CN113504483B - 考虑不确定性的锂离子电池剩余寿命集成预测方法 - Google Patents

考虑不确定性的锂离子电池剩余寿命集成预测方法 Download PDF

Info

Publication number
CN113504483B
CN113504483B CN202110778883.9A CN202110778883A CN113504483B CN 113504483 B CN113504483 B CN 113504483B CN 202110778883 A CN202110778883 A CN 202110778883A CN 113504483 B CN113504483 B CN 113504483B
Authority
CN
China
Prior art keywords
model
data
individual
prediction
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110778883.9A
Other languages
English (en)
Other versions
CN113504483A (zh
Inventor
林焱辉
田玲玲
丁泽琦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beihang University
Original Assignee
Beihang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beihang University filed Critical Beihang University
Priority to CN202110778883.9A priority Critical patent/CN113504483B/zh
Publication of CN113504483A publication Critical patent/CN113504483A/zh
Application granted granted Critical
Publication of CN113504483B publication Critical patent/CN113504483B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health

Abstract

本发明提供一种考虑不确定性的锂离子电池剩余寿命集成预测方法,考虑数据不确定性,提出基于模型预测误差分解的数据噪声量化方法并应用于基于粒子滤波的剩余寿命预测中;考虑模型不确定性,提出基于模型集成的锂离子电池剩余寿命预测方法。本发明包括数据获取步骤、个体模型构建步骤、模型权重获取步骤、集成模型构建步骤以及预测步骤,利用集成模型对电池容量的退化状态进行预测,根据电池容量的失效阈值得到剩余寿命的预测结果。本发明提出基于时变和退化加权的模型集成法,能够建立基于最优模型加权的集成模型以减小因模型选择带来的模型不确定性影响,并降低由数据噪声带来的数据不确定性,提高锂离子电池的剩余寿命预测准确性和鲁棒性。

Description

考虑不确定性的锂离子电池剩余寿命集成预测方法
技术领域
本发明涉及锂离子电池的剩余寿命预测技术领域,特别涉及一种考虑不确定性的锂离子电池剩余寿命集成预测方法。
背景技术
剩余寿命(Remaining Useful Life,RUL)预测是故障预测与健康管理(Prognostics and Health Management,PHM)的核心问题。以锂离子电池为研究对象,作为电动汽车、便携式电子设备和航空航天系统中用于能源供应和存储的核心部件,锂离子电池劣化、失效等寿命问题使得精准的锂离子电池剩余寿命预测至关重要。
然而,在锂离子电池的剩余寿命预测中,存在着数据和模型不确定性两类问题。首先,数据不确定性反映于由设备、产品内外环境和测量误差引起的数据噪声。数据噪声不可避免,还会阻碍数据分析的准确性,因而应在剩余寿命预测模型建模中将数据噪声加以考虑以降低其带来的数据不确定影响。其次,模型不确定性反映于从一系列候选模型中选择适应于当前预测对象的最佳模型涉及的不确定性。为降低模型不确定性,可以采用模型集成方法,该方法通过加权平均多个模型能够扩展模型假设空间,从而使真模型包含于新的模型空间内,降低模型不确定性。然而,模型集成方法的集成机制需能够准确反映模型的预测性能水平等因素,为了使集成模型能够提高模型预测性能,应对集成模型的集成机制展开进一步研究。
发明内容
本发明针对上述现有技术中的缺陷,提出一种考虑不确定性的锂离子电池剩余寿命集成预测方法。本发明的目的在于不仅考虑到数据不确定性,提出基于模型预测误差分解的数据噪声量化方法并应用于基于粒子滤波的剩余寿命预测中;而且同时考虑模型不确定性,提出基于模型集成的锂离子电池剩余寿命预测方法。
本发明的技术方案为提供一种考虑不确定性的锂离子电池剩余寿命集成预测方法,其包括:
数据获取步骤,对锂离子电池进行测试,测试锂离子电池在室温下依次经过充电和放电时的充放电电流A,从而获得锂离子电池充放电电容退化数据C={C(k),k},其中k为充放电循环数,基于预测误差的偏差-方差-噪声分解,提取观测数据中的数据噪声并进行量化,获得噪声
Figure BDA0003156884530000011
的噪声方差
Figure BDA0003156884530000012
个体模型构建步骤,基于锂离子电池的群体历史数据,应用最小二乘法从数据层和模型层两个层面生成多样性个体模型h={h1,h2,...,hI},对个体模型进行模型初始化;基于锂离子电池的个体在线数据,即待预测锂离子电池在使用阶段内不断实时获得的数据,应用粒子滤波算法,建立状态空间模型,对个体模型进行实时更新,完成个体模型构建;
模型权重获取步骤,基于锂离子电池的群体历史数据,使用遗传算法,获得模型初始权重ω={ω12,...,ωI},基于集成模型预测误差最小对个体模型权重进行初始优化,其优化函数为:
Figure BDA0003156884530000021
其中,{ωj,j=1,2,...,I}为个体模型初始权重,eij为模型在历史数据子集中获得的个体模型的预测误差,优化函数中
Figure BDA0003156884530000022
为集成模型平均预测偏差,
Figure BDA0003156884530000023
为集成模型平均预测方差;并且基于锂离子电池的个体在线数据,考虑个体模型在个体在线数据中的拟合优度,对模型权重进行更新修正;
集成模型构建和预测步骤,基于获得的模型权重,加权集成个体模型,构建锂离子电池剩余寿命预测集成模型;并且利用所述集成模型对电池容量的退化状态进行预测,根据电池容量的失效阈值获得锂离子电池剩余寿命的预测结果。
更进一步地,所述锂离子电池剩余寿命预测的产品为宇航、军工或者民用等领域内的电子产品。
更进一步地,所述数据获取步骤包括:
测试锂离子电池在室温下依次经过充电和放电时的充放电电流A后,通过对电池电流A进行放电时间内的积分计算获得电池容量观测数据C,观测数据中包含数据噪声ε,对数据噪声进行提取和量化,数据噪声的存在形式的表达式为:
Figure BDA0003156884530000024
其中,C(k)为第k个充放电循环下的电池容量观测值,y(k)为第k个充放电循环下的真实电池容量输出,ε为服从零均值高斯分布的数据噪声,
Figure BDA0003156884530000025
为噪声方差;
基于预测误差的偏差-方差-噪声分解和预测模型无偏假设
Figure BDA0003156884530000031
数据噪声为:
Figure BDA0003156884530000032
其中,h为预测模型,
Figure BDA0003156884530000033
为预测模型h的期望,E[(h-C)2]为模型预测误差平方期望,
Figure BDA0003156884530000034
为模型期望方差,数据噪声的方差计算如下:
Figure BDA0003156884530000035
其中,hi,i=1,2,...n为不同数据集训练下的预测模型输出,Ci,i=1,2,...n为不同数据集训练下的电池电容观测值,
Figure BDA0003156884530000036
Figure BDA0003156884530000037
分别为对模型预测误差平方期望和模型方差期望的估计,从群体历史数据中独立于模型训练集和验证集的数据集中获得。
更进一步地,个体模型构建步骤具体包括:
考虑个体模型的多样性,在模型层,选取双指数经验模型和多项式经验模型作为待选个体模型;在数据层,将锂离子电池的群体历史数据分为多个相互独立的数据集S={S1,S2,...,SI},选取数据集S中第一子集作为模型验证集V,第二子集作为模型训练集T;应用最小二乘法对不同模型训练集下的双指数模型和多项式模型进行训练,获得2I个候选个体模型;对由每一个训练集分别生成的两个候选个体模型进行模型验证,选取预测性能好的模型作为个体模型,生成I个初始个体模型h={h1,h2,...,hI}。
基于生成的初始个体模型,建立基于双指数和多项式的状态空间模型,应用粒子滤波算法对个体模型进行状态空间模型构建和模型状态参数更新,获得在第k个充放电循环下的个体模型
Figure BDA0003156884530000038
更进一步地,模型权重获取步骤还包括:
基于优化的初始个体模型权重,建立模型权重的状态空间模型,应用粒子滤波算法对个体模型的分配权重进行更新修正,所述状态空间模型建立如下:
Figure BDA0003156884530000041
其中,ωk={ω1,ω2,...,ωI}k是电池在第k个充放电循环下的个体模型权重,hk={h1,h2,...,hI}k是电池在第k个充放电循环下的个体模型输出,Ck是电池在第k个充放电循环下的电池电容观测值,μk为模型权重在第k个充放电循环下的状态噪声,εk为在第k个充放电循环下的观测数据噪声,Σ为状态方程的状态噪声协方差。在粒子滤波算法下,个体模型权重的后验分布如下:
Figure BDA0003156884530000042
模型权重在电池第k个充放电循环下的后验期望如下:
Figure BDA0003156884530000043
其中,δ(·)为狄拉克函数,N为粒子数,
Figure BDA0003156884530000044
为第i个粒子的粒子权重。
更进一步地,集成模型构建和预测步骤包括:在个体模型构建完成后,基于获取的时变模型权重对个体模型进行加权集成,从而构建集成模型,实现锂离子电池的剩余寿命预测,如下:
Figure BDA0003156884530000045
RULk={x-k|hens(x)=thcapacity} (9)
其中,hens k(x)为在第k个充放电循环下获得的集成模型,x为用于电池容量预测的电池充放电循环数输入,RULk为在第k个充放电循环下的电池剩余寿命预测值,thcapacity为电池容量失效阈值。
本发明的有益技术效果为:本发明提供了一种考虑不确定性的锂离子电池剩余寿命集成预测方法。本发明考虑数据不确定性,提出基于模型预测误差分解的数据噪声量化方法并应用于基于粒子滤波的剩余寿命预测中;考虑模型不确定性,提出基于模型集成的锂离子电池剩余寿命预测方法。根据群体历史数据,基于模型预测误差的分解量化数据噪声,并在不同数据集下,基于最小二乘法使用双指数经验模型和多项式经验模型训练出多个候选个体模型,根据模型的预测精度从每个数据集下的候选经验模型中选择最优的模型作为初始个体模型,基于预测误差最小加权法对个体模型进行模型权重初始化;根据个体在线数据,通过粒子滤波引入数据噪声,应用粒子滤波算法对个体模型进行基于拟合优度的在线更新,并二次应用粒子滤波对个体模型权重进行基于拟合优度的更新修正,以使模型权重基于在线数据时变和具有退化相关性;基于修正后的模型权重对个体模型进行集成加权平均,进而建立集成退化模型对锂离子电池的剩余寿命进行预测。本发明提出了基于时变和退化加权的模型集成法,基于该方法可以建立基于最优模型加权的集成模型以考虑因模型选择带来的模型不确定性影响,并降低由数据噪声带来的数据不确定性,从而提高了锂离子电池的剩余寿命预测的准确性和鲁棒性。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显。
图1为本发明的考虑不确定性的锂离子电池剩余寿命集成预测方法的结构示意图;
图2为本发明的一个实例中考虑不确定性的锂离子电池剩余寿命集成预测方法的流程示意图;
图3A和图3B分别为本发明实施例中两种锂离子电池CS2和CX2在全寿命周期下原始容量退化数据的示意图;
图4A和图4B分别为本发明实施例中两种锂离子电池CS2和CX2在全寿命周期下预处理后的容量退化数据的示意图;
图5A、图5B和图5C分别为本发明实施例中个体模型和集成模型在锂离子电池处于120次充电循环的退化早期、240次充电循环的退化中期、以及360次充电循环的退化晚期时的预测退化曲线;
图6A、图6B和图6C分别为本发明个体模型和集成模型在锂离子电池CX2#3号处于200次充电循环退化早期、400次充电循环退化中期、以及600次充电循环退化晚期时的预测退化曲线。
具体实施方式
下面结合附图和实施例对本申请作进一步的详细说明。可以理解的是,此处所描述的具体实施例仅仅用于解释相关发明,而非对该发明的限定。另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本申请。
如图1所示为本发明的考虑不确定性的锂离子电池剩余寿命集成预测方法的结构示意图;其包括以下步骤:数据获取步骤,对锂离子电池进行测试,测试锂离子电池在室温下依次经过充电和放电时的充放电电流A,从而获得锂离子电池充放电电容退化数据C={C(k),k},其中k为充放电循环数,基于预测误差的偏差-方差-噪声分解,提取观测数据中的数据噪声并进行量化,获得噪声
Figure BDA0003156884530000061
的噪声方差
Figure BDA0003156884530000062
个体模型构建步骤,基于锂离子电池的群体历史数据,应用最小二乘法从数据层和模型层两个层面生成多样性个体模型h={h1,h2,...,hI},对个体模型进行模型初始化;基于锂离子电池的个体在线数据,即待预测锂离子电池在使用阶段内不断实时获得的数据,应用粒子滤波算法,建立状态空间模型,对个体模型进行实时更新,完成个体模型构建;
模型权重获取步骤,基于锂离子电池的群体历史数据,使用遗传算法,获得模型初始权重ω={ω12,...,ωI},基于集成模型预测误差最小对个体模型权重进行初始优化,其优化函数为:
Figure BDA0003156884530000063
其中,{ωj,j=1,2,...,I}为个体模型初始权重,eij为模型在历史数据子集中获得的个体模型的预测误差,优化函数中
Figure BDA0003156884530000064
为集成模型平均预测偏差,
Figure BDA0003156884530000065
为集成模型平均预测方差;并且基于锂离子电池的个体在线数据,考虑个体模型在个体在线数据中的拟合优度,对模型权重进行更新修正;
集成模型构建和预测步骤,基于获得的模型权重,加权集成个体模型,构建锂离子电池剩余寿命预测集成模型;并且利用所述集成模型对电池容量的退化状态进行预测,根据电池容量的失效阈值获得锂离子电池剩余寿命的预测结果。
图2出示出在本发明的一个具体实施例中考虑不确定性的锂离子电池剩余寿命集成预测方法流程示意图,该方法具体包括以下步骤:
数据获取步骤S101,使用Arbin电池测试仪和CADEX电池测试仪对锂离子电池进行测试,测试电池在室温下依次经过充电和放电时的充放电电流A,从而获得电池充放电电容退化数据C={C(k),k},其中k为充放电循环数,基于预测误差的偏差-方差-噪声分解,提取观测数据中的数据噪声并进行量化,获得噪声
Figure BDA0003156884530000071
的噪声方差
Figure BDA0003156884530000072
本发明的方法可以根据锂离子电池在以往试验中测得的群体历史容量退化数据,对试验中存在的噪声进行量化,输出是该类产品在试验中存在的噪声方差,可被用于退化数据分析和剩余寿命预测等。
个体模型初始化步骤S102,将锂离子电池的群体历史数据分为多个相互独立的数据集S={S1,S2,...,SI},选取数据集S中一子集作为模型验证集V,则其余全部作为模型训练集T;使用最小二乘法在不同训练集下训练得到2I个候选个体模型;利用验证集,对候选个体模型进行模型验证,选取在同一个训练集下最优的候选个体模型作为初始个体模型h={h1,h2,...,hI}。该步骤是分别基于已经获得的CS2和CX2锂离子电池数据集进行计算的。优选地,I=3。
模型权重初始化步骤S103,使用锂离子电池的群体历史数据中的验证集获得个体模型在剩余寿命的预测输出并计算剩余寿命的预测误差,从模型精准度和稳定性考虑模型预测精度,基于集成模型预测误差最小,使用遗传算法优化个体模型权重,获得初始模型权重ω={ω12,...,ωI}。
通过这种方式,所有既得用于模型训练和验证的群体历史数据可以用于生成初始个体模型和初始模型权重。
个体模型更新步骤S104,根据锂离子电池的个体在线数据,应用粒子滤波算法,建立状态空间模型,对个体模型进行更新,生成用于模型集成的个体模型。优选地,CV=0.01,N=1000。
模型权重更新步骤S105,根据锂离子电池的个体在线数据,考虑个体模型在个体在线数据中的拟合优度,对模型权重进行更新修正。
集成模型构建与预测步骤S106,基于建立的个体模型和更新修正的模型权重,建立用于锂离子电池剩余寿命预测的集成模型,使用该集成模型对电池容量的退化状态进行预测,根据电池容量的失效阈值得到剩余寿命的预测结果。
本发明的方法可以对以下产品的锂离子电池进行剩余寿命预测:宇航产品、军工产品或者民用电子产品。
在本发明中,所述数据获取步骤S101包括:
采用锂离子电池容量作为剩余寿命预测训练数据,该数据的存在形式如下:
Figure BDA0003156884530000081
对于电池容量观测数据的获得,通过使用Arbin电池测试仪和CADEX电池测试仪测试电池,在室温下依次经过充电和放电两个工况阶段,其中,充电阶段采用标准的恒流/恒压方案使电池充电至电压到达4.2V,然后保持电压不变继续充电,直到充电电流降到50mA;放电阶段保持放电电流不变,直至电池电压降至2.7V,获得电池在全寿命周期下的充放电电流A数据。电池容量C通过对电池电流A进行放电时间内的积分计算获得,如下:
C=∫Adt (3)
CS2和CX2锂离子电池数据集为已经获得的数据集,根据以上公式获得电容容量的原始观测数据,见图3A和图3B,其中图3A和图3B分别为本发明一个实施例中电池额定容量为CS2和CX2的锂离子电池在全寿命周期下原始容量退化数据。为了在不丢失电池退化特征信息的条件下保证退化数据的可用性和适当化简,对数据进行预处理。由于异常值的存在会导致滤波结果的发散,冗余数据过多会阻碍算法的运算效率,数据预处理主要包括异常值剔除和数据精简步骤,电池容量预处理后的观测数据,见图4A和图4B,其中图4A和图4B分别为CS2和CX2锂离子电池在全寿命周期下预处理后的容量退化数据。
对于数据噪声的获取,基于预测误差的偏差-方差-噪声分解对数据噪声进行量化。根据数据噪声的正态分布假设,有E(ε)=0,数据噪声的方差量化如下:
Figure BDA0003156884530000082
Figure BDA0003156884530000083
Figure BDA0003156884530000084
分别为对模型预测误差期望和模型预测方差的估计,从群体历史数据中独立于模型训练集和验证集的数据集中获得。基于CS2和CX2锂离子电池数据集,数据噪声量化为:
表1.数据噪声方差量化结果
Figure BDA0003156884530000085
在本发明中,个体模型初始化步骤S102的操作为:
(1)在模型层,选取双指数经验模型和多项式经验模型作为待选个体模型,其中:
双指数模型:C(k)=α1·exp(α2·k)+α3·exp(α4·k)
多项式模型:C(k)=β1·k22·k+β3
其中,α1234以及β123分别为双指数模型和多项式模型的待估模型参数。
(2)对于锂离子电池的群体历史数据集,其群体历史数据集是由多个独立的电池全寿命周期数据集作为子数据集组成。利用模型训练集应用最小二乘法对双指数模型和多项式模型进行训练,获得2I个候选个体模型。
(3)利用模型验证集,对由每一个训练集分别生成的两个候选个体模型进行模型验证,选取预测性能较好的模型作为个体模型,生成I个初始个体模型。
在本发明的一个实施例中,模型权重初始化步骤S103的操作为:
(1)对于I个个体模型,计算其在验证数据集上的剩余寿命预测输出:
Figure BDA0003156884530000091
其中,i=1,2,...,I,j=1,2,...,I,
Figure BDA0003156884530000092
为第i个体模型在第j个验证集的电池容量输出达到失效阈值时的电池充电循环数,即失效寿命,kij为开展剩余寿命预测时的电池充电循环数。
(2)计算个体模型的剩余寿命预测误差,假设
Figure BDA0003156884530000093
为剩余寿命真值,则模型的预测误差eij如下:
Figure BDA0003156884530000094
(3)应用遗传算法对模型初始权重进行基于集成模型预测误差最小的优化求解,如下:
Figure BDA0003156884530000095
其中,{ωj,j=1,2,...,I}为个体模型初始权重,eij为模型在历史数据子集中获得的个体模型的预测误差,优化函数中
Figure BDA0003156884530000096
为集成模型平均预测偏差,
Figure BDA0003156884530000097
为集成模型平均预测方差;并且基于锂离子电池的个体在线数据,考虑个体模型在个体在线数据中的拟合优度,对模型权重进行更新修正根据数据集特征,I=3。
在本发明的一个实施例中,个体模型更新步骤S104使用粒子滤波算法进行个体模型构建,并在个体模型构建中加入数据噪声参数以考虑数据不确定性,其操作包括:
基于生成的初始个体模型,建立基于双指数和多项式的状态空间模型,应用粒子滤波算法对个体模型进行状态空间模型构建和模型状态参数更新,如下:
表2.应用粒子滤波更新个体模型参数
Figure BDA0003156884530000101
其中,α1234及β123分别为双指数模型和多项式模型的待估模型参数,Ck是电池在第k个充放电循环下的电池容量,
Figure BDA0003156884530000102
为观测数据噪声方差,Σα和Σβ分别为双指数和多项式状态方程的状态噪声协方差,
Figure BDA0003156884530000103
Figure BDA0003156884530000104
分别为两状态空间模型的状态参数方差,CV为方差系数,δ(·)为狄拉克函数,N为粒子数,
Figure BDA0003156884530000105
为第i个粒子的粒子权重。
在本发明的一个实施例中,个体模型更新步骤S105使用粒子滤波算法进行个体模型构建,并在个体模型构建中加入数据噪声参数以考虑数据不确定性,其操作包括:
基于优化的初始个体模型权重,建立模型权重的状态空间模型,应用粒子滤波算法对个体模型的分配权重进行更新修正。其中状态空间模型建立如下:
Figure BDA0003156884530000111
其中,ωk={ω1,ω2,...,ωI}k是电池在第k个充放电循环下的个体模型权重,hk={h1,h2,...,hI}k是电池在第k个充放电循环下的个体模型输出,Σ为状态方程的状态噪声协方差。在粒子滤波算法下,个体模型权重的后验分布如下:
Figure BDA0003156884530000112
模型权重在电池第k个充放电循环下的后验期望如下:
Figure BDA0003156884530000113
进一步,集成模型构建与预测步骤S106的操作如下:
在个体模型参数及权重被更新修正后,基于时变和退化相关权重的集成模型被构建,从而实现锂离子电池的剩余寿命预测,如下:
Figure BDA0003156884530000114
RULk={x-k|hens(x)=thcapacity} (12)
通过将个体模型进行加权集成,模型集成法降低了任意选择一个不合适的模型的风险。当获得新的数据时,通过本发明的方法,将此次模型集成法的模型先验概率设为上一次模型集成法所得到的模型后验概率,个体模型和模型权重均实现了迭代更新,给出的预测结果将基于新的数据做出调整。
在本发明的一个实施例中,对两个锂离子电池数据集进行了集成模型构建和剩余寿命预测,通过4次交叉验证,计算得到预测模型的平均绝对误差(MAE)和均方根误差(RMSE)均值进行模型预测性能进行评估,得到预测结果。
表3.个体模型和集成模型的锂离子电池RUL预测MAE交叉验证结果
Figure BDA0003156884530000121
表4.个体模型和集成模型的锂离子电池RUL预测RMSE交叉验证结果
Figure BDA0003156884530000122
个体模型和集成模型在CS2锂离子电池和CX2锂离子电池剩余寿命预测中的MAE和RMSE结果如表3和表4所示。从表中可以看出,在个体模型的预测性能比较中,没有绝对的个体模型能够对不同类型的电池均具有最优的预测性能,例如个体模型1对于CS2的数据是最好的,而对于CX2的数据是最差的,这说明了剩余寿命预测中存在模型不确定性。此外,图5A、图5B、图5C和图6A、图6B及图6C分别给出了CS2锂离子电池#3号试样和CX2锂离子电池#3分别在退化早期、中期和晚期的预测曲线。具体为,图5A为个体模型和集成模型在锂离子电池CS2#3号处于退化早期、即在120次充电循环时的预测退化曲线,图5B为个体模型和集成模型在锂离子电池CS2#3号处于退化中期、即在240次充电循环时的预测退化曲线,图5C为个体模型和集成模型在锂离子电池CS2#3号处于退化晚期、即在360次充电循环时的预测退化曲线;图6A为个体模型和集成模型在锂离子电池CX2#3号处于退化早期即200次充电时的循环预测退化曲线,图6B为个体模型和集成模型在锂离子电池CX2#3号处于退化中期即400次充电时的循环预测退化曲线,图6C为个体模型和集成模型在锂离子电池CX2#3号处于退化晚期即600次充电时的循环预测退化曲线。在任意退化时期,集成模型的预测曲线均比单个模型的预测曲线更接近真实的退化曲线。
本发明提出了的考虑不确定性的锂离子电池剩余寿命集成预测方法,不仅考虑数据不确定性,提出基于模型预测误差分解的数据噪声量化方法并应用于基于粒子滤波的剩余寿命预测中;而且考虑模型不确定性,提出基于模型集成的锂离子电池剩余寿命预测方法。根据群体历史数据,基于模型预测误差的分解量化数据噪声,并在不同数据集下,基于最小二乘法使用双指数经验模型和多项式经验模型训练出多个候选个体模型,根据模型的预测精度从每个数据集下的候选经验模型中选择最优的模型作为初始个体模型,基于预测误差最小加权法对个体模型进行模型权重初始化;根据个体在线数据,通过粒子滤波引入数据噪声,应用粒子滤波算法对个体模型进行基于拟合优度的在线更新,并二次应用粒子滤波对个体模型权重进行基于拟合优度的更新修正,以使模型权重基于在线数据时变和具有退化相关性;基于修正后的模型权重对个体模型进行集成加权平均,进而建立集成退化模型对锂离子电池的剩余寿命进行预测。本发明提出了基于时变和退化加权的模型集成法,基于该方法可以建立基于最优模型加权的集成模型以考虑因模型选择带来的模型不确定性影响,并降低由数据噪声带来的数据不确定性,从而提高了锂离子电池的剩余寿命预测的准确性和鲁棒性。
最后所应说明的是:以上实施例仅以说明而非限制本发明的技术方案,尽管参照上述实施例对本发明进行了详细说明,本领域的普通技术人员应当理解:依然可以对本发明进行修改或者等同替换,而不脱离本发明的精神和范围的任何修改或局部替换,其均应涵盖在本发明的权利要求范围当中。

Claims (6)

1.一种考虑不确定性的锂离子电池剩余寿命集成预测方法,其特征在于,其包括:
数据获取步骤,对锂离子电池进行测试,测试锂离子电池在室温下依次经过充电和放电时的充放电电流A,从而获得锂离子电池充放电电容退化数据C={C(k),k},其中k为充放电循环数,基于预测误差的偏差-方差-噪声分解,提取观测数据中的数据噪声并进行量化,获得噪声
Figure FDA0003557225190000011
的噪声方差
Figure FDA0003557225190000012
个体模型构建步骤,基于锂离子电池的群体历史数据,应用最小二乘法从数据层和模型层两个层面生成多样性个体模型h={h1,h2,...,hI},对个体模型进行模型初始化;基于锂离子电池的个体在线数据,即待预测锂离子电池在使用阶段内实时获得的数据,应用粒子滤波算法,建立状态空间模型,对个体模型进行实时更新,完成个体模型构建;
模型权重获取步骤,基于锂离子电池的群体历史数据,使用遗传算法,获得模型初始权重ω={ω12,...,ωI},基于集成模型预测误差最小对个体模型权重进行初始优化,其优化函数为:
Figure FDA0003557225190000013
其中,{ωj,j=1,2,...,I}为个体模型初始权重,eij为模型在历史数据子集中获得的个体模型的预测误差,优化函数中
Figure FDA0003557225190000014
为集成模型平均预测偏差,
Figure FDA0003557225190000015
为集成模型平均预测方差;并且基于锂离子电池的个体在线数据,考虑个体模型在个体在线数据中的拟合优度,对模型权重进行更新修正;
集成模型构建和预测步骤,基于获得的模型权重,加权集成个体模型,构建锂离子电池剩余寿命预测集成模型;并且利用所述集成模型对电池容量的退化状态进行预测,根据电池容量的失效阈值获得锂离子电池剩余寿命的预测结果。
2.根据权利要求1所述的考虑不确定性的锂离子电池剩余寿命集成预测方法,其特征在于,所述锂离子电池剩余寿命预测的产品为宇航电子产品、军工电子产品或者民用电子产品。
3.根据权利要求1所述的考虑不确定性的锂离子电池剩余寿命集成预测方法,其特征在于:所述数据获取步骤包括:
测试锂离子电池在室温下依次经过充电和放电时的充放电电流A后,通过对电池电流A进行放电时间内的积分计算获得电池容量观测数据C,观测数据中包含数据噪声ε,对数据噪声进行提取和量化,数据噪声的存在形式的表达式为:
Figure FDA0003557225190000021
其中,C(k)为第k个充放电循环下的电池容量观测值,y(k)为第k个充放电循环下的真实电池容量输出,ε为服从零均值高斯分布的数据噪声,
Figure FDA0003557225190000022
为噪声方差;
基于预测误差的偏差-方差-噪声分解和预测模型无偏假设
Figure FDA0003557225190000023
数据噪声为:
Figure FDA0003557225190000024
其中,h为预测模型,
Figure FDA0003557225190000025
为预测模型h的期望,E[(h-C)2]为模型预测误差平方期望,
Figure FDA0003557225190000026
为模型期望方差,数据噪声的方差计算如下:
Figure FDA0003557225190000027
其中,hi,i=1,2,...n为不同数据集训练下的预测模型输出,Cr,r=1,2,...n为不同数据集训练下的电池电容观测值,
Figure FDA0003557225190000028
Figure FDA0003557225190000029
分别为对模型预测误差平方期望和模型方差期望的估计,从群体历史数据中独立于模型训练集和验证集的数据集中获得。
4.根据权利要求1或者3所述的考虑不确定性的锂离子电池剩余寿命集成预测方法,其特征在于:个体模型构建步骤具体包括:
考虑个体模型的多样性,在模型层,选取双指数经验模型和多项式经验模型作为待选个体模型;在数据层,将锂离子电池的群体历史数据分为多个相互独立的数据集S={S1,S2,...,SI},选取数据集S中第一子集作为模型验证集V,第二子集作为模型训练集T;应用最小二乘法对不同模型训练集下的双指数模型和多项式模型进行训练,获得2I个候选个体模型;对由每一个训练集分别生成的两个候选个体模型进行模型验证,选取预测性能好的模型作为个体模型,生成I个初始个体模型h={h1,h2,...,hI};
基于生成的初始个体模型,建立基于双指数和多项式的状态空间模型,应用粒子滤波算法对个体模型进行状态空间模型构建和模型状态参数更新,获得在第k个充放电循环下的个体模型
Figure FDA0003557225190000031
5.根据权利要求1或者3所述的考虑不确定性的锂离子电池剩余寿命集成预测方法,其特征在于,模型权重获取步骤具体还包括以下步骤:
基于优化的初始个体模型权重,建立模型权重的状态空间模型,应用粒子滤波算法对个体模型的分配权重进行更新修正,所述状态空间模型建立如下:
Figure FDA0003557225190000032
其中,ωk={ω1,ω2,...,ωI}k是电池在第k个充放电循环下的个体模型权重,hk={h1,h2,...,hI}k是电池在第k个充放电循环下的个体模型输出,Ck是电池在第k个充放电循环下的电池电容观测值,μk为模型权重在第k个充放电循环下的状态噪声,εk为在第k个充放电循环下的观测数据噪声,Σ为状态方程的状态噪声协方差,在粒子滤波算法下,个体模型权重的后验分布如下:
Figure FDA0003557225190000033
模型权重在电池第k个充放电循环下的后验期望如下:
Figure FDA0003557225190000034
其中,δ(·)为狄拉克函数,N为粒子数,
Figure FDA0003557225190000035
为第i个粒子的粒子权重。
6.根据权利要求1-3之一所述的考虑不确定性的锂离子电池剩余寿命集成预测方法,其特征在于,所述集成模型构建和预测步骤具体包括:
在个体模型构建完成后,基于获取的时变模型权重对个体模型进行加权集成,从而构建集成模型,实现锂离子电池的剩余寿命预测,如下:
Figure FDA0003557225190000036
RULk={x-k|hens(x)=thcapacity} (9)
其中,hens k(x)为在第k个充放电循环下获得的集成模型,x为用于电池容量预测的电池充放电循环数输入,RULk为在第k个充放电循环下的电池剩余寿命预测值,thcapacity为电池容量失效阈值。
CN202110778883.9A 2021-07-09 2021-07-09 考虑不确定性的锂离子电池剩余寿命集成预测方法 Active CN113504483B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110778883.9A CN113504483B (zh) 2021-07-09 2021-07-09 考虑不确定性的锂离子电池剩余寿命集成预测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110778883.9A CN113504483B (zh) 2021-07-09 2021-07-09 考虑不确定性的锂离子电池剩余寿命集成预测方法

Publications (2)

Publication Number Publication Date
CN113504483A CN113504483A (zh) 2021-10-15
CN113504483B true CN113504483B (zh) 2022-06-14

Family

ID=78012051

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110778883.9A Active CN113504483B (zh) 2021-07-09 2021-07-09 考虑不确定性的锂离子电池剩余寿命集成预测方法

Country Status (1)

Country Link
CN (1) CN113504483B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114252797B (zh) * 2021-12-17 2023-03-10 华中科技大学 一种基于不确定性估计的锂电池剩余使用寿命预测方法
CN114047452B (zh) * 2022-01-13 2022-05-13 浙江玥视科技有限公司 一种确定电池循环寿命的方法及装置
CN116050662A (zh) * 2023-03-07 2023-05-02 中环洁集团股份有限公司 一种环卫设备报废预测方法、系统及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102778653A (zh) * 2012-06-20 2012-11-14 哈尔滨工业大学 基于ar模型和rpf算法的数据驱动的锂离子电池循环寿命预测方法
JP7200762B2 (ja) * 2019-03-12 2023-01-10 トヨタ自動車株式会社 予測モデル生成装置、方法、プログラム、電池寿命予測装置、方法及びプログラム
CN112016237B (zh) * 2019-05-13 2023-04-07 北京航空航天大学 锂电池寿命预测的深度学习方法、装置及系统
CN112230154A (zh) * 2019-07-15 2021-01-15 中国科学院沈阳自动化研究所 一种锂电池剩余寿命预测方法
CN111680848A (zh) * 2020-07-27 2020-09-18 中南大学 基于预测模型融合的电池寿命预测方法及存储介质

Also Published As

Publication number Publication date
CN113504483A (zh) 2021-10-15

Similar Documents

Publication Publication Date Title
CN113504483B (zh) 考虑不确定性的锂离子电池剩余寿命集成预测方法
CN110221225B (zh) 一种航天器锂离子电池循环寿命预测方法
CN106918789B (zh) 一种soc-soh联合在线实时估计和在线修正方法
US10209314B2 (en) Systems and methods for estimation and prediction of battery health and performance
CN113805064B (zh) 基于深度学习的锂离子电池组健康状态预测方法
CN110659722B (zh) 基于AdaBoost-CBP神经网络的电动汽车锂离子电池健康状态估算方法
Xing et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries
Wang et al. Open circuit voltage and state of charge relationship functional optimization for the working state monitoring of the aerial lithium-ion battery pack
CN113655385B (zh) 锂电池soc估计方法、装置及计算机可读存储介质
CN110109028A (zh) 一种动力电池剩余寿命间接预测方法
CN104569844A (zh) 阀控密封式铅酸蓄电池健康状态监测方法
Wang et al. Adaptive state-of-charge estimation method for an aeronautical lithium-ion battery pack based on a reduced particle-unscented kalman filter
CN109839596B (zh) 基于ud分解的自适应扩展卡尔曼滤波的soc估算方法
CN112834927A (zh) 锂电池剩余寿命预测方法、系统、设备及介质
CN114705990B (zh) 电池簇荷电状态的估计方法及系统、电子设备及存储介质
CN110673037B (zh) 基于改进模拟退火算法的电池soc估算方法及系统
Fu et al. State of charge estimation of lithium-ion phosphate battery based on weighted multi-innovation cubature Kalman filter
CN112630659A (zh) 一种基于改进bp-ekf算法的锂电池soc估算方法
CN111142025A (zh) 一种电池soc估算方法、装置、存储介质及电动汽车
CN112684363A (zh) 一种基于放电过程的锂离子电池健康状态估计方法
CN116680983A (zh) 基于改进粒子滤波模型的锂离子剩余寿命预测方法
CN114660497A (zh) 一种针对容量再生现象的锂离子电池寿命预测方法
CN110412472B (zh) 一种基于正态伽马滤波的电池荷电状态估计方法
Tang et al. Parameter identification for lithium batteries: Model variable-coupling analysis and a novel cooperatively coevolving identification algorithm
CN111337833B (zh) 一种基于动态时变权重的锂电池容量集成预测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant