等分为数个震级档,并以其中心值Mj作为代表震级,则研究区域发生的地震属于第j个震级档的概率为:
式中,Mu是地震统计区的震级上限;M0是地震统计区的震级下限,通常取4.0;ΔM为震级档距;β=bln10,其中b是古登堡-里克特关系式的参数。
背景源和构造源可在狭义上统称为潜在震源区。在潜在震源区内部,地震发生在各点的概率相等。采用网格取点法枚举潜在震中点,则发生的第j档地震的震中位于第i个潜在震源区内点(x,y)的概率为:
其中,Ns是潜在震源区的数量,ci是第i个潜在震源区内枚举点的个数,αi是第i个潜在震源区的活动性权重,其可以表示为:
式中,Mu,i表示第i个潜在震源区的震级上限。发生地震的震级超出Mu,i时,活动性权重αi变为0,地震震中点将不会位于第i个潜在震源区内。
如图5所示,根据各潜在震源区的震级上限划分震级可行域为数个分域,每个分域又包含数个震级档。显然,对应于各个震级分域的潜在震中点集合不同。通过枚举地震震级档位,并与有效的震中枚举点组合,可以生成潜在地震场景e,其发生概率可表示为:
Pe=Pr(Me)Pr((xe,ye)|Me) (25)
其中,Me为地震场景e所属震级档的代表震级,Pr(Me)为研究区域发生的地震属于Me代表的震级档的概率,(xe,ye)为地震场景e的震中位置。
六、多类型灾害场景数据库的构建
多类型灾害场景集TD由潜在风暴场景集{w}和潜在地震场景集{e}组成:
TD={w}∪{e}={d1,…,di,…dN} (26)
其中,U表示并集;di代表枚举得到的极端灾害场景。
各类枚举灾害场景的发生概率需要乘以灾害权重η:
式中,fw和fe分别表示研究区域内台风与地震的年平均频次。这样,所有潜在灾害场景的发生概率之和能保证等于1,即:
式中,P(di)表示极端灾害场景di的发生概率。
潜在灾害场景d下的元件失效概率组F(d)可表示为:
F(d)=[p1,d,p2,d,...,pm,d,...,pn,d] (29)
其中,n为电气互联系统元件的总个数;pm,d为潜在灾害d下元件m的失效概率。
多类型灾害场景数据库如图6所示,包括:多类型灾害场景集TD和所有潜在灾害场景的关键信息。考虑到面向规划的系统级韧性指标Rsys的物理意义是发生任意类型极端灾害后系统的预期负荷损失,将各种类型的极端灾害整理为相同的格式(包括灾害发生概率P、灾害权重η和元件失效概率组F)是合理的。
七、复用影响增量库
如图7所示,求解面向规划的韧性指标首先需要计算TD内每一个极端灾害场景下的失负荷期望值E[Qshed]。然而,MCS与SE均无法良好处理此问题。
IISE与MCS相比具有可重复使用的优势,而与SE相比则更加准确,因此本方法采用IISE法求解各潜在灾害场景下系统的失负荷期望值:
式中,Ωj为j阶故障状态集,故障状态s由失效元件集表示;J是枚举的最高故障阶数;pi为元件i的失效概率;ΔIs代表故障状态s的影响增量,可由下式求得:
式中,ns是故障状态s的阶数;是s的k阶故障子集;Qshed,u是故障状态u的最优负荷削减量。
根据失负荷期望值可以求出面向规划的韧性指标,且在求解各个极端灾害场景下的失负荷期望值E[Qshed]时,式(30)中的影响增量是可以重复使用的部分,即具有复用性。为此本方法预先构建复用影响增量库,从而迅速计算韧性指标。
八、电气互联系统的负荷削减优化算法
本方法只考虑最常见的电气互联系统耦合设施,即燃气发电厂,并采用解耦的思路对两个能源子系统交替优化迭代,具体算法框架如图8所示。
电力系统负荷削减优化和天然气系统负荷削减优化是分开进行的。前者基于交流潮流模型,可以应用Matpower优化潮流工具包求解。后者则应用了两阶段气网优化潮流模型。该模型集成了混合整数线性简化模型和非线性连续模型,根据第一阶段的简化模型解固定0/1型变量和提供第二阶段非线性模型的内点法初值,有效提高了收敛性和计算效率。气网优化两个阶段的模型分别由成熟的商业求解器Cplex和Ipopt求解。
电力系统优化模块和天然气系统优化模块之间由箭头1和箭头2连接。箭头1表示根据电网优化结果中的燃气发电厂出力确定相连气网节点的供气负荷。箭头2则表示根据气网优化结果中燃气发电厂相连气网节点的削负荷量降低燃气发电厂出力上限。两个系统交替优化迭代,直到气网优化中燃气发电厂所需的供气负荷不再被削减,可以判定收敛。
九、计及多类型极端灾害的电气互联系统韧性计算框架
图9给出了基于复用影响增量库的韧性计算框架,主要可以分为三个部分:灾害场景数据库、复用影响增量库以及根据两个数据库计算得到的面向规划的韧性指标。所有潜在极端灾害场景及其关键信息均存储在灾害场景数据库中,而预先求得的影响增量则存储在复用影响增量库中。在计算面向规划的韧性指标时,复用影响增量库提供的影响增量在灾害场景数据库描述的不同潜在极端灾害场景下被反复调用。
面向规划的韧性指标中,Rsys被用于计算电气互联系统抵御潜在极端灾害的韧性,Rm和Cm被用于协助制订合适的电气互联系统韧性提升策略。
十、算例介绍
本方法选择IEEE RTS79电力系统和14节点天然气系统组成的电气互联测试系统作为算例。如图10所示,电力系统节点2、13、15、21处的发电厂为燃气发电厂,所需供气分别由天然气系统节点14、7、8、2提供。算例系统共包括33条架空线路、5个变压器和12条燃气管道。燃气发电厂和天然气系统的详细参数见下表:
表1燃气发电厂参数
表1列出了电气互联测试系统中四个燃气发电厂的参数,其中Bus(P)和Node(G)分别表示与该燃气发电厂相连的电力系统母线和天然气系统节点;Pmax和Pmin分别是燃气发电厂的出力上、下限;a表示燃气发电厂的耗量参数,代表每输出1MWh电所需天然气体积。
表2天然气系统节点参数
表2列出了天然气子系统的节点参数,其中S和L分别表示气源节点和负荷节点;Gd为节点负荷,其中G(P)指该节点的负荷值取决于与其相连的燃气发电厂的出力;Smax和Smin分别指气源出力的上、下限;πmax和πmin分别为节点气压的上、下限约束。
表3天然气系统管道参数
表3给出了天然气子系统的管道参数,From和To分别指管道的入口和出口节点;L是管道的长度;K是管道参数,被用于描述管道流量f与管道出入口气压πFromTo关系的Weymouth方程中:
表4天然气压缩机参数
表4给出了天然气压缩机的参数,其中From和To分别表示压缩机的入口节点和出口节点;kmax和kmin分别为压缩比的上、下限;Dc为耗量转换系数,被用于燃气供应压缩机的耗量方程中:
式中,Gc是压缩机耗气量,fc是通过压缩机的天然气流量,kc是压缩比,α是多变指数,本方法取1.4。
电气互联测试系统被附在一个简化的临海地震统计区中。如图11所示,海岸线为(0,0)到(250,50)的直线,y轴250km以下部分属于背景源C,其中划分出构造源A(端点坐标为(0,0),(0,150),(60,0),(60,150)的长方形区域),y轴250km以上部分属于背景源D,其中划分出构造源B(端点坐标为(50,260),(50,300),(250,260),(250,300)的长方形区域)。潜在震源区A,B,C,D的震级上限分别为8.0,7.5,6.0,5.5。按照远离活动断层修建设施的原则,电气互联系统被定位于背景源中。值得一提的是,电力子系统和天然气子系统在空间上相互重叠,因此需要在图11中分别表示出两个系统及其元件的实际位置。
研究假定算例系统位于中国台湾地区,根据中国台湾气象局可知,侵台台风和地震(4级以上)过去十年的年平均发生频次分别为2.3次和154.2次。杆塔和输电线段的设计风速均取35m/s,G-R参数b与中国台湾东部地震统计区一致,取0.92。台风参数的分布、地震烈度衰减参数和各类元件基于烈度的失效概率参数如下表所示:
表5台风关键参数分布
表6中国台湾地震区烈度衰减参数
表7电气互联系统元件基于烈度的失效概率参数
本方法将台风关键参数的可行域分别划分为10段,则共可以枚举得到10000个台风场景。对地震而言,设震级档距为0.5,震中点按照5km×5km网格进行枚举,组合震级档与对应的有效震中枚举点,可以得到13806个地震场景。通过计算各个枚举灾害场景的发生概率和元件失效概率组,可以构建灾害场景数据库。
十一、可行性分析
本发明实施例所提韧性计算的方法的可行性取决于失负荷期望值E[Qshed]求解的精度与速度。考虑到地震灾害能够同时影响电网和气网的元件,本方法以特定地震情景es为代表性灾害场景。es的烈度分布图如图12所示,其中es的震中点为(60,120),震级属于7~7.5档位。
本方法采用IISE法计算es场景下的E[Qshed],并将MCS法(方差系数COV=0.04)和SE法作为比照组。当COV设定为0.01时,MCS法的评估结果作为基准值。计算结果如表2所示,其中SE(N-i)和IISE(N-i)分别表示最大枚举至i阶故障状态的SE法和IISE法。
表8电气互联系统元件基于烈度的失效概率参数
如表8所示,无论最大枚举至2阶还是3阶,IISE的计算精度均远高于SE。此外,IISE(N-3)的计算误差仅为0.92%,甚至小于与其计算时间相近的MCS法(COV=0.04)的误差。就算法精度的表现而言,IISE法远超传统SE法,且不逊色于MCS法。
在采用IISE(N-3)计算地震es下系统E[Qshed]的过程中,大约619.695s中的619.658s被用于计算影响增量,而这部分可以从复用影响增量库中调用。
记IISE-R3为基于三阶复用影响增量库计算所有潜在极端灾害下的失负荷期望值的方法,并将其与精度相近的MCS(COV=0.04)比较。如图13所示,ta表示构建3阶影响增量库所用时间;Δt和tb分别是使用IISE-R3和MCS(COV=0.04)在每个潜在灾害场景下求解失负荷期望值所用时间;N为TD中枚举的潜在灾害场景个数,即为10000+13806=23806。根据表8数据,可以估算两个方法的计算时间分别为:
其中,TIISE约为TMCS的百万分之一,这体现了IISE方法重复使用影响增量的巨大优势。就算法速度的表现而言,IISE法远比MCS法快,真正意义上使得面向规划的韧性评估在实践上具备可行性。
综合考虑计算精度与计算速度,本方法采用IISE(N-3)计算潜在灾害场景下的失负荷期望值。基于灾害场景数据库和3阶复用影响增量库,本发明实施例所提的韧性计算方法取得了良好的应用。
十二、韧性计算结果分析
构建完灾害场景数据库和复用影响数据库之后,以潜在灾害场景发生概率为权重,计算各潜在灾害场景下的系统级指标rsys和元件级指标rm的加权和,即可得到面向规划的韧性指标Rsys和Rm
为体现考虑灾害类型多样性的必要性,本方法提出了三类潜在灾害场景集:
1)仅考虑台风场景,TD1={w};
2)仅考虑地震场景,TD2={e};
3)同时考虑台风与地震场景,TD3={w}U{e};
本方法假定通过增设冗余来强化元件,且每个元件最多可以增加一个备用。表9中列出了指标Rsys和Rm最大的前五个组件,其中Rm(i)表示排在第i名的元件级指标,Nc表示元件的编号,其中1~38对应于IEEE RTS79系统线路矩阵的各行,39~50则对应于表3中的各行燃气管道。
表9基于TD1、TD2和TD3的韧性指标
为便于区分,分别记基于TD1,TD2,TD3的系统级指标Rsys为Rw,Re,Rd。三者的物理意义分别是研究区域发生一次台风,一次地震,一次台风或地震后电气互联系统的预期负荷损失。此外,三者之间存在代数关系:
Rd=ηwRweRe (35)
基于不同的灾害场景集,往往能得到不同的韧性提升策略。元件级指标Rm越大,强化该元件提升韧性越多,因此本方法选择Rm(1)~Rm(5)对应的元件进行强化,并以强化元件集表示强化方案。由表9可确定基于TD1、TD2和TD3的强化方案分别为A:{27,10,11,5,18},B:{47,27,10,46,48}和C:{47,27,10,11,5}。这三个强化方案的韧性提升效果在表10中给出,其中ΔRw,ΔRe,ΔRd分别是系统级指标Rw,Re,Rd的下降的百分比。
表10基于TD1、TD2和TD3的韧性指标
如表10所示,策略A,策略B,策略C分别实现了Rw,Re,Rd的最大削减。由系统级韧性指标的定义可知,策略A和策略B能够最大幅度提升系统面向单一类型灾害的韧性,但对其他类型灾害下系统韧性的提升较小。相比之下,规划人员更应该选择策略C,因为策略C计及了灾害类型的多样性,能够全面提升极端自然灾害下电气互联系统的韧性。
根据元件级韧性指标Rm制定的元件强化策略能够不计成本地最大幅度提升电气互联系统的韧性,而在资金不充裕的情况下,规划人员往往需要计及经济性的影响。经济性韧性指标Cm融合了韧性提升效果和元件强化成本,适用于计及经济性的韧性规划。
本方法假定变压器单台造价为60万美元,输电线路造价为100万美元/km,燃气管道造价为200万美元/km,进而求得各个元件强化措施Hm的成本cost(Hm)和经济性指标Cm。表11中给出了Cm最小的前五个元件,同时列出Rm最大的前五个元件作为比照。值得一提的是,以下表中的韧性计算指标均基于多类型灾害场景集TD3
表11经济性指标Cm和元件级指标Rm
其中,Cm根据各元件强化措施的费效比从小到大排序,虽然目的与Rm一样是选择最合适的强化目标,其排序结果却与Rm有明显差别。例如,元件47的Rm指标排在第一位,而Cm指标却排到了第五,这是因为强化元件47虽然效果显著,但是强化成本过高,拉低了强化性价比。
根据Cm确定的元件强化策略记为策略D:{27,10,7,11,47},将策略C与策略D的韧性提升效果及成本列在表12中,其中ΔRsys指系统级韧性指标Rsys下降的百分比,Cost为强化策略成本,强化策略费效比Cost/ΔRsys则表示了此策略降低1%Rsys所需的平均成本。
表12基于指标Rm的方案C和基于指标Cm的方案D
如果说策略C在不同类型灾害下电气互联系统的韧性提升效果之间找到平衡点的话,那么策略D则平衡了韧性提升效果与提升方案成本。策略D的费效比远低于策略C,真正实现了以最少的成本换取最高的韧性提升效果。
最佳实施方式:首先,将各类极端灾害的关键参数可行域划分为多个取值区间,然后对这些取值区间组合枚举得到所有可能发生的极端灾害场景及其发生概率,并引入灾害权重η使得所有枚举场景概率之和为1。此外,根据各类型灾害的攻击模型可推算每个潜在极端灾害场景下电气互联系统的元件失效概率。将潜在灾害场景的关键信息存储起来,建立灾害场景数据库。然后,应用电气互联系统解耦优化算法计算系统在各阶故障下最优负荷削减,进而求得IISE法所定义的影响增量,从而构建复用影响增量库。在应用IISE法计算各个潜在极端灾害场景下的失负荷期望值E[Qshed]时,通过反复调用影响增量库可以大幅度提升效率,而计算过程中所需元件失效概率数据取自灾害场景数据库。根据失负荷期望值可以计算各潜在灾害场景下的韧性指标rsys和rm。最后,以潜在极端灾害场景概率为权重,各潜在灾害场景下的rsys和rm的加权和即为面向规划的韧性指标Rsys和Rm;由元件强化成本和韧性指标Rm则可以计算得到的经济性指标Cm。根据Rm和Cm可对元件强化优先级进行排序,进而分别指导制订出效果最好和性价比最高的韧性提升方案。
基于同一发明构思,本发明实施例还提供了一种跨模态多视角目标检索装置,参见图14,该装置包括:处理器1和存储器2,存储器2中存储有程序指令,处理器1调用存储器2中存储的程序指令以使装置执行实施例中的以下方法步骤:
1)根据各类型灾害的攻击模型推算每个潜在极端灾害场景下电气互联系统的元件失效概率,将潜在灾害场景的关键信息存储起来,建立灾害场景数据库;
2)应用电气互联系统解耦优化算法计算系统在各阶故障下最优负荷削减,求得IISE法所定义的影响增量,构建复用影响增量库;
3)通过反复调用影响增量库计算各个潜在极端灾害场景下的失负荷期望值,根据失负荷期望值计算各潜在灾害场景下的韧性指标;
4)以潜在极端灾害场景概率为权重,计算各潜在灾害场景下的系统级指标rsys和元件级指标rm的加权和,得到面向规划的韧性指标Rsys和Rm,根据韧性指标Rm计算得到经济性指标,根据韧性指标Rm和经济性指标对元件强化优先级进行排序,制订韧性提升方案。
在一种实施方式中,步骤1)之前还包括:
将各类极端灾害的关键参数可行域划分为多个取值区间,对取值区间进行组合枚举得到所有可能发生的极端灾害场景及发生概率;并引入灾害权重使得所有枚举场景概率之和为1。
在一种实施方式中,该方法还包括:
计算韧性指标时,复用影响增量库提供的影响增量在灾害场景数据库描述的不同潜在极端灾害场景下被反复调用;
面向规划的韧性指标中,Rsys用于计算电气互联系统抵御潜在极端灾害的韧性,韧性指标Rm和经济性指标被用于协助制订电气互联系统韧性提升策略。
在一种实施方式中,元件级指标为:
rm=rsys-rsys|pm=p′m
式中,Pm′为元件m强化后的失效概率,rsys|pm=p′m表示元件m故障概率降为Pm′后的系统级韧性指标。
在一种实施方式中,经济性指标为:
式中,Hm指对元件m采取的强化措施,c(Hm)代表Hm的强化成本。
这里需要指出的是,以上实施例中的装置描述是与实施例中的方法描述相对应的,本发明实施例在此不做赘述。
上述的处理器1和存储器2的执行主体可以是计算机、单片机、微控制器等具有计算功能的器件,具体实现时,本发明实施例对执行主体不做限制,根据实际应用中的需要进行选择。
存储器2和处理器1之间通过总线3传输数据信号,本发明实施例对此不做赘述。
基于同一发明构思,本发明实施例还提供了一种计算机可读存储介质,存储介质包括存储的程序,在程序运行时控制存储介质所在的设备执行上述实施例中的方法步骤。
该计算机可读存储介质包括但不限于快闪存储器、硬盘、固态硬盘等。
这里需要指出的是,以上实施例中的可读存储介质描述是与实施例中的方法描述相对应的,本发明实施例在此不做赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例的流程或功能。
计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机指令可以存储在计算机可读存储介质中,或者通过计算机可读存储介质进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质或者半导体介质等。
本发明实施例对各器件的型号除做特殊说明的以外,其他器件的型号不做限制,只要能完成上述功能的器件均可。
本领域技术人员可以理解附图只是一个优选实施例的示意图,上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种多类型极端灾害电气互联系统韧性计算方法,其特征在于,所述方法基于复用影响增量库,所述方法包括以下步骤:
1)根据各类型灾害的攻击模型推算每个潜在极端灾害场景下电气互联系统的元件失效概率,将潜在灾害场景的关键信息存储起来,建立灾害场景数据库;
2)应用电气互联系统解耦优化算法计算系统在各阶故障下最优负荷削减,求得IISE法所定义的影响增量,构建复用影响增量库;
3)通过反复调用影响增量库计算各个潜在极端灾害场景下的失负荷期望值,根据失负荷期望值计算各潜在灾害场景下的韧性指标;
4)以潜在极端灾害场景概率为权重,计算各潜在灾害场景下的系统级指标rsys和元件级指标rm的加权和,得到面向规划的韧性指标Rsys和Rm,根据韧性指标Rm计算得到经济性指标,根据韧性指标Rm和经济性指标对元件强化优先级进行排序,制订韧性提升方案。
2.根据权利要求1所述的一种多类型极端灾害电气互联系统韧性计算方法,其特征在于,所述步骤1)之前还包括:
将各类极端灾害的关键参数可行域划分为多个取值区间,对取值区间进行组合枚举得到所有可能发生的极端灾害场景及发生概率;并引入灾害权重使得所有枚举场景概率之和为1。
3.根据权利要求1所述的一种多类型极端灾害电气互联系统韧性计算方法,其特征在于,所述方法还包括:
计算韧性指标时,复用影响增量库提供的影响增量在灾害场景数据库描述的不同潜在极端灾害场景下被反复调用;
面向规划的韧性指标中,Rsys用于计算电气互联系统抵御潜在极端灾害的韧性,韧性指标Rm和经济性指标被用于协助制订电气互联系统韧性提升策略。
4.根据权利要求1所述的一种多类型极端灾害电气互联系统韧性计算方法,其特征在于,所述元件级指标为:
式中,Pm′为元件m强化后的失效概率,表示元件m故障概率降为Pm′后的系统级韧性指标。
5.根据权利要求1所述的一种多类型极端灾害电气互联系统韧性计算方法,其特征在于,所述经济性指标为:
式中,Hm指对元件m采取的强化措施,c(Hm)代表Hm的强化成本。
6.一种多类型极端灾害电气互联系统韧性计算装置,其特征在于,所述装置包括:处理器和存储器,所述存储器中存储有程序指令,所述处理器调用存储器中存储的程序指令以使装置执行权利要求1-5中的任一项所述的方法步骤。
7.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序包括程序指令,所述程序指令被处理器执行时使所述处理器执行权利要求1-5中的任一项所述的方法步骤。
CN202110789628.4A 2021-07-13 2021-07-13 多类型极端灾害电气互联系统韧性计算方法及装置 Active CN113609721B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110789628.4A CN113609721B (zh) 2021-07-13 2021-07-13 多类型极端灾害电气互联系统韧性计算方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110789628.4A CN113609721B (zh) 2021-07-13 2021-07-13 多类型极端灾害电气互联系统韧性计算方法及装置

Publications (2)

Publication Number Publication Date
CN113609721A CN113609721A (zh) 2021-11-05
CN113609721B true CN113609721B (zh) 2023-11-07

Family

ID=78304514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110789628.4A Active CN113609721B (zh) 2021-07-13 2021-07-13 多类型极端灾害电气互联系统韧性计算方法及装置

Country Status (1)

Country Link
CN (1) CN113609721B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115114715B (zh) * 2022-08-26 2023-01-31 深圳市城市交通规划设计研究中心股份有限公司 城市基础设施群网络弹性分析方法、电子设备及存储介质
CN117688475A (zh) * 2024-02-04 2024-03-12 山东电工时代能源科技有限公司 基于灾害预测的能源网评估方法、系统、终端及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505563A (zh) * 2016-12-02 2017-03-15 武汉大学 一种电网故障下并网变流器韧性评估方法
CN111507606A (zh) * 2020-04-13 2020-08-07 华北电力大学 用于复杂能源互联系统的韧性评估方法
CN112288326A (zh) * 2020-11-23 2021-01-29 天津大学 一种适用于输电系统韧性评估的故障场景集削减方法
CN112986731A (zh) * 2021-02-08 2021-06-18 天津大学 计及地震不确定性的电气互联系统韧性评估与提升方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071381B (zh) * 2015-07-28 2017-04-12 天津大学 一种基于影响增量的状态枚举可靠性评估方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106505563A (zh) * 2016-12-02 2017-03-15 武汉大学 一种电网故障下并网变流器韧性评估方法
CN111507606A (zh) * 2020-04-13 2020-08-07 华北电力大学 用于复杂能源互联系统的韧性评估方法
CN112288326A (zh) * 2020-11-23 2021-01-29 天津大学 一种适用于输电系统韧性评估的故障场景集削减方法
CN112986731A (zh) * 2021-02-08 2021-06-18 天津大学 计及地震不确定性的电气互联系统韧性评估与提升方法

Also Published As

Publication number Publication date
CN113609721A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN113609721B (zh) 多类型极端灾害电气互联系统韧性计算方法及装置
CN112986731B (zh) 计及地震不确定性的电气互联系统韧性评估与提升方法
CN107633320B (zh) 一种基于气象预测和风险评估的电网线路重要度评估方法
CN104008512B (zh) 一种电力系统在线稳定评估指标系统
CN104599023A (zh) 台风天气输电线路时变可靠性计算方法及风险评估系统
CN107193060B (zh) 一种多路径台风风暴潮快速预测方法及系统
CN104318397A (zh) 一种基于电网短期运行行为的风险评估及分析方法
CN105279384A (zh) 一种基于风力机机舱风速的来流风速计算方法及装置
CN115640963A (zh) 一种考虑投资运营模式的海上风电接入系统鲁棒规划方法
CN107274006A (zh) 一种基于贝叶斯推断的多源气象风速融合方法
Gan et al. Coordinated planning of large-scale wind farm integration system and transmission network
CN110070223A (zh) 一种应用于新建风电场的短期功率预测方法
Yang et al. Resilience assessment and improvement for electric power transmission systems against typhoon disasters: a data-model hybrid driven approach
CN115000968A (zh) 基于博弈和风电出力相关性的海上风电接入系统规划方法
De Mare et al. The economic evaluation of investments in the energy sector: a model for the optimization of the scenario analyses
Zhang et al. A multicriteria small modular reactor site selection model under long-term variations of climatic conditions--A case study for the province of Saskatchewan, Canada
Zhang Predicting model of traffic volume based on Grey-Markov
CN107169612A (zh) 基于神经网络的风电机有功功率预测及误差订正方法
CN107590537A (zh) 用于构造概率预测区间的粒化预测方法
CN116415708B (zh) 考虑置信水平的电网鲁棒规划方法
CN115526671A (zh) 基于改进层次分析法的新能源电站选址方法
Chen et al. Research on neural network optimization algorithm for building energy consumption prediction
CN113177717B (zh) 一种基于影响增量灵敏度的输电系统韧性快速评估方法
CN105046324A (zh) 一种基于移动神经网络的高程异常拟合内插计算方法
CN114511158A (zh) 基于尾流偏转效应和2DJensen模型的风力机功率预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant