CN113477221B - 一种超疏水-超亲油材料及其制备方法 - Google Patents

一种超疏水-超亲油材料及其制备方法 Download PDF

Info

Publication number
CN113477221B
CN113477221B CN202110771223.8A CN202110771223A CN113477221B CN 113477221 B CN113477221 B CN 113477221B CN 202110771223 A CN202110771223 A CN 202110771223A CN 113477221 B CN113477221 B CN 113477221B
Authority
CN
China
Prior art keywords
super
hydrophobic
degrees
superhydrophobic
trichlorosilane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110771223.8A
Other languages
English (en)
Other versions
CN113477221A (zh
Inventor
阮雪薇
陈丁江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN202110771223.8A priority Critical patent/CN113477221B/zh
Publication of CN113477221A publication Critical patent/CN113477221A/zh
Application granted granted Critical
Publication of CN113477221B publication Critical patent/CN113477221B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/0202Separation of non-miscible liquids by ab- or adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • B01J20/28035Membrane, sheet, cloth, pad, lamellar or mat with more than one layer, e.g. laminates, separated sheets
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/46Materials comprising a mixture of inorganic and organic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明公开了一种超疏水‑超亲油材料及其制备方法,制备方法是将清洗干燥后的金属网浸没于锌盐溶液中,通过水热法在金属网表面制备一层微纳米级氧化锌颗粒层;随后在表面涂覆全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷组成的混合溶液,干燥后得到超疏水‑超亲油材料。该材料对水的接触角大于150°,对油接触角为0°,滚动角小于10°。本发明由于采用全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷的混合溶液,其可在微纳米级氧化锌颗粒层自组装长短不同的两种疏水分子,形成分子尺度的高低不平,从而使其具有更加优异的超疏水‑超亲油性能。

Description

一种超疏水-超亲油材料及其制备方法
技术领域
本发明涉及一种超疏水-超亲油材料及其制备方法,特别涉及一种用于水中除油的超疏水-超亲油材料及其制备方法。
背景技术
由于日益增多的工业污油的排放、石油水上运输漏油事故的大量发生、海洋石油开采及存储而发生的原油泄漏,污油污染水资源问题日益突出,其已无法依靠环境自然净化,对水源及生态环境造成了极大的破坏,因此,急需要对水源中的污油进行处理。
对水上污油采用多孔材料进行选择性吸附分离是一种最简单方便的处理方式,但现有的吸附材料还存在材料制造复杂,吸附能力低,除污能力有待进一步提高。
发明内容
本发明的目的在于针对现有技术的上述不足,提供一种超疏水-超亲油多孔材料,使其吸附油污的能力更强、效果更好,并提供一种超疏水-超亲油材料的制备方法。
本发明所采用的具体技术方案如下:
第一方面,本发明提供了一种超疏水-超亲油材料的制备方法,具体如下:
将清洗干燥后的金属网浸没于锌盐溶液中,通过水热法在金属网表面制备一层微纳米级氧化锌颗粒层;随后在表面涂覆全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷组成的混合溶液,干燥后得到超疏水-超亲油材料。
作为优选,所述混合溶液中,全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷的摩尔比为1:1。
进一步的,所述混合溶液的溶剂为乙醇。
更进一步的,所述混合溶液中,全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷的浓度均为0.3g~0.9g/100ml。
作为优选,所述金属网的材料为不锈钢、铁、铜或铝。
作为优选,所述金属网的孔径为60~190μm。
作为优选,所述水热法的水热反应温度为90~100℃,水热反应时间为50~70min。
作为优选,所述锌盐溶液为包含可溶性锌盐、铵盐和尿素的水溶液;其中,每100ml的锌盐溶液中包含0.01mol六水合硝酸锌、0.002mol氯化铵、0.01mol尿素、5ml 25%氨水和95ml去离子水。
第二方面,本发明提供了一种利用第一方面任一所述制备方法得到的超疏水-超亲油材料,其中,所述超疏水-超亲油材料对水的接触角大于150°,对油接触角为0°,滚动角小于10°。
本发明相对于现有技术而言,具有以下有益效果:
(1)本发明的超疏水-超亲油材料为一种多层多孔材料,其外表层为全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷,中间层为微纳米氧化锌颗粒,内部基材为金属网格。该材料通过全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷的混合物能够更好地降低其表面能,由于全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷的混合溶液可在微纳米级氧化锌颗粒层自组装长短不同的两种疏水分子,形成分子尺度的高低不平,从而使其具有更加优异的超疏水-超亲油性能。
(2)本发明的超疏水-超亲油材料由于采用的基材为金属网,可浮于水面,易于使用,而且机械强度高,能重复使用。
(3)本发明通过长链全氟分子和短链全氟分子组合运用,可有效提高最终所得材料表面的氟化度,从而提高材料的疏水性和油水分离性。
附图说明
图1为实施例1中具有微纳米级氧化锌颗粒层的金属网的SEM图。
具体实施方式
下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
下面结合附图和具体实施方式对本发明做进一步阐述和说明。本发明中各个实施方式的技术特征在没有相互冲突的前提下,均可进行相应组合。
本发明的各实施例和对比例中,油水分离效率的测试方法如下:将一定质量的油滴入装有水的容器中,再将一定质量的超疏水-超亲油材料放入容器中进行吸附,直至超疏水-超亲油材料的质量不再变化为止,然后取出,称取并计算超疏水-超亲油材料吸附前后的质量差,随后计算油水分离效率(%)=多孔材料质量差/加入油质量*100。
吸油速率的测试方法如下:将一定体积的超疏水-超亲油材料浸入到装满油的容器中,从材料放入容器中开始计时,直至超疏水-超亲油材料吸附油后被油完全浸没为止停止计时,计算吸油速率=材料体积/浸没时间。
实施例1
本实施例制备了一种超疏水-超亲油的多孔材料,具体步骤如下:
(1)将孔径为100μm的不锈钢金属网依次经过丙酮(用于清洗去油)和水超声清洗后,在80℃下烘干,以去除表面杂质。
(2)配置锌盐溶液:将0.01mol硝酸锌、0.002mol氯化铵和5ml 25wt%的尿素溶于100ml水溶液中,混合均匀后得到锌盐溶液。
(3)将通过步骤(1)清洗干燥后的金属网垂直置于通过步骤(2)配置的锌盐溶液中,将该体系密封后,在温度95℃下,通过水热法反应1h,待反应结束后,用去离子水多次清洗并在80℃下烘干即得表面长有针状微纳米级氧化锌颗粒阵列层的金属网。具有微纳米级氧化锌颗粒层的金属网如图1所示,从图中可以看出,金属网的表面成功构筑了针状纳米氧化锌阵列。(4)配置全氟丁基乙基三氯硅烷(0.3g/100ml)和全氟癸基三氯硅烷(0.3g/100ml)混合物的乙醇溶液,记为混合溶液。
(5)将通过步骤(4)配置的混合溶液涂覆在步骤(3)得到的金属网上,然后在80℃下烘干6h,得到超疏水-超亲油材料。
将本实施例得到的超疏水-超亲油材料进行测试,结果如下:水接触角为159°,滚动角为4°,花生油的接触角为0°,正己烷接触角为0°。进行油水分离实验显示油水分离效率为97%,吸油速率为7ml/min。
实施例2
本实施例中超疏水-超亲油多孔材料的制备方法与实施例1中超疏水-超亲油多孔材料的制备方法相同,仅在步骤(4)配置混合溶液时,全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷采用的浓度均为0.9g/100ml。
将本实施例得到的超疏水-超亲油材料进行测试,结果如下:水接触角为159°,滚动角为5°,正己烷接触角为0°,花生油的接触角为0°;油水分离效率为96%;吸油速率为6ml/min。
实施例3
本实施例中超疏水-超亲油多孔材料的制备方法与实施例1中超疏水-超亲油多孔材料的制备方法相同,仅在步骤(4)配置混合溶液时,全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷采用的浓度均为0.5g/100ml。
将本实施例得到的超疏水-超亲油材料进行测试,结果如下:水接触角为157°,滚动角为5°,正己烷接触角为0°,花生油的接触角为0°;油水分离效率为96%;吸油速率为8ml/min。
实施例4
本实施例中超疏水-超亲油多孔材料的制备方法与实施例1中超疏水-超亲油多孔材料的制备方法相同,仅将不锈钢金属网的孔径改为190μm。
将本实施例得到的超疏水-超亲油材料进行测试,结果如下:水接触角为152°,正己烷接触角为0°,滚动角为10°;油水分离效率为90%;油吸速率为5ml/min。
实施例5
本实施例中超疏水-超亲油多孔材料的制备方法与实施例1中超疏水-超亲油多孔材料的制备方法相同,仅将不锈钢金属网的孔径改为60μm。
将本实施例得到的超疏水-超亲油材料进行测试,结果如下:水接触角为157°,滚动角为7°,正己烷接触角为0°,花生油的接触角为0°;油水分离效率为94%;吸油速率为5ml/min。
实施例6
本实施例中超疏水-超亲油多孔材料的制备方法与实施例1中超疏水-超亲油多孔材料的制备方法相同,仅将金属网的材质改为铜材料。
将本实施例得到的超疏水-超亲油材料进行测试,结果如下:水接触角为158°,滚动角为6°,正己烷接触角为0°,花生油的接触角为0°;油水分离效率为95%;吸油速率为6ml/min。
对比例1
本对比例采用单一的全氟癸基三氯硅烷制备超疏水-超亲油多孔材料的,具体步骤如下:
(1)将孔径为100μm的不锈钢金属网依次经过丙酮清洗除油、水超声清洗后,在80℃下烘干,以去除表面杂质。
(2)配置锌盐溶液:将0.01mol硝酸锌、0.002mol氯化铵和5ml 25wt%的尿素溶于100ml水溶液中,混合均匀后得到锌盐溶液。
(3)将通过步骤(1)清洗干燥后的金属网置于通过步骤(2)配置的锌盐溶液中,在温度95℃下,通过水热法反应1h,在金属网表面制备一层针状的纳米氧化锌颗粒层。
(4)配置全氟癸基三氯硅烷(0.3g/100ml)的乙醇溶液。
(5)将通过步骤(4)配置的全氟癸基三氯硅烷溶液涂覆在步骤(3)得到的金属网上,然后在80℃下烘干6h,得到对比材料。
将该对比材料进行测试,结果如下:水接触角为145°,滚动角为12°正己烷接触角为0°,花生油的接触角为0°;进行油水分离实验显示油水分离效率为85%;吸油速率为4.5ml/min。
对比例2
本对比例采用单一的全氟丁基乙基三氯硅烷制备超疏水-超亲油多孔材料的,具体步骤如下:
(1)将孔径为100μm的不锈钢金属网依次经过丙酮清洗除油、水超声清洗后,在80℃下烘干,以去除表面杂质。
(2)配置锌盐溶液:将0.01mol硝酸锌、0.002mol氯化铵和5ml 25wt%的尿素溶于100ml水溶液中,混合均匀后得到锌盐溶液。
(3)将通过步骤(1)清洗干燥后的金属网置于通过步骤(2)配置的锌盐溶液中,在温度95℃下,通过水热法反应1h,在金属网表面制备一层针状的纳米氧化锌颗粒层。
(4)配置全氟丁基乙基三氯硅烷(0.3g/100ml)的乙醇溶液。
(5)将通过步骤(4)配置的全氟丁基乙基三氯硅烷溶液涂覆在步骤(3)得到的金属网上,然后在80℃下烘干6h,得到对比材料。
将该对比材料进行测试,结果如下:水接触角为140°,滚动角为15°正己烷接触角为0°,花生油的接触角为0°;进行油水分离实验显示油水分离效率为80%;吸油速率为4ml/min。
以上所述的实施例只是本发明的一种较佳的方案,然其并非用以限制本发明。有关技术领域的普通技术人员,在不脱离本发明的精神和范围的情况下,还可以做出各种变化和变型。因此凡采取等同替换或等效变换的方式所获得的技术方案,均落在本发明的保护范围内。

Claims (8)

1.一种超疏水-超亲油材料的制备方法,其特征在于,具体如下:
将清洗干燥后的金属网浸没于锌盐溶液中,通过水热法在金属网表面制备一层微纳米级氧化锌颗粒层;随后在表面涂覆全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷组成的混合溶液,所述混合溶液中,全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷的浓度均为0.3 g~0.9g /100 ml,干燥后得到超疏水-超亲油材料。
2.根据权利要求1所述的一种超疏水-超亲油材料的制备方法,其特征在于,所述混合溶液中,全氟丁基乙基三氯硅烷和全氟癸基三氯硅烷的摩尔比为1:1。
3.根据权利要求2所述的一种超疏水-超亲油材料的制备方法,其特征在于,所述混合溶液的溶剂为乙醇。
4.根据权利要求1所述的一种超疏水-超亲油材料的制备方法,其特征在于,所述金属网的材料为不锈钢、铁、铜或铝。
5.根据权利要求1所述的一种超疏水-超亲油材料的制备方法,其特征在于,所述金属网的孔径为60~190μm。
6.根据权利要求1所述的一种超疏水-超亲油材料的制备方法,其特征在于,所述水热法的水热反应温度为90~100℃,水热反应时间为50~70min。
7. 根据权利要求1所述的一种超疏水-超亲油材料的制备方法,其特征在于,所述锌盐溶液为包含可溶性锌盐、铵盐和尿素的水溶液;其中,每100 ml的锌盐溶液中包含0.01mol六水合硝酸锌、0.002mol氯化铵、0.01mol尿素、5ml 25%氨水和95ml去离子水。
8.一种利用权利要求1~7任一所述制备方法得到的超疏水-超亲油材料,其特征在于,所述超疏水-超亲油材料对水的接触角大于150°,对油接触角为0°,滚动角小于10°。
CN202110771223.8A 2021-07-08 2021-07-08 一种超疏水-超亲油材料及其制备方法 Active CN113477221B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110771223.8A CN113477221B (zh) 2021-07-08 2021-07-08 一种超疏水-超亲油材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110771223.8A CN113477221B (zh) 2021-07-08 2021-07-08 一种超疏水-超亲油材料及其制备方法

Publications (2)

Publication Number Publication Date
CN113477221A CN113477221A (zh) 2021-10-08
CN113477221B true CN113477221B (zh) 2023-10-03

Family

ID=77937895

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110771223.8A Active CN113477221B (zh) 2021-07-08 2021-07-08 一种超疏水-超亲油材料及其制备方法

Country Status (1)

Country Link
CN (1) CN113477221B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010016273A (ko) * 2000-11-29 2001-03-05 박정희 다공구조체의 표면 발수 처리 방법 및 이에 의해 제조된흡유재
CN1359407A (zh) * 1999-06-10 2002-07-17 普罗米蒂克生物科学公司 制备氟化聚合物吸附剂颗粒的方法
CN104086796A (zh) * 2014-07-10 2014-10-08 温州大学 一种超疏水和超亲油海绵的制备方法
CN106310718A (zh) * 2015-07-02 2017-01-11 中国科学院宁波材料技术与工程研究所 超疏水-超亲油多孔材料、其制备方法及应用
WO2019083198A1 (ko) * 2017-10-25 2019-05-02 울산대학교 산학협력단 복합체 및 이를 포함하는 유수 분리용 재료
CN111054435A (zh) * 2019-12-30 2020-04-24 苏州东杏表面技术有限公司 一种新型负载型Pt催化剂及其制备方法和在氢硅加成中的应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2313221A4 (en) * 2008-03-12 2014-04-09 Du Pont SUSTAINABLE COATING COMPOSITION
US20210179797A1 (en) * 2017-10-25 2021-06-17 University Of Ulsan Foundation For Industry Cooperation Complex and material containing same for oil-water separation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1359407A (zh) * 1999-06-10 2002-07-17 普罗米蒂克生物科学公司 制备氟化聚合物吸附剂颗粒的方法
KR20010016273A (ko) * 2000-11-29 2001-03-05 박정희 다공구조체의 표면 발수 처리 방법 및 이에 의해 제조된흡유재
CN104086796A (zh) * 2014-07-10 2014-10-08 温州大学 一种超疏水和超亲油海绵的制备方法
CN106310718A (zh) * 2015-07-02 2017-01-11 中国科学院宁波材料技术与工程研究所 超疏水-超亲油多孔材料、其制备方法及应用
WO2019083198A1 (ko) * 2017-10-25 2019-05-02 울산대학교 산학협력단 복합체 및 이를 포함하는 유수 분리용 재료
CN111054435A (zh) * 2019-12-30 2020-04-24 苏州东杏表面技术有限公司 一种新型负载型Pt催化剂及其制备方法和在氢硅加成中的应用

Also Published As

Publication number Publication date
CN113477221A (zh) 2021-10-08

Similar Documents

Publication Publication Date Title
You et al. Direct coating of a DKGM hydrogel on glass fabric for multifunctional oil-water separation in harsh environments
Zhai et al. Durable super-hydrophobic PDMS@ SiO2@ WS2 sponge for efficient oil/water separation in complex marine environment
Ahmad et al. A membrane‐supported bifunctional poly (amidoxime‐ethyleneimine) network for enhanced uranium extraction from seawater and wastewater
Gu et al. Facile removal of oils from water surfaces through highly hydrophobic and magnetic polymer nanocomposites
Cho et al. Interfacial engineering of melamine sponges using hydrophobic TiO2 nanoparticles for effective oil/water separation
CN106693898B (zh) 一种掺杂度可控的多孔还原氧化石墨烯吸油材料及其制备方法
Ge et al. A three-dimensional porous Co@ C/carbon foam hybrid monolith for exceptional oil–water separation
Yin et al. Bioinspired anti-oil-fouling hierarchical structured membranes decorated with urchin-like α-FeOOH particles for efficient oil/water mixture and crude oil-in-water emulsion separation
CN106310718A (zh) 超疏水-超亲油多孔材料、其制备方法及应用
CN112246108B (zh) 一种聚吡咯-镍导电复合分离膜及其制备方法与应用
He et al. Mussel-inspired durable superhydrophobic/superoleophilic MOF-PU sponge with high chemical stability, efficient oil/water separation and excellent anti-icing properties
KR102332434B1 (ko) 금속 유기 골격체-알긴산/폴리비닐알코올 흡착제, 그의 제조방법, 해수 담수화 시스템 및 해수 담수화 방법
JP2022513892A (ja) セラミック表面改質材料およびその使用方法
Yin et al. A durable MOF-303-coated stainless steel mesh with robust anti-oil-fouling performance for multifunctional oil/water separation
Zhang et al. Hybridization of Al2O3 microspheres and acrylic ester resins as a synergistic absorbent for selective oil and organic solvent absorption
Xu et al. Porous CS monoliths and their adsorption ability for heavy metal ions
CN104623973B (zh) 一种改性石英砂及其改性方法
Nguyen-Dinh et al. Superhydrophobic MS@ CuO@ SA sponge for oil/water separation with excellent durability and reusability
Wang et al. Silver-modified porous polystyrene sulfonate derived from Pickering high internal phase emulsions for capturing lithium-ion
CN113713785B (zh) 一种聚多巴胺包裹壳聚糖-氢氧化钴凝胶球及其制备方法和应用
CN113477221B (zh) 一种超疏水-超亲油材料及其制备方法
Tang et al. MIL-88A-based antifouling superhydrophilic membrane for efficient emulsion separation and dye degradation via photo-fenton process
CN108707248A (zh) 一种阻燃的超疏水三聚氰胺海绵的制备方法
CN110180217B (zh) 一种用于油水分离的石墨烯基三维纤维纸及其制备方法
CN115554999B (zh) 胺化聚氨酯海绵吸附剂的合成方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant