CN113502452B - 一种TaN-稀土复合涂层及其制备方法 - Google Patents
一种TaN-稀土复合涂层及其制备方法 Download PDFInfo
- Publication number
- CN113502452B CN113502452B CN202110785360.7A CN202110785360A CN113502452B CN 113502452 B CN113502452 B CN 113502452B CN 202110785360 A CN202110785360 A CN 202110785360A CN 113502452 B CN113502452 B CN 113502452B
- Authority
- CN
- China
- Prior art keywords
- tan
- rare earth
- coating
- ion implantation
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0641—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/0021—Reactive sputtering or evaporation
- C23C14/0036—Reactive sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/48—Ion implantation
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5806—Thermal treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/58—After-treatment
- C23C14/5826—Treatment with charged particles
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及一种TaN‑稀土复合涂层及其制备方法。为了提高现有的TaN涂层的耐腐蚀性能,本发明创造性的通过离子注入法向TaN涂层中掺入稀土元素镧,离子注入处理后,在TaN涂层的表层或近表层区域形成了耐腐蚀性能优异的TaN‑稀土复合涂层。进一步研究后发现,稀土元素的注入量应控制在合理的范围,因为过多的稀土元素不仅对耐腐蚀性能的提高没有裨益,反而会降低TaN涂层的生物相容性。
Description
技术领域
本发明涉及医用涂层领域,具体涉及一种TaN-稀土复合涂层及其制备方法。
背景技术
钽是具有良好生物相容性和骨诱导性的金属,自1940年,钽首次被应用于骨科医疗,迄今为止,未发现钽金属作为人体植入物产生了不良反应。除钽丝、钽片、多孔钽填充材料以外,近年来钽作为涂层材料沉积于骨科植入体表面受到了广泛关注。医疗实践证明,钽涂层具有优异的化学稳定性、生物相容性和骨诱导能力。
然而,钽是一种软质金属,纯钽涂层不是最佳的改性植入体材料,对此,学者们发现氧化钽、碳化钽或氮化钽可以很好的解决这个问题,因而他们具有坚硬和耐磨的优良特性,其中氮化钽的性能尤为突出。但是,在复杂的人体液态环境中,医用植入体的耐腐蚀性能始终面临着严峻的考验,发掘耐腐蚀性能优异的医用材料是一项长期而艰巨的工作。
发明内容
针对现有技术存在的问题,本发明旨在提供一种TaN-稀土复合涂层及其制备方法,该复合涂层可以进一步优化现有TaN涂层的耐腐蚀性能。
一种TaN-稀土复合涂层的制备方法,包括以下步骤:
A.选用不锈钢作为衬底;
B.先后对衬底进行抛光、除油、清洗和烘干处理;
C.选用纯度为99.9%的高纯Ta靶材作为溅射源,在氩气和氮气条件下制备TaN涂层,溅射过程的本底真空度低于1*10-4Pa,氩气流量60-80sccm,氮气流量35-50sccm,工作压力1.0-3.0Pa,靶基距约6-8cm,基板偏压-60至-80V,溅射温度180-220℃,溅射时间2-2.5h;
D.对TaN涂层进行真空退火处理,退火温度400-450℃,退火时间2-3h,升温速率15-20℃/min;
E.将退火后的TaN涂层放置于金属蒸汽真空弧电源离子注入设备中,调整离子注入设备腔室的真空度低于4×10-4Pa,并选用稀土镧离子进行离子注入,离子电压为80-100keV。
进一步地,所述衬底的尺寸为8mm*8mm*3mm。
进一步地,所述不锈钢为316L不锈钢。
进一步地,所述抛光选用梯度砂纸进行。
进一步地,所述除油选用15%的碳酸钠溶液。
进一步地,所述清洗选用去离子水并以超声波辅助。
进一步地,所述烘干在惰性气体下进行。
进一步地,所述镧离子注入量为3.6×1013-9.6×1013ions/cm2。
本发明还提供了一种TaN-稀土复合涂层,所述复合涂层由上述方法制备而得。
为了提高现有的TaN涂层的耐腐蚀性能,本发明创造性的通过离子注入法向TaN涂层中掺入稀土元素镧,离子注入处理后,在TaN涂层的表层或近表层区域形成了耐腐蚀性能优异的TaN-稀土复合涂层。进一步研究后发现,稀土元素的注入量应控制在合理的范围,因为过多的稀土元素不仅对耐腐蚀性能的提高没有裨益,反而会降低TaN涂层的生物相容性。
具体实施方式
下面通过具体实施例来验证本发明的技术效果,但是本发明的实施方式不局限于此。
实施例1
一种TaN-稀土复合涂层的制备方法,包括以下步骤:
A.选用尺寸为8mm*8mm*3mm的316L不锈钢作为衬底;
B.先后对衬底进行抛光、除油、清洗和烘干处理,其中抛光选用梯度砂纸进行,除油选用15%的碳酸钠溶液,清洗选用去离子水并以超声波辅助;烘干在惰性气体下进行;
C.选用纯度为99.9%的高纯Ta靶材作为溅射源,在氩气和氮气条件下制备TaN涂层,溅射过程的本底真空度低于1*10-4Pa,氩气流量60sccm,氮气流量35sccm,工作压力1.0Pa,靶基距8cm,基板偏压-60V,溅射温度180℃,溅射时间2h;
D.对TaN涂层进行真空退火处理,退火温度400℃,退火时间2h,升温速率20℃/min;
E.将退火后的TaN涂层放置于金属蒸汽真空弧电源离子注入设备中,调整离子注入设备腔室的真空度为4×10-4Pa,并选用稀土镧离子进行离子注入,离子电压为80keV,镧离子注入量为3.6×1013ions/cm2。
实施例2
一种TaN-稀土复合涂层的制备方法,包括以下步骤:
A.选用尺寸为8mm*8mm*3mm的316L不锈钢作为衬底;
B.先后对衬底进行抛光、除油、清洗和烘干处理,其中抛光选用梯度砂纸进行,除油选用15%的碳酸钠溶液,清洗选用去离子水并以超声波辅助;烘干在惰性气体下进行;
C.选用纯度为99.9%的高纯Ta靶材作为溅射源,在氩气和氮气条件下制备TaN涂层,溅射过程的本底真空度低于1*10-4Pa,氩气流量60sccm,氮气流量35sccm,工作压力1.0Pa,靶基距8cm,基板偏压-60V,溅射温度180℃,溅射时间2h;
D.对TaN涂层进行真空退火处理,退火温度400℃,退火时间2h,升温速率20℃/min;
E.将退火后的TaN涂层放置于金属蒸汽真空弧电源离子注入设备中,调整离子注入设备腔室的真空度为4×10-4Pa,并选用稀土镧离子进行离子注入,离子电压为80keV,镧离子注入量为6.8×1013ions/cm2。
实施例3
一种TaN-稀土复合涂层的制备方法,包括以下步骤:
A.选用尺寸为8mm*8mm*3mm的316L不锈钢作为衬底;
B.先后对衬底进行抛光、除油、清洗和烘干处理,其中抛光选用梯度砂纸进行,除油选用15%的碳酸钠溶液,清洗选用去离子水并以超声波辅助;烘干在惰性气体下进行;
C.选用纯度为99.9%的高纯Ta靶材作为溅射源,在氩气和氮气条件下制备TaN涂层,溅射过程的本底真空度低于1*10-4Pa,氩气流量60sccm,氮气流量35sccm,工作压力1.0Pa,靶基距8cm,基板偏压-60V,溅射温度180℃,溅射时间2h;
D.对TaN涂层进行真空退火处理,退火温度400℃,退火时间2h,升温速率20℃/min;
E.将退火后的TaN涂层放置于金属蒸汽真空弧电源离子注入设备中,调整离子注入设备腔室的真空度为4×10-4Pa,并选用稀土镧离子进行离子注入,离子电压为80keV,镧离子注入量为8.1×1013ions/cm2。
实施例4
一种TaN-稀土复合涂层的制备方法,包括以下步骤:
A.选用尺寸为8mm*8mm*3mm的316L不锈钢作为衬底;
B.先后对衬底进行抛光、除油、清洗和烘干处理,其中抛光选用梯度砂纸进行,除油选用15%的碳酸钠溶液,清洗选用去离子水并以超声波辅助;烘干在惰性气体下进行;
C.选用纯度为99.9%的高纯Ta靶材作为溅射源,在氩气和氮气条件下制备TaN涂层,溅射过程的本底真空度低于1*10-4Pa,氩气流量60sccm,氮气流量35sccm,工作压力1.0Pa,靶基距8cm,基板偏压-60V,溅射温度180℃,溅射时间2h;
D.对TaN涂层进行真空退火处理,退火温度400℃,退火时间2h,升温速率20℃/min;
E.将退火后的TaN涂层放置于金属蒸汽真空弧电源离子注入设备中,调整离子注入设备腔室的真空度为4×10-4Pa,并选用稀土镧离子进行离子注入,离子电压为80keV,镧离子注入量为9.6×1013ions/cm2。
对比例1
一种TaN-稀土复合涂层的制备方法,包括以下步骤:
A.选用尺寸为8mm*8mm*3mm的316L不锈钢作为衬底;
B.先后对衬底进行抛光、除油、清洗和烘干处理,其中抛光选用梯度砂纸进行,除油选用15%的碳酸钠溶液,清洗选用去离子水并以超声波辅助;烘干在惰性气体下进行;
C.选用纯度为99.9%的高纯Ta靶材作为溅射源,在氩气和氮气条件下制备TaN涂层,溅射过程的本底真空度低于1*10-4Pa,氩气流量60sccm,氮气流量35sccm,工作压力1.0Pa,靶基距8cm,基板偏压-60V,溅射温度180℃,溅射时间2h;
D.对TaN涂层进行真空退火处理,退火温度400℃,退火时间2h,升温速率20℃/min;
E.将退火后的TaN涂层放置于金属蒸汽真空弧电源离子注入设备中,调整离子注入设备腔室的真空度为4×10-4Pa,并选用稀土镧离子进行离子注入,离子电压为80keV,镧离子注入量为1.5×1013ions/cm2。
对比例2
一种TaN-稀土复合涂层的制备方法,包括以下步骤:
A.选用尺寸为8mm*8mm*3mm的316L不锈钢作为衬底;
B.先后对衬底进行抛光、除油、清洗和烘干处理,其中抛光选用梯度砂纸进行,除油选用15%的碳酸钠溶液,清洗选用去离子水并以超声波辅助;烘干在惰性气体下进行;
C.选用纯度为99.9%的高纯Ta靶材作为溅射源,在氩气和氮气条件下制备TaN涂层,溅射过程的本底真空度低于1*10-4Pa,氩气流量60sccm,氮气流量35sccm,工作压力1.0Pa,靶基距8cm,基板偏压-60V,溅射温度180℃,溅射时间2h;
D.对TaN涂层进行真空退火处理,退火温度400℃,退火时间2h,升温速率20℃/min;
E.将退火后的TaN涂层放置于金属蒸汽真空弧电源离子注入设备中,调整离子注入设备腔室的真空度为4×10-4Pa,并选用稀土镧离子进行离子注入,离子电压为80keV,镧离子注入量为2.5×1014ions/cm2。
以下,我们对实施例1-4以及对比例1-2的实验样品进行电化学腐蚀实验以评定其耐腐蚀性能,并以未进行离子注入处理的TaN涂层作为空白对照组。
另外,通过溶血试验评价各样品的生物相容性,其原理在于:将样品与血液直接接触,测定红细胞膜破裂后释放的血红蛋白量,以检测各样品体外溶血程度。血红蛋白的吸收波长为545nm,可用分光光度计检测其浓度。具体操作步骤如下:
(1)从健康家兔心脏采血100mL,加入2%草酸钾5mL,制成新鲜抗凝血。取抗凝血40mL,加入0.9%氯化钠注射液50mL进行稀释。
(2)取3支硅化试管,一支试管装入试验样品和氯化钠注射液10mL,一支试管空白作为阴性对照组加入氯化钠生理盐水10mL,另外一支试管空白作为阳性对照组分别加入10mL蒸馏水。
(3)所有试管在37℃水浴中恒温30min,分别加入5mL抗凝兔血,并在37℃条件下保温60min。
(4)取试管上层清液,在545nm波长处测定吸光度。每一样品进行三次平行试验并取平均值。
溶血率的计算公式如下:
溶血率(%)=(试样平均吸光度-阴性组吸光度)/(阳性组吸光度-阴性组吸光度)×100
各样品的测试数据如表1所示。
表1各样品的腐蚀实验数据及生物相容性数据
编号 | 自腐蚀电流密度(μA/cm<sup>2</sup>) | 溶血率/% |
实施例1 | 0.238 | 3.5 |
实施例2 | 0.211 | 4.6 |
实施例3 | 0.139 | 1.2 |
实施例4 | 0.073 | 4.7 |
对比例1 | 0.415 | 3.3 |
对比例2 | 0.076 | 9.7 |
空白对照组 | 0.429 | 3.1 |
从表1可以看出,通过离子注入稀土元素La可以提高TaN涂层的耐腐蚀性能,并且,耐腐蚀性能随着稀土注入量的增加而得到相应的提高,但是当稀土含量达到某一值后,继续提高稀土注入量,则对耐腐蚀性能的影响不大。另一方面,稀土注入量较低时,TaN涂层的生物相容性呈现出不规律的变化,但整体上与空白对照组相当,而当稀土注入量过多时(如对比例2),则表现出生物相容性急剧下降的态势。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变型,这些改进和变型也应视为本发明的保护范围。
Claims (8)
1.一种TaN-稀土复合涂层的制备方法,其特征在于:包括以下步骤:
A.选用不锈钢作为衬底;
B.先后对衬底进行抛光、除油、清洗和烘干处理;
C.选用纯度为99.9%的高纯Ta靶材作为溅射源,在氩气和氮气条件下制备TaN涂层,溅射过程的本底真空度低于1*10-4Pa,氩气流量60-80sccm,氮气流量35-50sccm,工作压力1.0-3.0Pa,靶基距6-8cm,基板偏压-60至-80V,溅射温度180-220℃,溅射时间2-2.5h;
D.对TaN涂层进行真空退火处理,退火温度400-450℃,退火时间2-3h,升温速率15-20℃/min;
E.将退火后的TaN涂层放置于金属蒸汽真空弧电源离子注入设备中,调整离子注入设备腔室的真空度低于4×10-4Pa,并选用稀土镧离子进行离子注入,离子电压为80-100keV;所述镧离子注入量为8.1×1013ions/cm2。
2.一种如权利要求1所述的制备方法,其特征在于:所述衬底的尺寸为8mm*8mm*3mm。
3.一种如权利要求1所述的制备方法,其特征在于:所述不锈钢为316L不锈钢。
4.一种如权利要求1所述的制备方法,其特征在于:所述抛光选用梯度砂纸进行。
5.一种如权利要求1所述的制备方法,其特征在于:所述除油选用15%的碳酸钠溶液。
6.一种如权利要求1所述的制备方法,其特征在于:所述清洗选用去离子水并以超声波辅助。
7.一种如权利要求1所述的制备方法,其特征在于:所述烘干在惰性气体下进行。
8.一种TaN-稀土复合涂层,其特征在于:所述复合涂层由权利要求1-7中任一项方法制备而得。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110785360.7A CN113502452B (zh) | 2021-07-12 | 2021-07-12 | 一种TaN-稀土复合涂层及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110785360.7A CN113502452B (zh) | 2021-07-12 | 2021-07-12 | 一种TaN-稀土复合涂层及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113502452A CN113502452A (zh) | 2021-10-15 |
CN113502452B true CN113502452B (zh) | 2023-03-24 |
Family
ID=78012775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110785360.7A Active CN113502452B (zh) | 2021-07-12 | 2021-07-12 | 一种TaN-稀土复合涂层及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113502452B (zh) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07192907A (ja) * | 1993-12-27 | 1995-07-28 | Res Inst Electric Magnetic Alloys | 高保磁力Pr−Co系合金の永久磁石材料及び薄膜の永久磁石材料並びにその製造方法 |
CN104046951B (zh) * | 2014-06-13 | 2016-02-24 | 西安交通大学 | 一种在医用钛合金表面制备镨掺杂氮化钛涂层的方法 |
CN110607500A (zh) * | 2019-10-08 | 2019-12-24 | 中国科学院宁波材料技术与工程研究所 | 一种TaN涂层及其制备方法与应用 |
-
2021
- 2021-07-12 CN CN202110785360.7A patent/CN113502452B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN113502452A (zh) | 2021-10-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4690386B2 (ja) | 金属インプラント | |
CN104962921B (zh) | 一种镍钛合金表面无镍层的制备方法 | |
JP5692729B2 (ja) | 金属処理 | |
JP6154884B2 (ja) | ボディインプラントのためのストロンチウムを含むコーティング | |
US20140364960A1 (en) | Nickel-free iron alloy for stents | |
CN105343938A (zh) | 医疗器械 | |
JP4457230B2 (ja) | 医用インプラント材の表面処理方法 | |
Parsapour et al. | Corrosion behavior and biocompatibility of hydroxyapatite coating on H 2 SO 4 passivated 316L SS for human body implant | |
CN113502452B (zh) | 一种TaN-稀土复合涂层及其制备方法 | |
CN101745147A (zh) | 氧化锌涂层改性的体内植入人工器官及其制备方法 | |
CN110292665A (zh) | 一种镁合金表面耐腐蚀抗氧化抗炎症的复合涂层及其制备方法 | |
US20160367159A1 (en) | Biomedical electrode having low oxygen content | |
Garguilo et al. | Fibrinogen adsorption onto microwave plasma chemical vapor deposited diamond films | |
CN112899618B (zh) | 一种血管支架表面具有催化能力的涂层及其制备方法 | |
CN103343375A (zh) | 钛表面微弧氧化/水汽处理生物活性复合涂层的方法 | |
RU2508130C1 (ru) | Способ изготовления кардиоимплантата из сплава на основе никелида титана с модифицированным ионно-плазменной обработкой поверхностным слоем | |
CN101988182A (zh) | 耐磨蚀牙科正畸弓丝表面改性方法及所得的耐磨蚀弓丝 | |
CN110075354B (zh) | 一种具有显著促细胞成骨分化性能的钽基涂层及其制备方法和应用 | |
KR100335039B1 (ko) | 항미생물 재료 | |
US20220226639A1 (en) | Graphene cochlear implant electrode and manufacturing method thereof | |
RU2448741C1 (ru) | Способ формирования наноструктурированного биосовместимого покрытия на имплантатах | |
CN101565825B (zh) | 镁或镁合金表面的处理方法 | |
CN113373403B (zh) | 一种肠道支架表面气体渗氮的改性方法 | |
Schmitz | Functional coatings by physical vapor deposition (PVD) for biomedical applications | |
CN114525488B (zh) | 一种磁控溅射氧化锆掺杂的羟基磷灰石涂层及其应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |