CN113471654B - Glass-based wide-stop-band microwave duplexer - Google Patents

Glass-based wide-stop-band microwave duplexer Download PDF

Info

Publication number
CN113471654B
CN113471654B CN202110561047.5A CN202110561047A CN113471654B CN 113471654 B CN113471654 B CN 113471654B CN 202110561047 A CN202110561047 A CN 202110561047A CN 113471654 B CN113471654 B CN 113471654B
Authority
CN
China
Prior art keywords
resonant cavity
radiation window
order resonant
order
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110561047.5A
Other languages
Chinese (zh)
Other versions
CN113471654A (en
Inventor
刘晓贤
朱樟明
刘诺
刘阳
卢启军
尹湘坤
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202110561047.5A priority Critical patent/CN113471654B/en
Publication of CN113471654A publication Critical patent/CN113471654A/en
Application granted granted Critical
Publication of CN113471654B publication Critical patent/CN113471654B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/207Hollow waveguide filters
    • H01P1/208Cascaded cavities; Cascaded resonators inside a hollow waveguide structure

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

The invention relates to a glass-based wide-stop-band microwave duplexer, which comprises: the metal layer comprises a first metal layer (1), a first dielectric layer (2), a second metal layer (3), a bonding layer (7), a third metal layer (4), a second dielectric layer (5) and a fourth metal layer (6) which are sequentially stacked. A plurality of radiation windows are arranged between the second-order resonant cavity and the third resonant cavity and between the fourth resonant cavity and the fifth-order resonant cavity R4-R5 of the duplexer, a hybrid coupling mode is introduced, namely, the hybrid coupling mode simultaneously comprises electric coupling and magnetic coupling, so that electric field coupling and magnetic field coupling are synchronously enhanced, a transmission zero point is introduced near a low-pass band, the frequency selection characteristic of the low-pass band is improved, the bandwidth of the pass band is improved, and the return loss is reduced.

Description

一种玻璃基宽阻带微波双工器A glass-based wide stopband microwave duplexer

技术领域technical field

本发明属于集成电路制造与封装技术领域,具体涉及一种玻璃基宽阻带微波双工器。The invention belongs to the technical field of integrated circuit manufacturing and packaging, and in particular relates to a glass-based wide stopband microwave duplexer.

背景技术Background technique

摩尔定律发展趋势放缓和集成电路应用的多元化发展,是当前集成电路产业的两个重要特点,随着智能手机、物联网、汽车电子、高性能计算、5G和人工智能等领域产品的兴起,特别是在5G领域,例如5G毫米波(28-60GHz)、5GSub-6GHz、5G物联网(Sub-1GHz),高速、高频以及多种器件异质集成的运用要求,需要先进封装技术不断创新发展。The slowdown in the development trend of Moore's Law and the diversified development of integrated circuit applications are two important characteristics of the current integrated circuit industry. , especially in the 5G field, such as 5G millimeter wave (28-60GHz), 5GSub-6GHz, 5G Internet of Things (Sub-1GHz), the application requirements of high speed, high frequency and heterogeneous integration of various devices require advanced packaging technology. Innovative development.

基于硅通孔的转接板(Interposer)2.5D集成技术作为先进系统集成技术,可实现多芯片高密度三维集成,但硅基转接板的成本高且电学性能差,使其市场化运用受限。As an advanced system integration technology, the 2.5D integration technology of interposer based on through-silicon vias can realize multi-chip high-density three-dimensional integration, but the high cost and poor electrical performance of silicon-based interposers make it acceptable for market application. limit.

作为一种可能替代硅基转接板的材料,玻璃通孔(TGV)三维互连技术因众多优势正在成为当前的研究热点,与硅基板相比,TGV的优势主要体现在:1)优良的高频电学特性。玻璃材料是一种绝缘体材料,介电常数只有硅材料的1/3左右,损耗因子比硅材料低2-3个数量级,使得衬底损耗和寄生效应大大减小,保证了传输信号的完整性;2)大尺寸超薄玻璃衬底易于获取。Corning、Asahi以及SCHOTT等玻璃厂商可以提供超大尺寸(>2m×2m)和超薄(<50μm)的面板玻璃以及超薄柔性玻璃材料。3)低成本。受益于大尺寸超薄面板玻璃易于获取,以及不需要沉积绝缘层,玻璃转接板的制作成本大约只有硅基转接板的1/8;4)工艺流程简单。不需要在衬底表面及TGV内壁沉积绝缘层,且超薄转接板中不需要减薄;5)机械稳定性强。即便当转接板厚度小于100μm时,翘曲依然较小;As a material that may replace silicon-based interposer, through-glass via (TGV) three-dimensional interconnect technology is becoming a current research hotspot due to its many advantages. Compared with silicon substrates, the advantages of TGV are mainly reflected in: 1) Excellent High frequency electrical properties. Glass material is an insulator material, the dielectric constant is only about 1/3 of that of silicon material, and the loss factor is 2-3 orders of magnitude lower than that of silicon material, which greatly reduces the substrate loss and parasitic effect and ensures the integrity of the transmitted signal. ; 2) Large-scale ultra-thin glass substrates are easy to obtain. Glass manufacturers such as Corning, Asahi and SCHOTT can provide ultra-large (>2m×2m) and ultra-thin (<50μm) panel glass and ultra-thin flexible glass materials. 3) Low cost. Benefiting from the easy availability of large-sized ultra-thin panel glass and the need to deposit no insulating layer, the production cost of the glass interposer is only about 1/8 of that of the silicon-based interposer; 4) the process flow is simple. There is no need to deposit an insulating layer on the surface of the substrate and the inner wall of the TGV, and no thinning is required in the ultra-thin adapter plate; 5) The mechanical stability is strong. Even when the thickness of the adapter plate is less than 100μm, the warpage is still small;

6)应用领域广泛。除了在高频领域有良好应用前景,作为一种透明材料,还可应用于光电系统集成领域,气密性和耐腐蚀性优势使得玻璃衬底在MEMS封装领域有巨大的潜力;另外,TGV技术还可以应用于医疗、光电器件、射频模块、电子气体放大器、设备治具等领域,随着技术进步,成本不断降低,应用将愈加广泛。6) Wide range of application fields. In addition to good application prospects in the high-frequency field, as a transparent material, it can also be used in the field of optoelectronic system integration. The advantages of air tightness and corrosion resistance make glass substrates have great potential in the field of MEMS packaging; in addition, TGV technology It can also be used in medical, optoelectronic devices, radio frequency modules, electronic gas amplifiers, equipment fixtures and other fields.

基片集成波导(Substrate Integrated Waveguide,SIW)技术由于能够在平面级别的介质基板上像金属波导那样传输信号,保证信号低辐射损耗的传输,因此能够接替矩形波导和平面传输线结构继续推动着微波电路系统的发展。随着工艺的不断发展,SIW可以和大部分通信系统元件集成在一个基板上且不用通过额外工艺制造特定器件进行过度,从而降低信号传输过程中的损耗,扼制寄生现象。Substrate Integrated Waveguide (SIW) technology can continue to promote microwave circuits by replacing rectangular waveguide and planar transmission line structures because it can transmit signals on a flat-level dielectric substrate like a metal waveguide and ensure the transmission of signals with low radiation loss. system development. With the continuous development of technology, SIW can be integrated with most communication system components on a substrate without excessive manufacturing of specific devices through additional processes, thereby reducing the loss during signal transmission and curbing parasitic phenomena.

然而,目前的SIW微波双工器的频率选择特效和通带带宽均较低,导致滤波器的整体性能欠佳。However, the frequency selection effect and passband bandwidth of the current SIW microwave duplexer are both low, resulting in poor overall performance of the filter.

发明内容SUMMARY OF THE INVENTION

为了解决现有技术中存在的上述问题,本发明提供了一种玻璃基宽阻带微波双工器。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a glass-based wide stopband microwave duplexer. The technical problem to be solved by the present invention is realized by the following technical solutions:

本发明实施例提供了一种玻璃基宽阻带微波双工器,包括:依次层叠的第一金属层、第一介质层、第二金属层、键合层、第三金属层、第二介质层和第四金属层,其中,An embodiment of the present invention provides a glass-based wide stop-band microwave duplexer, comprising: a first metal layer, a first dielectric layer, a second metal layer, a bonding layer, a third metal layer, and a second dielectric layer stacked in sequence layer and a fourth metal layer, where,

所述第一金属层上设置有输入端口、第一输出端口和第二输出端口;The first metal layer is provided with an input port, a first output port and a second output port;

所述第一介质层中贯穿有多个第一导体柱,所述多个第一导体柱与所述第一金属层、所述第二金属层形成第一阶谐振腔、第二阶谐振腔、第五阶谐振腔、第六阶谐振腔、第七阶谐振腔和第八阶谐振腔,所述第二阶谐振腔和所述第五阶谐振腔并列设置,所述第一阶谐振腔、所述第七阶谐振腔和所述第八阶谐振腔并列设置且位于所述第二阶谐振腔和所述第五阶谐振腔的一侧,所述第六阶谐振腔位于所述第二阶谐振腔和所述第五阶谐振腔的另一侧,所述第一阶谐振腔和所述第二阶谐振腔之间设置有第一耦合窗口,所述第五阶谐振腔和所述第六阶谐振腔之间设置有第三耦合窗口,所述第一阶谐振腔和所述第七阶谐振腔之间设置有并列的第四耦合窗口和第五耦合窗口,所述第七阶谐振腔和所述第八阶谐振腔之间设置有并列的第六耦合窗口和第七耦合窗口,所述输入端口位于所述第一阶谐振腔的顶部,所述第一输出端口位于所述第六阶谐振腔的顶部,所述第二输出端口位于所述第八阶谐振腔的顶部;There are a plurality of first conductor posts running through the first dielectric layer, and the plurality of first conductor posts and the first metal layer and the second metal layer form a first-order resonant cavity and a second-order resonant cavity , the fifth-order resonant cavity, the sixth-order resonant cavity, the seventh-order resonant cavity, and the eighth-order resonant cavity, the second-order resonant cavity and the fifth-order resonant cavity are arranged in parallel, and the first-order resonant cavity , the seventh-order resonant cavity and the eighth-order resonant cavity are arranged side by side and are located on one side of the second-order resonant cavity and the fifth-order resonant cavity, and the sixth-order resonant cavity is located in the sixth-order resonant cavity On the other side of the second-order resonant cavity and the fifth-order resonant cavity, a first coupling window is provided between the first-order resonant cavity and the second-order resonant cavity, and the fifth-order resonant cavity and the second-order resonant cavity are provided with a first coupling window. A third coupling window is arranged between the sixth-order resonant cavity, a fourth coupling window and a fifth coupling window in parallel are arranged between the first-order resonant cavity and the seventh-order resonant cavity, and the seventh A sixth coupling window and a seventh coupling window are arranged between the order resonant cavity and the eighth order resonator, the input port is located at the top of the first order resonator cavity, and the first output port is located at the top of the first order resonant cavity. the top of the sixth-order resonant cavity, and the second output port is located on the top of the eighth-order resonant cavity;

所述第二金属层上设置有第一辐射窗口、第二辐射窗口、第三辐射窗口、第四辐射窗口、第五辐射窗口和第六辐射窗口,所述第一辐射窗口、所述第三辐射窗口和所述第四辐射窗口设置在所述第二阶谐振腔的底部,所述第二辐射窗口、所述第五辐射窗口和所述第六辐射窗口设置在所述第五阶谐振腔的底部;The second metal layer is provided with a first radiation window, a second radiation window, a third radiation window, a fourth radiation window, a fifth radiation window and a sixth radiation window, the first radiation window, the third radiation window The radiation window and the fourth radiation window are arranged at the bottom of the second-order resonant cavity, and the second radiation window, the fifth radiation window and the sixth radiation window are arranged at the fifth-order resonant cavity bottom of;

所述第三金属层上设置有第七辐射窗口、第八辐射窗口、第九辐射窗口、第十辐射窗口、第十一辐射窗口和第十二辐射窗口,所述第七辐射窗口、所述第八辐射窗口、所述第九辐射窗口、所述第十辐射窗口、所述第十一辐射窗口和所述第十二辐射窗口与所述第一辐射窗口、所述第二辐射窗口、所述第三辐射窗口、所述第四辐射窗口、所述第五辐射窗口和所述第六辐射窗口分别一一对应;The third metal layer is provided with a seventh radiation window, an eighth radiation window, a ninth radiation window, a tenth radiation window, an eleventh radiation window and a twelfth radiation window, the seventh radiation window, the The eighth radiation window, the ninth radiation window, the tenth radiation window, the eleventh radiation window and the twelfth radiation window and the first radiation window, the second radiation window, the The third radiation window, the fourth radiation window, the fifth radiation window and the sixth radiation window are in one-to-one correspondence;

所述第二介质层上贯穿有多个第二导体柱,所述多个第二导体柱与所述第三金属层、所述第四金属层形成第三阶谐振腔和第四阶谐振腔,所述第三阶谐振腔与所述第二阶谐振腔相对应,所述第四阶谐振腔与所述第五阶谐振腔相对应,所述第三阶谐振腔和所述第四阶谐振腔之间设置有第二耦合窗口;There are a plurality of second conductor posts running through the second dielectric layer, and the plurality of second conductor posts and the third metal layer and the fourth metal layer form a third-order resonant cavity and a fourth-order resonant cavity , the third-order resonant cavity corresponds to the second-order resonant cavity, the fourth-order resonant cavity corresponds to the fifth-order resonant cavity, the third-order resonant cavity and the fourth-order resonant cavity correspond to A second coupling window is arranged between the resonators;

所述第四金属层接地。The fourth metal layer is grounded.

在本发明的一个实施例中,所述第一金属层的侧壁上开设有第一凹槽、第二凹槽和第三凹槽,其中,In an embodiment of the present invention, a first groove, a second groove and a third groove are formed on the sidewall of the first metal layer, wherein,

所述输入端口设置在所述第一凹槽中,所述第一输出端口设置在所述第二凹槽中,所述第二输出端口位于所述第三凹槽中。The input port is located in the first groove, the first output port is located in the second groove, and the second output port is located in the third groove.

在本发明的一个实施例中,所述第一阶谐振腔的谐振模式为TE103和TE301In an embodiment of the present invention, the resonance modes of the first-order resonant cavity are TE 103 and TE 301 ;

所述第二阶谐振腔、所述第三阶谐振腔、所述第四阶谐振腔、所述第五阶谐振腔、所述第七阶谐振腔和所述第八阶谐振腔的谐振模式为TE101Resonant modes of the second-order resonant cavity, the third-order resonant cavity, the fourth-order resonant cavity, the fifth-order resonant cavity, the seventh-order resonant cavity, and the eighth-order resonant cavity is TE 101 ;

所述第六阶谐振腔的谐振模式为TE103The resonance mode of the sixth-order resonant cavity is TE 103 .

在本发明的一个实施例中,所述第一阶谐振腔中TE103谐振模式的谐振频率与所述第二阶谐振腔中TE101谐振模式的谐振频率相同。In one embodiment of the present invention, the resonance frequency of the TE 103 resonance mode in the first-order resonant cavity is the same as the resonance frequency of the TE 101 resonance mode in the second-order resonance cavity.

在本发明的一个实施例中,所述第一阶谐振腔、所述第二阶谐振腔、所述第三阶谐振腔、所述第四阶谐振腔、所述第五阶谐振腔、所述第七阶谐振腔和所述第八阶谐振腔均为长方形谐振腔体;In an embodiment of the present invention, the first-order resonant cavity, the second-order resonant cavity, the third-order resonant cavity, the fourth-order resonant cavity, the fifth-order resonant cavity, the The seventh-order resonant cavity and the eighth-order resonant cavity are both rectangular resonant cavities;

所述第六阶谐振腔由相互连通的第一部分、第二部分和第三部分形成,所述第一部分、所述第二部分和所述第三部分的形状均为矩形。The sixth-order resonant cavity is formed by a first part, a second part and a third part that communicate with each other, and the shapes of the first part, the second part and the third part are all rectangular.

在本发明的一个实施例中,所述第三部分、所述第一部分、所述第二部分的长度依次增大,所述第一部分、所述第二部分、所述第三部分的宽度依次增大。In an embodiment of the present invention, the lengths of the third part, the first part, and the second part increase in sequence, and the widths of the first part, the second part, and the third part increase in sequence. increase.

在本发明的一个实施例中,所述第一阶谐振腔的长度为5540μm,宽度为5272μm,所述第一阶谐振腔输入侧宽度为2038μm,所述第六阶谐振腔输入侧宽度为2300μm;In an embodiment of the present invention, the length of the first-order resonant cavity is 5540 μm, the width is 5272 μm, the width of the input side of the first-order resonant cavity is 2038 μm, and the width of the input side of the sixth-order resonant cavity is 2300 μm ;

所述第二阶谐振腔的长度为2400μm,宽度为2378μm;The length of the second-order resonant cavity is 2400 μm and the width is 2378 μm;

所述第五阶谐振腔的长度为2400μm,宽度为2391μm;The length of the fifth-order resonant cavity is 2400 μm and the width is 2391 μm;

所述第一部分的长度为1620μm,宽度为5330μm;所述第二部分的长度为2450μm,宽度为5339μm;所述第三部分的长度为1470μm,宽度为5352μm;The first part has a length of 1620 μm and a width of 5330 μm; the second part has a length of 2450 μm and a width of 5339 μm; the third part has a length of 1470 μm and a width of 5352 μm;

所述第七阶谐振腔和所述第八阶谐振腔的长度均为1820μm,宽度w13为5900μm,所述第八阶谐振腔输出侧的宽度w15为2620μm;The length of the seventh-order resonant cavity and the eighth-order resonant cavity are both 1820 μm, the width w 13 is 5900 μm, and the width w 15 of the output side of the eighth-order resonant cavity is 2620 μm;

所述第三阶谐振腔和所述第四阶谐振腔的长度均为2400μm,宽度均为2415μm。The length of the third-order resonant cavity and the fourth-order resonant cavity are both 2400 μm and 2415 μm in width.

在本发明的一个实施例中,所述第一辐射窗口设置在所述第三辐射窗口和所述第四辐射窗口之间,所述第二辐射窗口设置在所述第五辐射窗口和所述第六辐射窗口之间。In an embodiment of the present invention, the first radiation window is arranged between the third radiation window and the fourth radiation window, and the second radiation window is arranged between the fifth radiation window and the between the sixth radiation window.

在本发明的一个实施例中,所述第一辐射窗口的形状为圆形,其直径为504μm;In an embodiment of the present invention, the shape of the first radiation window is a circle, and its diameter is 504 μm;

所述第二辐射窗口的形状为圆形,其直径为484μm;The shape of the second radiation window is circular, and its diameter is 484 μm;

所述第三辐射窗口、所述第四辐射窗口、所述第五辐射窗口和所述第六辐射窗口的形状均为矩形,其长度均为100μm,宽度均为300μm;The third radiation window, the fourth radiation window, the fifth radiation window and the sixth radiation window are all rectangular in shape, and their lengths are all 100 μm and their widths are all 300 μm;

所述第三辐射窗口与所述第四辐射窗口之间的距离、所述第五辐射窗口与所述第六辐射窗口之间的距离均为2000μm。The distance between the third radiation window and the fourth radiation window and the distance between the fifth radiation window and the sixth radiation window are both 2000 μm.

在本发明的一个实施例中,还包括粘合层,所述粘合层设置在所述键合层和所述第三金属层的周围且位于所述第二金属层和所述第二介质层之间。In one embodiment of the present invention, an adhesive layer is further included, and the adhesive layer is disposed around the bonding layer and the third metal layer and located on the second metal layer and the second medium between layers.

与现有技术相比,本发明的有益效果:Compared with the prior art, the beneficial effects of the present invention:

本发明的双工器在第二阶谐振腔和第三谐振腔之间R2-R3、第四谐振腔和第五阶谐振腔R4-R5之间设置有多个辐射窗口,引入了混合耦合方式,即同时包含电耦合和磁耦合,进而同步增强了电场耦合与磁场耦合,在低通带附近引入传输零点,提高了低通带的频率选择特性,同时提高了通带的带宽,降低了回波损耗。In the duplexer of the present invention, multiple radiation windows are set between R2-R3 between the second-order resonant cavity and the third-order resonant cavity, and between the fourth-order resonant cavity and the fifth-order resonant cavity R4-R5, and a hybrid coupling mode is introduced. , that is, including both electrical coupling and magnetic coupling, thereby simultaneously enhancing the electric field coupling and magnetic field coupling, introducing a transmission zero near the low passband, improving the frequency selection characteristics of the low passband, increasing the bandwidth of the passband, and reducing the return wave loss.

附图说明Description of drawings

图1为本发明实施例提供的一种玻璃基宽阻带微波双工器的结构主视图;1 is a structural front view of a glass-based wide stopband microwave duplexer according to an embodiment of the present invention;

图2为本发明实施例提供的一种第一金属层和第一介质层的俯视图;2 is a top view of a first metal layer and a first dielectric layer according to an embodiment of the present invention;

图3为本发明实施例提供的一种第一介质层和第二金属层的俯视图;3 is a top view of a first dielectric layer and a second metal layer according to an embodiment of the present invention;

图4为本发明实施例提供的一种第三金属层和第二介质层的俯视图;4 is a top view of a third metal layer and a second dielectric layer according to an embodiment of the present invention;

图5为本发明实施例提供的一种第二介质层和第四金属层的俯视图;5 is a top view of a second dielectric layer and a fourth metal layer according to an embodiment of the present invention;

图6为本发明实施例提供的一种键合层的俯视图;6 is a top view of a bonding layer according to an embodiment of the present invention;

图7为本发明实施例提供的一种玻璃基宽阻带微波双工器的耦合机制示意图;FIG. 7 is a schematic diagram of a coupling mechanism of a glass-based wide stopband microwave duplexer according to an embodiment of the present invention;

图8a-图8b为本发明实施例提供玻璃基宽阻带微波双工器的频率响应图;8a-8b are frequency response diagrams of a glass-based wide stopband microwave duplexer according to an embodiment of the present invention;

附图标记说明:1-第一金属层;2-第一介质层;3-第二金属层;4-第三金属层;5-第二介质层;6-第四金属层;7-键合层;8-第一导体柱;9-第二导体柱;10-粘合层;11-输入端口;12-第一凹槽;13-第一输出端口;14-第二凹槽;15-第二输出端口;16-第三凹槽;17-第一辐射窗口;18-第二辐射窗口;19-第三辐射窗口;20-第四辐射窗口;21-第五辐射窗口;22-第六辐射窗口;23-第一耦合窗口;24-第二耦合窗口;25-第三耦合窗口;26-第四耦合窗口;27-第五耦合窗口;28-第六耦合窗口;29-第七耦合窗口;30-第七辐射窗口;31-第八辐射窗口;32-第九辐射窗口;33-第十辐射窗口;34-第十一辐射窗口;35-第十二辐射窗口;R1-第一阶谐振腔;R2-第二阶谐振腔;R3-第三阶谐振腔;R4-第四阶谐振腔;R5-第五阶谐振腔;R6-第六阶谐振腔;R7-第七阶谐振腔;R8-第八阶谐振腔。Description of reference numerals: 1-first metal layer; 2-first dielectric layer; 3-second metal layer; 4-third metal layer; 5-second dielectric layer; 6-fourth metal layer; 7-key 8-first conductor post; 9-second conductor post; 10-adhesive layer; 11-input port; 12-first groove; 13-first output port; 14-second groove; 15 - second output port; 16 - third groove; 17 - first radiation window; 18 - second radiation window; 19 - third radiation window; 20 - fourth radiation window; 21 - fifth radiation window; 22 - 6th radiation window; 23-first coupling window; 24-second coupling window; 25-third coupling window; 26-fourth coupling window; 27-fifth coupling window; 28-sixth coupling window; 29-th Seven coupling windows; 30 - seventh radiation window; 31 - eighth radiation window; 32 - ninth radiation window; 33 - tenth radiation window; 34 - eleventh radiation window; 35 - twelfth radiation window; R1 - First-order resonator; R2-second-order resonator; R3-third-order resonator; R4-fourth-order resonator; R5-fifth-order resonator; R6-sixth-order resonator; R7-seventh-order resonator order resonant cavity; R8-eighth order resonant cavity.

具体实施方式Detailed ways

下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.

实施例一Example 1

请参见图1,图1为本发明实施例提供的一种玻璃基宽阻带微波双工器的结构主视图。该玻璃基宽阻带微波双工器包括依次层叠的第一金属层1、第一介质层2、第二金属层3、键合层7、第三金属层4、第二介质层5和第四金属层6。Please refer to FIG. 1. FIG. 1 is a front view of the structure of a glass-based wide stopband microwave duplexer according to an embodiment of the present invention. The glass-based wide stopband microwave duplexer includes a first metal layer 1, a first dielectric layer 2, a second metal layer 3, a bonding layer 7, a third metal layer 4, a second dielectric layer 5 and a Four metal layers 6 .

本实施例中,第一介质层2作为双工器的上层基底,第二金属层3用作第一介质层2和第二介质层5的共用接地层,第二介质层5作为双工器的下层基底,第四金属层6接地,用于将第一金属层1上的电荷及时移入大地。In this embodiment, the first dielectric layer 2 is used as the upper substrate of the duplexer, the second metal layer 3 is used as the common ground layer of the first dielectric layer 2 and the second dielectric layer 5, and the second dielectric layer 5 is used as the duplexer The underlying substrate, the fourth metal layer 6 is grounded, and is used to transfer the charges on the first metal layer 1 to the ground in time.

具体的,第一金属层1、第二金属层3、第三金属层4、第四金属层6、第一导体柱和第二导体柱的材料可以均为铜。Specifically, the materials of the first metal layer 1 , the second metal layer 3 , the third metal layer 4 , the fourth metal layer 6 , the first conductor post and the second conductor post may all be copper.

请参见图2,图2为本发明实施例提供的一种第一金属层和第一介质层的俯视图。第一金属层1上设置有输入端口11、第一输出端口13和第二输出端口15,用于输入和输出电磁波,第一输出端口13和第二输出端口15输出的电磁波的谐振模式不同。具体的,输入端口11、第一输出端口13和第二输出端口15可以均为金属片,其形状可以均为矩形,三个端口金属片的宽度w3均为500μm。Please refer to FIG. 2 , which is a top view of a first metal layer and a first dielectric layer according to an embodiment of the present invention. The first metal layer 1 is provided with an input port 11 , a first output port 13 and a second output port 15 for inputting and outputting electromagnetic waves. The first output port 13 and the second output port 15 output electromagnetic waves with different resonance modes. Specifically, the input port 11 , the first output port 13 and the second output port 15 may all be metal sheets, and their shapes may all be rectangular, and the widths w 3 of the three port metal sheets are all 500 μm.

第一介质层2可以为石英介质层即玻璃基板,其厚度hTGV为230μm;可以通过刻蚀第一介质层2,在第一介质层2上形成多个上层介质通孔,并在上层介质通孔中填充金属得到第一导体柱8,从而在第一介质层2中贯穿形成多个第一导体柱8。其中,每个上层介质通孔的直径dTGV可以为50μm,每个上层介质通孔之间的中心间距pTGV可以为100μm。The first dielectric layer 2 can be a quartz dielectric layer, that is, a glass substrate, and its thickness h TGV is 230 μm; the first dielectric layer 2 can be etched to form a plurality of upper dielectric through holes on the first dielectric layer 2, and the upper dielectric The through holes are filled with metal to obtain the first conductor pillars 8 , so that a plurality of first conductor pillars 8 are formed through the first dielectric layer 2 . Wherein, the diameter d TGV of each upper-layer dielectric through hole may be 50 μm, and the center-to-center distance p TGV between each upper-layer dielectric through hole may be 100 μm.

多个第一导体柱8与第一介质层2构成接地栅结构,其一端连接第一金属层1,另一端连接第二金属层3,多个第一导体柱8与第一金属层1、第二金属层3形成第一阶谐振腔R1、第二阶谐振腔R2、第五阶谐振腔R5、第六阶谐振腔R6、第七阶谐振腔R7和第八阶谐振腔R8,第二阶谐振腔R2和第五阶谐振腔R5并列设置,第一阶谐振腔R1、第七阶谐振腔R7和第八阶谐振腔R8并列设置且位于第二阶谐振腔R2和第五阶谐振腔R5的一侧,第六阶谐振腔R6位于第二阶谐振腔R2和第五阶谐振腔R5的另一侧。可以理解的是,第一阶谐振腔R1、第七阶谐振腔R7和第八阶谐振腔R8并列设置且相邻,第二阶谐振腔R2和第五阶谐振腔R5并列设置且相邻,并且第二阶谐振腔R2和第五阶谐振腔R5设置在并列的R1、R7、R8和R6之间。A plurality of first conductor posts 8 and the first dielectric layer 2 form a ground gate structure, one end of which is connected to the first metal layer 1 and the other end is connected to the second metal layer 3 , and the plurality of first conductor posts 8 are connected to the first metal layer 1 , The second metal layer 3 forms a first-order resonant cavity R1, a second-order resonant cavity R2, a fifth-order resonant cavity R5, a sixth-order resonant cavity R6, a seventh-order resonant cavity R7, and an eighth-order resonant cavity R8. The order resonator R2 and the fifth order resonator R5 are arranged side by side, the first order resonator R1, the seventh order resonator R7 and the eighth order resonator R8 are arranged side by side and are located in the second order resonator R2 and the fifth order resonator On one side of R5, the sixth-order resonator R6 is located on the other side of the second-order resonator R2 and the fifth-order resonator R5. It can be understood that the first-order resonant cavity R1, the seventh-order resonant cavity R7 and the eighth-order resonant cavity R8 are arranged in parallel and adjacent, the second-order resonant cavity R2 and the fifth-order resonant cavity R5 are arranged in parallel and adjacent, And the second-order resonator R2 and the fifth-order resonator R5 are arranged between the parallel R1, R7, R8 and R6.

进一步的,输入端口11位于第一阶谐振腔R1的顶部,用于向第一阶谐振腔R1输入电磁波;第一输出端口13位于第六阶谐振腔R6的顶部,用于输出第六阶谐振腔R6中的电磁波;第二输出端口15位于第八阶谐振腔R8的顶部,用于输出第八阶谐振腔R8中的电磁波。Further, the input port 11 is located at the top of the first-order resonant cavity R1, and is used to input electromagnetic waves to the first-order resonant cavity R1; the first output port 13 is located at the top of the sixth-order resonant cavity R6, and is used to output the sixth-order resonance. The electromagnetic wave in the cavity R6; the second output port 15 is located at the top of the eighth-order resonant cavity R8, and is used for outputting the electromagnetic wave in the eighth-order resonant cavity R8.

进一步的,第一阶谐振腔R1和第二阶谐振腔R2之间设置有第一耦合窗口23,第五阶谐振腔R5和第六阶谐振腔R6之间设置有第三耦合窗口25,第一阶谐振腔R1和第七阶谐振腔R7之间设置有并列的第四耦合窗口26和第五耦合窗口27,第七阶谐振腔R7和第八阶谐振腔R8之间设置有并列的第六耦合窗口28和第七耦合窗口29。具体的,在第一阶谐振腔R1与第二阶谐振腔R2连接的中间部分未设置上层介质通孔8,从而形成了第一耦合窗口23,用于实现第一阶谐振腔R1和第二阶谐振腔R2之间的磁耦合;在第五阶谐振腔R5与第六阶谐振腔R6连接的中间部分未设置上层介质通孔8,从而形成了第三耦合窗口25,用于实现第五阶谐振腔R5与第六阶谐振腔R6之间的磁耦合;在第一阶谐振腔R1与第七阶谐振腔R7连接的中间部分未设置上层介质通孔8,从而形成了第四耦合窗口26和第五耦合窗口27,用于实现第一阶谐振腔R1和第七阶谐振腔R7之间的磁耦合;在第七阶谐振腔R7与第八阶谐振腔R8连接的中间部分未设置上层介质通孔8,从而形成了第六耦合窗口28和第七耦合窗口29,用于实现第七阶谐振腔R7与第八阶谐振腔R8之间的磁耦合。Further, a first coupling window 23 is provided between the first-order resonant cavity R1 and the second-order resonant cavity R2, and a third coupling window 25 is provided between the fifth-order resonant cavity R5 and the sixth-order resonant cavity R6. A fourth coupling window 26 and a fifth coupling window 27 are arranged between the first order resonator R1 and the seventh order resonator R7, and a parallel fourth coupling window 26 is arranged between the seventh order resonator R7 and the eighth order resonator R8. Six coupling windows 28 and seventh coupling windows 29 . Specifically, the upper dielectric through hole 8 is not provided in the middle part where the first-order resonator R1 and the second-order resonator R2 are connected, thereby forming a first coupling window 23 for realizing the first-order resonator R1 and the second-order resonator R1 and the second-order resonator R2. Magnetic coupling between the order resonators R2; the upper dielectric through hole 8 is not provided in the middle part where the fifth order resonator R5 and the sixth order resonator R6 are connected, thereby forming a third coupling window 25 for realizing the fifth order resonator Magnetic coupling between the first-order resonator R5 and the sixth-order resonator R6; the upper dielectric through hole 8 is not provided in the middle part where the first-order resonator R1 and the seventh-order resonator R7 are connected, thereby forming a fourth coupling window 26 and the fifth coupling window 27, used to realize the magnetic coupling between the first-order resonant cavity R1 and the seventh-order resonant cavity R7; not provided in the middle part where the seventh-order resonant cavity R7 and the eighth-order resonant cavity R8 are connected The upper dielectric through hole 8 forms a sixth coupling window 28 and a seventh coupling window 29 for realizing the magnetic coupling between the seventh-order resonator R7 and the eighth-order resonator R8.

在一个具体实施例中,第一耦合窗口23的窗口宽度l2为710μm,第三耦合窗口25的窗口宽度l3为675μm,第四耦合窗口26的窗口宽度w16为696μm,第五耦合窗口27的窗口宽度w17为696μm,第六耦合窗口28的窗口宽度w18为573μm,第七耦合窗口29的窗口宽度w19为573μm。In a specific embodiment, the window width l 2 of the first coupling window 23 is 710 μm, the window width l 3 of the third coupling window 25 is 675 μm, the window width w 16 of the fourth coupling window 26 is 696 μm, and the fifth coupling window is 696 μm. The window width w 17 of 27 is 696 μm, the window width w 18 of the sixth coupling window 28 is 573 μm, and the window width w 19 of the seventh coupling window 29 is 573 μm.

请参见图3,图3为本发明实施例提供的一种第一介质层和第二金属层的俯视图。第二金属层3上设置有第一辐射窗口17、第二辐射窗口18、第三辐射窗口19、第四辐射窗口20、第五辐射窗口21和第六辐射窗口22,第一辐射窗口17、第三辐射窗口19和第四辐射窗口20设置在第二阶谐振腔R2的底部,第二辐射窗口18、第五辐射窗口21和第六辐射窗口22设置在第五阶谐振腔R5的底部。具体的,第一至第六辐射窗口17-22可以通过刻蚀得到。Please refer to FIG. 3 , which is a top view of a first dielectric layer and a second metal layer according to an embodiment of the present invention. The second metal layer 3 is provided with a first radiation window 17, a second radiation window 18, a third radiation window 19, a fourth radiation window 20, a fifth radiation window 21 and a sixth radiation window 22. The first radiation window 17, The third radiation window 19 and the fourth radiation window 20 are arranged at the bottom of the second order resonator R2, and the second radiation window 18, the fifth radiation window 21 and the sixth radiation window 22 are arranged at the bottom of the fifth order resonator R5. Specifically, the first to sixth radiation windows 17-22 can be obtained by etching.

请参见图4,图4为本发明实施例提供的一种第三金属层和第二介质层的俯视图。第三金属层4上设置有第七辐射窗口30、第八辐射窗口31、第九辐射窗口32、第十辐射窗口33、第十一辐射窗口34和第十二辐射窗口35,第七辐射窗口30、第八辐射窗口31、第九辐射窗口32、第十辐射窗口33、第十一辐射窗口34和第十二辐射窗口35与第一辐射窗口17、第二辐射窗口18、第三辐射窗口19、第四辐射窗口20、第五辐射窗口21和第六辐射窗口22分别一一对应。即,第七辐射窗口30与第一辐射窗口17对应且连通,第九辐射窗口32与第三辐射窗口19对应且连通,第十辐射窗口33与第四辐射窗口20对应且连通,第七辐射窗口30、第九辐射窗口32、第十辐射窗口33设置在第二阶谐振腔R2的底部;第八辐射窗口31与第二辐射窗口18对应且连通,第十一辐射窗口34与第五辐射窗口21对应且连通,第十二辐射窗口35与第六辐射窗口22对应且连通,第八辐射窗口31、第十一辐射窗口34和第十二辐射窗口35设置在第五阶谐振腔R5的底部。具体的,第七至第十二辐射窗口30-35可以通过刻蚀得到。Please refer to FIG. 4 , which is a top view of a third metal layer and a second dielectric layer according to an embodiment of the present invention. The third metal layer 4 is provided with a seventh radiation window 30, an eighth radiation window 31, a ninth radiation window 32, a tenth radiation window 33, an eleventh radiation window 34 and a twelfth radiation window 35, and the seventh radiation window 30, the eighth radiation window 31, the ninth radiation window 32, the tenth radiation window 33, the eleventh radiation window 34, the twelfth radiation window 35 and the first radiation window 17, the second radiation window 18, the third radiation window 19. The fourth radiation window 20, the fifth radiation window 21 and the sixth radiation window 22 are in one-to-one correspondence. That is, the seventh radiation window 30 corresponds to and communicates with the first radiation window 17 , the ninth radiation window 32 corresponds to and communicates with the third radiation window 19 , the tenth radiation window 33 corresponds to and communicates with the fourth radiation window 20 , and the seventh radiation window 32 corresponds to and communicates with the fourth radiation window 20 . The window 30, the ninth radiation window 32, and the tenth radiation window 33 are arranged at the bottom of the second-order resonant cavity R2; the eighth radiation window 31 corresponds to and communicates with the second radiation window 18, and the eleventh radiation window 34 is connected to the fifth radiation window The window 21 corresponds to and communicates with, the twelfth radiation window 35 corresponds to and communicates with the sixth radiation window 22, and the eighth radiation window 31, the eleventh radiation window 34 and the twelfth radiation window 35 are arranged in the fifth-order resonator cavity R5. bottom. Specifically, the seventh to twelfth radiation windows 30-35 can be obtained by etching.

第二介质层5可以为石英介质层即玻璃基板,其厚度hTGV为230μm;可以通过刻蚀第一介质层2,在第一介质层2上形成多个下层介质通孔,并在下层介质通孔中填充金属得到第二导体柱9,从而第二介质层5中贯穿有多个第二导体柱9,其中,每个下层介质通孔的直径dTGV可以为50μm,每个下层介质通孔9之间的中心间距pTGV为100μm。The second dielectric layer 5 can be a quartz dielectric layer, that is, a glass substrate, and its thickness h TGV is 230 μm; the first dielectric layer 2 can be etched to form a plurality of lower dielectric through holes on the first dielectric layer 2, and the lower dielectric The through holes are filled with metal to obtain the second conductor pillars 9, so that a plurality of second conductor pillars 9 run through the second dielectric layer 5, wherein the diameter d TGV of each lower dielectric through hole can be 50 μm, and each lower dielectric through hole has a diameter d TGV of 50 μm. The center-to-center spacing pTGV between the holes 9 was 100 μm.

本实施例的第一介质层和第二介质层均选用玻璃基板,玻璃的相对介电常数远小于硅衬底,采用玻璃基板代替硅衬底制作三维无源器件,可以消除高频电路中的涡流效应,显著降低了无源器件的高频损耗,提高了其品质因数,使得双工器的功耗显著降低,提高了滤波器的品质因数。In this embodiment, the first dielectric layer and the second dielectric layer are made of glass substrates. The relative permittivity of glass is much smaller than that of silicon substrates. The use of glass substrates instead of silicon substrates to make three-dimensional passive devices can eliminate the need for high-frequency circuits. The eddy current effect significantly reduces the high-frequency loss of passive components, improves its quality factor, significantly reduces the power consumption of the duplexer, and improves the quality factor of the filter.

多个下层介质通孔9呈长方型分布在第二介质层5上,多个第二导体柱9的一端连接第三金属层4,另一端连接第四金属层6,多个第二导体柱9与第三金属层4、第四金属层6形成第三阶谐振腔R3和第四阶谐振腔R4,第三阶谐振腔R3与第二阶谐振腔R2相对应,第四阶谐振腔R4与第五阶谐振腔R5相对应。第三阶谐振腔R3和第四阶谐振腔R4之间设置有第二耦合窗口24,即在第三阶谐振腔R3和第四阶谐振腔R4连接的中间部分未设置下层介质通孔,从而形成了第二耦合窗口24,用于实现第三阶谐振腔R3和第四阶谐振腔R4之间的磁耦合。在一个具体实施例中,第二耦合窗口24的窗口宽度w11为536μm。A plurality of lower dielectric through holes 9 are distributed on the second dielectric layer 5 in a rectangular shape, one end of the plurality of second conductor posts 9 is connected to the third metal layer 4, the other end is connected to the fourth metal layer 6, and a plurality of second conductors The pillar 9 and the third metal layer 4 and the fourth metal layer 6 form a third-order resonant cavity R3 and a fourth-order resonant cavity R4, the third-order resonant cavity R3 corresponds to the second-order resonant cavity R2, and the fourth-order resonant cavity R4 corresponds to the fifth order resonator R5. A second coupling window 24 is provided between the third-order resonant cavity R3 and the fourth-order resonant cavity R4, that is, the lower dielectric through hole is not provided in the middle part where the third-order resonant cavity R3 and the fourth-order resonant cavity R4 are connected. A second coupling window 24 is formed for realizing the magnetic coupling between the third-order resonator R3 and the fourth-order resonator R4. In a specific embodiment, the window width w 11 of the second coupling window 24 is 536 μm.

具体的,第三阶谐振腔R3设置在第二阶谐振腔R2的下方,第七辐射窗口30、第一辐射窗口17、第九辐射窗口32、第三辐射窗口19、第十辐射窗口33、第四辐射窗口20将第三阶谐振腔R3和第二阶谐振腔R2联通;第四阶谐振腔R4设置在第五阶谐振腔R5的下方,第八辐射窗口31、第二辐射窗口18、第十一辐射窗口34、第五辐射窗口21、第十二辐射窗口35、第六辐射窗口22将第四阶谐振腔R4与第五阶谐振腔R5联通。具体的,第三阶谐振腔R3与第二阶谐振腔R2之间通过第一辐射窗口17和第七辐射窗口30实现电耦合,通过第三辐射窗口19、第九辐射窗口32、第四辐射窗口20、第十辐射窗口33实现磁耦合;第四阶谐振腔R4与第五阶谐振腔R5之间通过第二辐射窗口18、第八辐射窗口31实现电耦合,通过第五辐射窗口19、十一辐射窗口34、第六辐射窗口22、第十二辐射窗口35实现磁耦合。Specifically, the third-order resonator R3 is arranged below the second-order resonator R2, the seventh radiation window 30, the first radiation window 17, the ninth radiation window 32, the third radiation window 19, the tenth radiation window 33, The fourth radiation window 20 communicates the third-order resonator R3 and the second-order resonator R2; the fourth-order resonator R4 is arranged below the fifth-order resonator R5, and the eighth radiation window 31, the second radiation window 18, The eleventh radiation window 34 , the fifth radiation window 21 , the twelfth radiation window 35 , and the sixth radiation window 22 communicate the fourth-order resonant cavity R4 with the fifth-order resonant cavity R5 . Specifically, the third-order resonator R3 and the second-order resonator R2 are electrically coupled through the first radiation window 17 and the seventh radiation window 30 , and the third radiation window 19 , the ninth radiation window 32 , and the fourth radiation window The window 20 and the tenth radiation window 33 realize magnetic coupling; the fourth-order resonator R4 and the fifth-order resonator R5 realize electrical coupling through the second radiation window 18 and the eighth radiation window 31, and the fifth radiation window 19, The eleven radiation windows 34 , the sixth radiation window 22 , and the twelfth radiation window 35 realize magnetic coupling.

请参见图5,图5为本发明实施例提供的一种第二介质层和第四金属层的俯视图。第四金属层6与第一金属层1、第一介质层2、第二金属层3、键合层7、第三金属层4、第二介质层5、第一导体柱8以及第二导体柱9形成封闭的滤波器谐振腔,即第一阶至第六阶谐振腔R1-R6。Please refer to FIG. 5 , which is a top view of a second dielectric layer and a fourth metal layer according to an embodiment of the present invention. The fourth metal layer 6 and the first metal layer 1, the first dielectric layer 2, the second metal layer 3, the bonding layer 7, the third metal layer 4, the second dielectric layer 5, the first conductor post 8 and the second conductor The pillars 9 form closed filter resonators, ie the first to sixth order resonators R1-R6.

本实施例的双工器在第二阶谐振腔和第三谐振腔之间R2-R3、第四谐振腔和第五阶谐振腔R4-R5之间设置有多个辐射窗口,引入了混合耦合方式,即同时包含电耦合和磁耦合,进而同步增强了电场耦合与磁场耦合,在低通带附近引入传输零点,提高了低通带的频率选择特性,同时提高了通带的带宽,降低了回波损耗。The duplexer of this embodiment is provided with multiple radiation windows between R2-R3 between the second-order resonator and the third-order resonator, and between the fourth-order resonator and the fifth-order resonator R4-R5, which introduces hybrid coupling The method includes both electrical coupling and magnetic coupling, thereby simultaneously enhancing the electric field coupling and magnetic field coupling, introducing a transmission zero near the low passband, improving the frequency selection characteristics of the low passband, and at the same time increasing the bandwidth of the passband. return loss.

请参见图6,图6为本发明实施例提供的一种键合层的俯视图。键合层7将第二金属层3和第三金属层4键合起来,其形状为日字形,其大小与第二介质层5中第二导体柱9所形成的形状的大小相同,从而使得对应的辐射窗口联通。Please refer to FIG. 6 , which is a top view of a bonding layer according to an embodiment of the present invention. The bonding layer 7 bonds the second metal layer 3 and the third metal layer 4 together, and its shape is a J-shaped, and its size is the same as that of the shape formed by the second conductor column 9 in the second dielectric layer 5, so that the The corresponding radiation windows are connected.

进一步的,在键合层7的周围和第三金属层4的周围还设有粘合层10,粘合层10位于第二金属层3和第二介质层5之间,用于将键合层7外侧的第二金属层3和第三金属层4外侧的第二介质层5粘合起来。Further, an adhesive layer 10 is also provided around the bonding layer 7 and around the third metal layer 4, and the adhesive layer 10 is located between the second metal layer 3 and the second dielectric layer 5 for bonding the bonding layer 10. The second metal layer 3 outside the layer 7 and the second dielectric layer 5 outside the third metal layer 4 are bonded together.

在一个具体实施例中,第一金属层1的侧壁上开设有第一凹槽12、第二凹槽14和第三凹槽16,其中,输入端口11设置在第一凹槽12中,第一输出端口13设置在第二凹槽14中,第二输出端口15位于第三凹槽16中。可以理解的是,第一凹槽12位于第一阶谐振腔R1的顶部以容纳输入端口11,第二凹槽14位于第六阶谐振腔R6的顶部以容纳第一输出端口13,第三凹槽16位于第八阶谐振腔R8的顶部以容纳第二输出端口15。In a specific embodiment, a first groove 12 , a second groove 14 and a third groove 16 are formed on the sidewall of the first metal layer 1 , wherein the input port 11 is arranged in the first groove 12 , The first output port 13 is provided in the second groove 14 , and the second output port 15 is located in the third groove 16 . It can be understood that the first groove 12 is located at the top of the first-order resonant cavity R1 to accommodate the input port 11, the second groove 14 is located at the top of the sixth-order resonant cavity R6 to accommodate the first output port 13, and the third groove The slot 16 is located at the top of the eighth-order resonant cavity R8 to accommodate the second output port 15 .

具体的,第一凹槽12设置在第一金属层1的一侧壁上,第二凹槽14和第三凹槽16设置在第一金属层1的另一侧壁上,第一凹槽12所在的侧壁与第二凹槽14和第三凹槽16所在的侧壁为相对侧壁。Specifically, the first groove 12 is provided on one sidewall of the first metal layer 1 , the second groove 14 and the third groove 16 are provided on the other sidewall of the first metal layer 1 , the first groove The side wall where 12 is located and the side walls where the second groove 14 and the third groove 16 are located are opposite side walls.

在一个具体实施例中,第一阶谐振腔R1、第二阶谐振腔R2、第三阶谐振腔R3、第四阶谐振腔R4、第五阶谐振腔R5均为长方形谐振腔体。其中,第一阶谐振腔R1的长宽比为1.051。In a specific embodiment, the first-order resonant cavity R1, the second-order resonant cavity R2, the third-order resonant cavity R3, the fourth-order resonant cavity R4, and the fifth-order resonant cavity R5 are all rectangular resonant cavities. The aspect ratio of the first-order resonator R1 is 1.051.

第六阶谐振腔R6由相互连通的第一部分R61、第二部分R62和第三部分R63形成,第一部分R61、第二部分R62和第三部分R63的形状均为矩形;进一步的,第三部分R63、第一部分R61、第二部分R62的长度依次增大,第一部分R61、第二部分R62、第三部分R63的宽度依次增大。The sixth-order resonant cavity R6 is formed by a first part R61, a second part R62 and a third part R63 that communicate with each other, and the shapes of the first part R61, the second part R62 and the third part R63 are all rectangular; further, the third part The lengths of R63 , the first portion R61 , and the second portion R62 increase in sequence, and the widths of the first portion R61 , the second portion R62 , and the third portion R63 increase in sequence.

具体的,第一阶谐振腔R1的长度l为5540μm,宽度w为5272μm,即长宽比k=1.051,此时,第一凹槽12和第二凹槽14的长度l1为2870μm,宽度w2为560μm,第一阶谐振腔R1输入侧宽度w1为2038μm,第六阶谐振腔R6输入侧宽度w12为2300μm;第二阶谐振腔R2的长度l4为2400μm,宽度w4为2378μm;第五阶谐振腔R5的长度l5为2400μm,宽度w5为2391μm;第六阶谐振腔R6中,第一部分R61的长度l7为1620μm,宽度w7为5330μm,第二部分R62的长度l8为2450μm,宽度w8为5339μm,第三部分R63的长度l9为1470μm,宽度w9为5352μm;第三阶谐振腔R3和第四阶谐振腔R4的大小相同,其长度l10均为2400μm,宽度w10均为2415μm;第七阶谐振腔R7和第八阶谐振腔R8的长度l13均为1820μm,宽度w13均为5900μm,第八阶谐振腔R8输出侧的宽度w15为2620μm,第三凹槽16的长度l12为270μm,宽度w14为600μm。Specifically, the length l of the first-order resonant cavity R1 is 5540 μm, and the width w is 5272 μm, that is, the aspect ratio k=1.051. At this time, the length l 1 of the first groove 12 and the second groove 14 is 2870 μm, and the width w 2 is 560 μm, the input side width w of the first -order resonator R1 is 2038 μm, the sixth-order resonator R6 input side width w 12 is 2300 μm; the length l 4 of the second-order resonator R2 is 2400 μm, and the width w 4 is 2378 μm; the length l 5 of the fifth-order resonant cavity R5 is 2400 μm, and the width w 5 is 2391 μm; in the sixth-order resonant cavity R6, the length l 7 of the first part R61 is 1620 μm, the width w 7 is 5330 μm, and the second part R62 has a length l 7 of 1620 μm. The length l 8 is 2450 μm, the width w 8 is 5339 μm, the length l 9 of the third part R63 is 1470 μm, and the width w 9 is 5352 μm; the third-order resonator R3 and the fourth-order resonator R4 have the same size, and their length l 10 Both are 2400 μm, the width w 10 is both 2415 μm; the length l 13 of the seventh-order resonator R7 and the eighth-order resonator R8 are both 1820 μm, the width w 13 is both 5900 μm, and the width w of the output side of the eighth-order resonator R8 15 is 2620 μm, the length l 12 of the third groove 16 is 270 μm, and the width w 14 is 600 μm.

在一个具体实施例中,第一辐射窗口17、第二辐射窗口18、第三辐射窗口19、第四辐射窗口20、第五辐射窗口21和第六辐射窗口22并列设置,第一辐射窗口17设置在第三辐射窗口19和第四辐射窗口20之间,第二辐射窗口18设置在第五辐射窗口21和第六辐射窗口22之间。In a specific embodiment, the first radiation window 17, the second radiation window 18, the third radiation window 19, the fourth radiation window 20, the fifth radiation window 21 and the sixth radiation window 22 are arranged side by side, and the first radiation window 17 Arranged between the third radiation window 19 and the fourth radiation window 20 , the second radiation window 18 is arranged between the fifth radiation window 21 and the sixth radiation window 22 .

具体的,第一辐射窗口17、第二辐射窗口18为圆形形状,第一辐射窗口的直径dC1为504μm,第二辐射窗口的直径dC2为484μm,第三辐射窗口19、第四辐射窗口20、第五辐射窗口21、第六辐射窗口22为矩形形状,第三至第六辐射窗口的长度l6为100μm,宽度w6为300μm;第三辐射窗口19和第四辐射窗口20之间的距离与第五辐射窗口21和第六辐射窗口22之间的距离皆为l11为2000μm。Specifically, the first radiation window 17 and the second radiation window 18 are circular in shape, the diameter d C1 of the first radiation window is 504 μm, the diameter d C2 of the second radiation window is 484 μm, the third radiation window 19 and the fourth radiation window are The window 20, the fifth radiation window 21, and the sixth radiation window 22 are rectangular in shape, the length l 6 of the third to sixth radiation windows is 100 μm, and the width w 6 is 300 μm; The distance between them and the distance between the fifth radiation window 21 and the sixth radiation window 22 are both l and 11 is 2000 μm.

第七辐射窗口24、第八辐射窗口25、第九辐射窗口26、第十辐射窗口27、第十一辐射窗口28和第十二辐射窗口29的形状和大小与第一辐射窗口17、第二辐射窗口18、第三辐射窗口19、第四辐射窗口20、第五辐射窗口21和第六辐射窗口20的形状和大小相同,在此不再赘述。The shapes and sizes of the seventh radiation window 24, the eighth radiation window 25, the ninth radiation window 26, the tenth radiation window 27, the eleventh radiation window 28 and the twelfth radiation window 29 are the same as those of the first radiation window 17, the second The radiation window 18 , the third radiation window 19 , the fourth radiation window 20 , the fifth radiation window 21 and the sixth radiation window 20 have the same shape and size, and will not be repeated here.

在一个具体实施例中,第一阶谐振腔R1的谐振模式为TE103和TE301,其中,TE103的中心频率fTE301与TE301模式的fTE103相差较小,fTE301为低通道中心频率,fTE103为高通道中心频率。第二阶谐振腔R2、第三阶谐振腔R3、第四阶谐振腔R4、第五阶谐振腔R5、第七阶谐振腔R7和第八阶谐振腔R8的谐振模式为TE101,第六阶谐振腔R6的谐振模式为TE103In a specific embodiment, the resonant modes of the first-order resonator R1 are TE 103 and TE 301 , wherein the center frequency f TE301 of TE 103 and f TE103 of the TE 301 mode have a small difference, and f TE301 is the low channel center frequency , f TE103 is the high channel center frequency. The resonance modes of the second-order resonator R2, the third-order resonator R3, the fourth-order resonator R4, the fifth-order resonator R5, the seventh-order resonator R7 and the eighth-order resonator R8 are TE 101 , the sixth-order resonator The resonance mode of the order resonator R6 is TE 103 .

进一步的,第一阶谐振腔R1中TE103谐振模式的谐振频率与第二阶谐振腔R2中TE101谐振模式的谐振频率相同,其余高次模式的谐振频率均不相同,因此R1中的高次模不能在第一通道R1-R2-R3-R4-R5-R6的谐振腔中传输。Further, the resonant frequency of the TE 103 resonant mode in the first-order resonator R1 is the same as the resonant frequency of the TE 101 resonant mode in the second-order resonator R2, and the resonant frequencies of the other higher-order modes are different. Secondary modes cannot be transmitted in the resonant cavity of the first channel R1-R2-R3-R4-R5-R6.

本实施例中,由于R1中的高次模不能在第一通道的谐振腔中传输,同时,谐振腔R1与R6采用深槽馈电方式,且R1-R2及R5-R6之间采用横向耦合方式,使得TEm0nm与n至少有一个为偶数模式均被抑制,因而,专利双工器的带外抑制达到1.89fTE103,且两通道之间也实现了良好的带外抑制与隔离度。In this embodiment, since the high-order mode in R1 cannot be transmitted in the resonant cavity of the first channel, at the same time, the resonant cavity R1 and R6 adopt the deep slot feeding method, and the lateral coupling between R1-R2 and R5-R6 is adopted. In this way, at least one of the even-numbered modes of TE m0nm and n is suppressed. Therefore, the out-of-band rejection of the patented duplexer reaches 1.89f TE103 , and good out-of-band rejection and isolation are also achieved between the two channels.

请参见图7,图7为本发明实施例提供的一种玻璃基宽阻带微波双工器的耦合机制示意图。Please refer to FIG. 7. FIG. 7 is a schematic diagram of a coupling mechanism of a glass-based wide stopband microwave duplexer according to an embodiment of the present invention.

具体的,第一阶谐振腔R1与第二阶谐振腔R2通过第一耦合窗口23实现磁耦合;第二阶谐振腔R2与第三阶谐振腔R3通过第一辐射窗口17、第七辐射窗口30实现电耦合,通过第三辐射窗口19、第九辐射窗口32、第四辐射窗口20、第十辐射窗口33实现磁耦合;第三阶谐振腔R3与第四阶谐振腔R4通过第二耦合窗口24实现磁耦合;第四阶谐振腔R4与第五阶谐振腔R5通过第二辐射窗口18、第八辐射窗口31实现电耦合,通过第五辐射窗口19、十一辐射窗口34、第六辐射窗口22、第十二辐射窗口35实现磁耦合;第五阶谐振腔R5与第六阶谐振腔R6通过第三耦合窗口25实现磁耦合;第一阶谐振腔R1与第七阶谐振腔R7通过第四耦合窗口26和第五耦合窗口27实现磁耦合;第七阶谐振腔R7与第八阶谐振腔R8通过第六耦合窗口28和第七耦合窗口29通过实现磁耦合。Specifically, the first-order resonator R1 and the second-order resonator R2 are magnetically coupled through the first coupling window 23; the second-order resonator R2 and the third-order resonator R3 pass through the first radiation window 17 and the seventh radiation window 30 realizes electrical coupling, and realizes magnetic coupling through the third radiation window 19, the ninth radiation window 32, the fourth radiation window 20, and the tenth radiation window 33; the third-order resonant cavity R3 and the fourth-order resonant cavity R4 are coupled through the second The window 24 realizes magnetic coupling; the fourth-order resonator R4 and the fifth-order resonator R5 realize electrical coupling through the second radiation window 18 and the eighth radiation window 31, and realize electrical coupling through the fifth radiation window 19, eleven radiation windows 34, and sixth The radiation window 22 and the twelfth radiation window 35 realize magnetic coupling; the fifth-order resonator R5 and the sixth-order resonator R6 realize magnetic coupling through the third coupling window 25; the first-order resonator R1 and the seventh-order resonator R7 Magnetic coupling is achieved through the fourth coupling window 26 and the fifth coupling window 27 ;

本实施例双工器的工作过程如下:首先,电磁波从输入端口输入至第一阶谐振腔R1同时激励起TE301模式和TE103模式的电磁波;然后,通过第一耦合窗口23进行磁耦合传输至第二阶谐振腔R2,由于在第一阶谐振腔R1与第二阶谐振腔R2之间采用磁耦合,该磁耦合方式在传播TE103模式电磁波的同时可以抑制TE301模式的电磁波的传播,使得TE301模式的能量无法传播至第二阶谐振腔R2;当电磁波耦合至第二阶谐振腔R2之后,由于谐振腔R2尺寸的限制,使得TE101模式的谐振频率为45.84GHz,因此TE101模式在谐振腔R2中得以激励,电磁波通过第一辐射窗口17、第七辐射窗口30、第三辐射窗口19、第九辐射窗口32、第四辐射窗口20、第十辐射窗口33耦合至第三阶谐振腔R3,耦合方式为电磁耦合;再然后,电磁波继续通过第二耦合窗口24以磁耦合的方式传输至第四阶谐振腔R4;之后,电磁波再通过第二辐射窗口18、第八辐射窗口31、第五辐射窗口19、十一辐射窗口34、第六辐射窗口22、第十二辐射窗口35以电磁耦合的方式传输至第五阶谐振腔R5,最后,电磁波通过第三耦合窗口25进行磁耦合传输至第六阶谐振腔R6,再从第一输出端口13输出;TE301模式的电磁波通过第四耦合窗口26和第五耦合窗口27以磁耦合的方式传输到第七阶谐振腔R7中,此时TE301模式的谐振频率变为43.69GHz,TE101模式在谐振腔R7中得以激励,TE103模式的电磁波得以抑制,最后,电磁波通过第六耦合窗口28和第七耦合窗口29进行磁耦合传输至第八阶谐振腔R8,再从第二输出端口15输出。The working process of the duplexer in this embodiment is as follows: first, the electromagnetic wave is input from the input port to the first-order resonator R1 to simultaneously excite the electromagnetic waves of the TE 301 mode and the TE 103 mode; then, the magnetic coupling transmission is performed through the first coupling window 23 To the second-order resonator R2, due to the magnetic coupling between the first-order resonator R1 and the second-order resonator R2, the magnetic coupling can suppress the propagation of the TE 301 mode electromagnetic wave while propagating the TE 103 mode electromagnetic wave , so that the energy of the TE 301 mode cannot propagate to the second-order resonator R2; when the electromagnetic wave is coupled to the second-order resonator R2, due to the size limitation of the resonator R2, the resonant frequency of the TE 101 mode is 45.84 GHz, so TE The 101 mode is excited in the resonant cavity R2, and the electromagnetic wave is coupled to the first radiation window 17, the seventh radiation window 30, the third radiation window 19, the ninth radiation window 32, the fourth radiation window 20, and the tenth radiation window 33. The third-order resonator R3 is coupled by electromagnetic coupling; then, the electromagnetic wave continues to be transmitted to the fourth-order resonator R4 by magnetic coupling through the second coupling window 24; after that, the electromagnetic wave passes through the second radiation window 18, the eighth The radiation window 31 , the fifth radiation window 19 , the eleven radiation window 34 , the sixth radiation window 22 , and the twelfth radiation window 35 are transmitted to the fifth-order resonant cavity R5 by electromagnetic coupling, and finally, the electromagnetic wave passes through the third coupling window 25 is magnetically coupled and transmitted to the sixth-order resonator R6, and then output from the first output port 13; the electromagnetic wave in the TE 301 mode is magnetically coupled to the seventh-order resonance through the fourth coupling window 26 and the fifth coupling window 27. In the cavity R7, the resonant frequency of the TE 301 mode becomes 43.69 GHz at this time, the TE 101 mode is excited in the resonant cavity R7, and the electromagnetic wave of the TE 103 mode is suppressed. Finally, the electromagnetic wave passes through the sixth coupling window 28 and the seventh coupling window. 29 is magnetically coupled and transmitted to the eighth-order resonant cavity R8, and then output from the second output port 15.

本发明实施例双工器工作时,在第一阶谐振腔R1同时存在TE301模式和TE103模式的电磁波,由于第二阶谐振腔和第七阶谐振腔尺寸不同,使得TE103模式的能量只能在第二阶至第六阶谐振腔之间耦合传递,TE301模式的能量只能在第七阶谐振腔和第八阶谐振腔之间耦合传递,并且由于TE301模式和TE103模式的谐振频率相差不大,显示出了很好地选择性。When the duplexer according to the embodiment of the present invention works, electromagnetic waves of the TE 301 mode and the TE 103 mode exist in the first-order resonator R1 at the same time. Due to the different sizes of the second-order resonator and the seventh-order resonator, the energy of the TE 103 mode is reduced. It can only be coupled and transferred between the second-order to sixth-order resonators, and the energy of the TE 301 mode can only be coupled and transferred between the seventh-order resonator and the eighth-order resonator . The resonant frequencies are not much different, showing good selectivity.

请参见图8a-图8b,图8a-图8b为本发明实施例提供玻璃基宽阻带微波双工器的频率响应图。其中,图8a为全频率响应图,其带外抑制范围达到82.66GHz。实现了滤波器的宽阻带。图8b为图8a中40GHz-60GHz的频率响应示意图,其中,TE301模式的谐振频率为43.69GHz,TE103模式的谐振频率为45.84GHz,可见本实施例的双工器具有良好的选择性。Please refer to FIGS. 8a-8b. FIGS. 8a-8b are frequency response diagrams of a glass-based wide stopband microwave duplexer provided by an embodiment of the present invention. Among them, Figure 8a is a full frequency response diagram, and its out-of-band rejection range reaches 82.66GHz. A wide stopband of the filter is achieved. Figure 8b is a schematic diagram of the frequency response of 40GHz-60GHz in Figure 8a, wherein the resonance frequency of the TE 301 mode is 43.69GHz, and the resonance frequency of the TE 103 mode is 45.84GHz. It can be seen that the duplexer of this embodiment has good selectivity.

本实施例的玻璃基高阻带微波双工器采用双模谐振腔代替传统双工器中的T型结构,同时采用双层堆叠的方法,将部分谐振腔放置于下玻璃基板上,显著减小了该双工器结构的面积,无需增加谐振腔与阻抗变换器,实现了偶数阶等输入输出阻抗的双工器。它采用玻璃基板代替硅衬底制作三维无源器件,可以消除高频电路中的涡流效应,显著降低了无源器件的高频损耗,提高了其品质因数,使得本实施例的双工器的功耗显著降低,提高了双工器的品质因数。同时采用玻璃基板和三维集成技术,使得SIW结构的特征尺寸显著减小,进而使得该双工器的谐振频率提取得以显著提高。The glass-based high-resistance-band microwave duplexer of this embodiment uses a dual-mode resonant cavity to replace the T-shaped structure in the traditional duplexer, and at the same time adopts a double-layer stacking method to place part of the resonant cavity on the lower glass substrate, which significantly reduces the The area of the duplexer structure is reduced, the resonant cavity and the impedance converter need not be added, and the duplexer with input and output impedances of even order and the like is realized. It uses a glass substrate instead of a silicon substrate to make a three-dimensional passive device, which can eliminate the eddy current effect in the high-frequency circuit, significantly reduce the high-frequency loss of the passive device, and improve its quality factor. Power consumption is significantly reduced, improving the quality factor of the duplexer. At the same time, the glass substrate and the three-dimensional integration technology are used, so that the feature size of the SIW structure is significantly reduced, and the resonant frequency extraction of the duplexer can be significantly improved.

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.

Claims (10)

1.一种玻璃基宽阻带微波双工器,其特征在于,包括:依次层叠的第一金属层(1)、第一介质层(2)、第二金属层(3)、键合层(7)、第三金属层(4)、第二介质层(5)和第四金属层(6),其中,1. A glass-based wide stop-band microwave duplexer, characterized in that it comprises: a first metal layer (1), a first dielectric layer (2), a second metal layer (3), a bonding layer stacked in sequence (7), a third metal layer (4), a second dielectric layer (5) and a fourth metal layer (6), wherein, 所述第一金属层(1)上设置有输入端口(11)、第一输出端口(13)和第二输出端口(15);The first metal layer (1) is provided with an input port (11), a first output port (13) and a second output port (15); 所述第一介质层(2)中贯穿有多个第一导体柱(8),所述多个第一导体柱(8)与所述第一金属层(1)、所述第二金属层(3)形成第一阶谐振腔(R1)、第二阶谐振腔(R2)、第五阶谐振腔(R5)、第六阶谐振腔(R6)、第七阶谐振腔(R7)和第八阶谐振腔(R8),所述第二阶谐振腔(R2)和所述第五阶谐振腔(R5)并列设置,所述第一阶谐振腔(R1)、所述第七阶谐振腔(R7)和所述第八阶谐振腔(R8)并列设置且位于所述第二阶谐振腔(R2)和所述第五阶谐振腔(R5)的一侧,所述第六阶谐振腔(R6)位于所述第二阶谐振腔(R2)和所述第五阶谐振腔(R5)的另一侧,所述第一阶谐振腔(R1)和所述第二阶谐振腔(R2)之间设置有第一耦合窗口(23),所述第五阶谐振腔(R5)和所述第六阶谐振腔(R6)之间设置有第三耦合窗口(25),所述第一阶谐振腔(R1)和所述第七阶谐振腔(R7)之间设置有并列的第四耦合窗口(26)和第五耦合窗口(27),所述第七阶谐振腔(R7)和所述第八阶谐振腔(R8)之间设置有并列的第六耦合窗口(28)和第七耦合窗口(29),所述输入端口(11)位于所述第一阶谐振腔(R1)的顶部,所述第一输出端口(13)位于所述第六阶谐振腔(R6)的顶部,所述第二输出端口(15)位于所述第八阶谐振腔(R8)的顶部;A plurality of first conductor pillars (8) penetrate through the first dielectric layer (2), the plurality of first conductor pillars (8) and the first metal layer (1) and the second metal layer (3) forming a first-order resonant cavity (R1), a second-order resonant cavity (R2), a fifth-order resonant cavity (R5), a sixth-order resonant cavity (R6), a seventh-order resonant cavity (R7), and a seventh-order resonant cavity (R7) The eighth-order resonant cavity (R8), the second-order resonant cavity (R2) and the fifth-order resonant cavity (R5) are arranged in parallel, the first-order resonant cavity (R1), the seventh-order resonant cavity (R7) and the eighth-order resonant cavity (R8) are arranged side by side and located on one side of the second-order resonant cavity (R2) and the fifth-order resonant cavity (R5), and the sixth-order resonant cavity (R6) is located on the other side of the second-order resonant cavity (R2) and the fifth-order resonant cavity (R5), the first-order resonant cavity (R1) and the second-order resonant cavity (R2) ) is provided with a first coupling window (23), a third coupling window (25) is provided between the fifth-order resonant cavity (R5) and the sixth-order resonant cavity (R6), and the first A fourth coupling window (26) and a fifth coupling window (27) are arranged between the order resonator (R1) and the seventh order resonator (R7), and the seventh order resonator (R7) and A sixth coupling window (28) and a seventh coupling window (29) are arranged between the eighth-order resonators (R8), and the input port (11) is located in the first-order resonator (R1) the top of the resonator, the first output port (13) is located on the top of the sixth-order resonant cavity (R6), and the second output port (15) is located on the top of the eighth-order resonant cavity (R8); 所述第二金属层(3)上设置有第一辐射窗口(17)、第二辐射窗口(18)、第三辐射窗口(19)、第四辐射窗口(20)、第五辐射窗口(21)和第六辐射窗口(22),所述第一辐射窗口(17)、所述第三辐射窗口(19)和所述第四辐射窗口(20)设置在所述第二阶谐振腔(R2)的底部,所述第二辐射窗口(18)、所述第五辐射窗口(21)和所述第六辐射窗口(22)设置在所述第五阶谐振腔(R5)的底部;The second metal layer (3) is provided with a first radiation window (17), a second radiation window (18), a third radiation window (19), a fourth radiation window (20), and a fifth radiation window (21) ) and a sixth radiation window (22), the first radiation window (17), the third radiation window (19) and the fourth radiation window (20) are arranged in the second order resonant cavity (R2 ), the second radiation window (18), the fifth radiation window (21) and the sixth radiation window (22) are arranged at the bottom of the fifth-order resonant cavity (R5); 所述第三金属层(4)上设置有第七辐射窗口(30)、第八辐射窗口(31)、第九辐射窗口(32)、第十辐射窗口(33)、第十一辐射窗口(34)和第十二辐射窗口(35),所述第七辐射窗口(30)、所述第八辐射窗口(31)、所述第九辐射窗口(32)、所述第十辐射窗口(33)、所述第十一辐射窗口(34)和所述第十二辐射窗口(35)与所述第一辐射窗口(17)、所述第二辐射窗口(18)、所述第三辐射窗口(19)、所述第四辐射窗口(20)、所述第五辐射窗口(21)和所述第六辐射窗口(22)分别一一对应;The third metal layer (4) is provided with a seventh radiation window (30), an eighth radiation window (31), a ninth radiation window (32), a tenth radiation window (33), and an eleventh radiation window ( 34) and the twelfth radiation window (35), the seventh radiation window (30), the eighth radiation window (31), the ninth radiation window (32), the tenth radiation window (33) ), the eleventh radiation window (34) and the twelfth radiation window (35) and the first radiation window (17), the second radiation window (18), the third radiation window (19), the fourth radiation window (20), the fifth radiation window (21), and the sixth radiation window (22) are in one-to-one correspondence; 所述第二介质层(5)上贯穿有多个第二导体柱(9),所述多个第二导体柱(9)与所述第三金属层(4)、所述第四金属层(6)形成第三阶谐振腔(R3)和第四阶谐振腔(R4),所述第三阶谐振腔(R3)与所述第二阶谐振腔(R2)相对应,所述第四阶谐振腔(R4)与所述第五阶谐振腔(R5)相对应,所述第三阶谐振腔(R3)和所述第四阶谐振腔(R4)之间设置有第二耦合窗口(24);A plurality of second conductor pillars (9) penetrate through the second dielectric layer (5), the plurality of second conductor pillars (9) and the third metal layer (4) and the fourth metal layer (6) forming a third-order resonant cavity (R3) and a fourth-order resonant cavity (R4), the third-order resonant cavity (R3) corresponds to the second-order resonant cavity (R2), and the fourth-order resonant cavity (R3) corresponds to the second-order resonant cavity (R2). The first-order resonant cavity (R4) corresponds to the fifth-order resonant cavity (R5), and a second coupling window ( twenty four); 所述第四金属层(6)接地。The fourth metal layer (6) is grounded. 2.根据权利要求1所述的玻璃基宽阻带微波双工器,其特征在于,所述第一金属层(1)的侧壁上开设有第一凹槽(12)、第二凹槽(14)和第三凹槽(16),其中,2 . The glass-based wide stop-band microwave duplexer according to claim 1 , wherein a first groove ( 12 ) and a second groove are formed on the side wall of the first metal layer ( 1 ). 3 . (14) and the third groove (16), wherein, 所述输入端口(11)设置在所述第一凹槽(12)中,所述第一输出端口(13)设置在所述第二凹槽(14)中,所述第二输出端口(15)位于所述第三凹槽(16)中。The input port (11) is arranged in the first groove (12), the first output port (13) is arranged in the second groove (14), and the second output port (15) ) is located in the third groove (16). 3.根据权利要求1所述的玻璃基宽阻带微波双工器,其特征在于,3. glass-based wide stopband microwave duplexer according to claim 1, is characterized in that, 所述第一阶谐振腔(R1)的谐振模式为TE103和TE301The resonance modes of the first-order resonant cavity (R1) are TE 103 and TE 301 ; 所述第二阶谐振腔(R2)、所述第三阶谐振腔(R3)、所述第四阶谐振腔(R4)、所述第五阶谐振腔(R5)、所述第七阶谐振腔(R7)和所述第八阶谐振腔(R8)的谐振模式为TE101The second-order resonant cavity (R2), the third-order resonant cavity (R3), the fourth-order resonant cavity (R4), the fifth-order resonant cavity (R5), and the seventh-order resonator The resonant mode of the cavity (R7) and the eighth-order resonant cavity (R8) is TE 101 ; 所述第六阶谐振腔(R6)的谐振模式为TE103The resonance mode of the sixth-order resonant cavity (R6) is TE 103 . 4.根据权利要求3所述的玻璃基宽阻带微波双工器,其特征在于,所述第一阶谐振腔(R1)中TE103谐振模式的谐振频率与所述第二阶谐振腔(R2)中TE101谐振模式的谐振频率相同。4. The glass-based wide stopband microwave duplexer according to claim 3, wherein the resonant frequency of the TE 103 resonant mode in the first-order resonant cavity (R1) is the same as that of the second-order resonant cavity (R1). The resonant frequencies of the TE 101 resonant modes in R2) are the same. 5.根据权利要求1所述的玻璃基宽阻带微波双工器,其特征在于,所述第一阶谐振腔(R1)、所述第二阶谐振腔(R2)、所述第三阶谐振腔(R3)、所述第四阶谐振腔(R4)、所述第五阶谐振腔(R5)、所述第七阶谐振腔(R7)和所述第八阶谐振腔(R8)均为长方形谐振腔体;5. The glass-based wide stop-band microwave duplexer according to claim 1, wherein the first-order resonant cavity (R1), the second-order resonant cavity (R2), and the third-order resonant cavity (R2) The resonant cavity (R3), the fourth-order resonant cavity (R4), the fifth-order resonant cavity (R5), the seventh-order resonant cavity (R7), and the eighth-order resonant cavity (R8) are all is a rectangular resonant cavity; 所述第六阶谐振腔(R6)由相互连通的第一部分(R61)、第二部分(R62)和第三部分(R63)形成,所述第一部分(R61)、所述第二部分(R62)和所述第三部分(R63)的形状均为矩形。The sixth-order resonant cavity (R6) is formed by a first part (R61), a second part (R62) and a third part (R63) that communicate with each other, the first part (R61), the second part (R62) ) and the third portion (R63) are both rectangular in shape. 6.根据权利要求5所述的玻璃基宽阻带微波双工器,其特征在于,所述第三部分(R63)、所述第一部分(R61)、所述第二部分(R62)的长度依次增大,所述第一部分(R61)、所述第二部分(R62)、所述第三部分(R63)的宽度依次增大。6. The glass-based wide stop-band microwave duplexer according to claim 5, wherein the length of the third part (R63), the first part (R61), and the second part (R62) The widths of the first portion (R61), the second portion (R62), and the third portion (R63) increase sequentially. 7.根据权利要求6所述的玻璃基宽阻带微波双工器,其特征在于,所述第一阶谐振腔(R1)的长度为5540μm,宽度为5272μm,所述第一阶谐振腔(R1)输入侧宽度为2038μm,所述第六阶谐振腔(R6)输入侧宽度为2300μm;7 . The glass-based wide stop-band microwave duplexer according to claim 6 , wherein the first-order resonant cavity ( R1 ) has a length of 5540 μm and a width of 5272 μm, and the first-order resonant cavity ( R1) The width of the input side is 2038 μm, and the width of the input side of the sixth-order resonant cavity (R6) is 2300 μm; 所述第二阶谐振腔(R2)的长度为2400μm,宽度为2378μm;The length of the second-order resonant cavity (R2) is 2400 μm and the width is 2378 μm; 所述第五阶谐振腔(R5)的长度为2400μm,宽度为2391μm;The fifth-order resonant cavity (R5) has a length of 2400 μm and a width of 2391 μm; 所述第一部分(R61)的长度为1620μm,宽度为5330μm;所述第二部分(R62)的长度为2450μm,宽度为5339μm;所述第三部分(R63)的长度为1470μm,宽度为5352μm;The first part (R61) has a length of 1620 μm and a width of 5330 μm; the second part (R62) has a length of 2450 μm and a width of 5339 μm; the third part (R63) has a length of 1470 μm and a width of 5352 μm; 所述第七阶谐振腔(R7)和所述第八阶谐振腔(R8)的长度均为1820μm,宽度w13为5900μm,所述第八阶谐振腔(R8)输出侧的宽度w15为2620μm;The length of the seventh-order resonant cavity (R7) and the eighth-order resonant cavity (R8) are both 1820 μm, the width w 13 is 5900 μm, and the width w 15 of the output side of the eighth-order resonant cavity ( R8 ) is 2620μm; 所述第三阶谐振腔(R3)和所述第四阶谐振腔(R4)的长度均为2400μm,宽度均为2415μm。The length of the third-order resonant cavity (R3) and the fourth-order resonant cavity (R4) are both 2400 μm and 2415 μm in width. 8.根据权利要求1所述的玻璃基宽阻带微波双工器,其特征在于,所述第一辐射窗口(17)设置在所述第三辐射窗口(19)和所述第四辐射窗口(20)之间,所述第二辐射窗口(18)设置在所述第五辐射窗口(21)和所述第六辐射窗口(22)之间。8. The glass-based wide stop-band microwave duplexer according to claim 1, wherein the first radiation window (17) is arranged in the third radiation window (19) and the fourth radiation window (20), the second radiation window (18) is arranged between the fifth radiation window (21) and the sixth radiation window (22). 9.根据权利要求1所述的玻璃基宽阻带微波双工器,其特征在于,所述第一辐射窗口(17)的形状为圆形,其直径为504μm;9 . The glass-based wide stop-band microwave duplexer according to claim 1 , wherein the shape of the first radiation window ( 17 ) is circular, and its diameter is 504 μm; 10 . 所述第二辐射窗口(18)的形状为圆形,其直径为484μm;The shape of the second radiation window (18) is circular, and its diameter is 484 μm; 所述第三辐射窗口(19)、所述第四辐射窗口(20)、所述第五辐射窗口(21)和所述第六辐射窗口(22)的形状均为矩形,其长度均为100μm,宽度均为300μm;The third radiation window (19), the fourth radiation window (20), the fifth radiation window (21) and the sixth radiation window (22) are all rectangular in shape, and their lengths are all 100 μm , the width is 300μm; 所述第三辐射窗口(19)与所述第四辐射窗口(20)之间的距离、所述第五辐射窗口(21)与所述第六辐射窗口(22)之间的距离均为2000μm。The distance between the third radiation window (19) and the fourth radiation window (20), and the distance between the fifth radiation window (21) and the sixth radiation window (22) are both 2000 μm . 10.根据权利要求1所述的玻璃基宽阻带微波双工器,其特征在于,还包括粘合层(10),所述粘合层(10)设置在所述键合层(7)和所述第三金属层(4)的周围且位于所述第二金属层(3)和所述第二介质层(5)之间。10 . The glass-based wide stop-band microwave duplexer according to claim 1 , further comprising an adhesive layer ( 10 ), and the adhesive layer ( 10 ) is arranged on the bonding layer ( 7 ). 11 . and around the third metal layer (4) and between the second metal layer (3) and the second dielectric layer (5).
CN202110561047.5A 2021-05-21 2021-05-21 Glass-based wide-stop-band microwave duplexer Active CN113471654B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110561047.5A CN113471654B (en) 2021-05-21 2021-05-21 Glass-based wide-stop-band microwave duplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110561047.5A CN113471654B (en) 2021-05-21 2021-05-21 Glass-based wide-stop-band microwave duplexer

Publications (2)

Publication Number Publication Date
CN113471654A CN113471654A (en) 2021-10-01
CN113471654B true CN113471654B (en) 2022-08-05

Family

ID=77871155

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110561047.5A Active CN113471654B (en) 2021-05-21 2021-05-21 Glass-based wide-stop-band microwave duplexer

Country Status (1)

Country Link
CN (1) CN113471654B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390784A (en) * 2013-07-22 2013-11-13 电子科技大学 Miniaturized substrate integration waveguide duplexer
KR101407727B1 (en) * 2013-09-05 2014-06-13 인천대학교 산학협력단 Compact low-loss filters with the stacked and SIW structure for satellite communications terminals
CN112271421A (en) * 2020-09-27 2021-01-26 西安电子科技大学 A glass-based high isolation three-dimensional duplexer

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI335101B (en) * 2007-06-27 2010-12-21 Ind Tech Res Inst Vertical coupling structure for non-adjacent resonators
CN109638397B (en) * 2018-11-05 2021-02-02 西安电子科技大学 Double-layer stacked microwave band-pass filter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103390784A (en) * 2013-07-22 2013-11-13 电子科技大学 Miniaturized substrate integration waveguide duplexer
KR101407727B1 (en) * 2013-09-05 2014-06-13 인천대학교 산학협력단 Compact low-loss filters with the stacked and SIW structure for satellite communications terminals
CN112271421A (en) * 2020-09-27 2021-01-26 西安电子科技大学 A glass-based high isolation three-dimensional duplexer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"8mm准椭圆函数基片集成波导双工组件的研究";黄崇维;《中国优秀硕士学位论文全文数据库信息科技辑》;20170215(第2期);第I135-759页 *

Also Published As

Publication number Publication date
CN113471654A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
CN110212274B (en) Balanced dual-mode bandpass filter based on dual-layer substrate integrated waveguide
CN109728389B (en) Double-layer stacked differential microwave wide-stop band-pass filter structure
JPH11284409A (en) Waveguide-type band pass filter
WO2020140556A1 (en) Millimeter wave ltcc filter
CN103413997B (en) Vertical interdigitated LTCC bandpass filter
CN112928408A (en) LTCC technology-based 5G communication frequency band-pass filter
CN114171876A (en) Ka-band wide-stop-band filtering power divider
CN109638397A (en) A kind of double stacked declines pass band filter
CN114156658B (en) Broadband transmission line
CN113471654B (en) Glass-based wide-stop-band microwave duplexer
WO2020140554A1 (en) Millimetre wave ltcc filter
CN113764850B (en) A grounded coplanar waveguide-rectangular waveguide filter transition structure
CN113471653B (en) A Glass-Based Broad Stop Band Microwave Filter
JP3845394B2 (en) High frequency module
CN112271421B (en) Glass-based high-isolation three-dimensional duplexer
JP3820234B2 (en) High frequency module
CN112310581A (en) 5G high-selectivity LTCC band-pass filter based on substrate integrated waveguide
CN109728390A (en) A double-layer stacked differential microwave bandpass filter
CN114171866B (en) Glass-based ultra-wide stop band microwave filter and duplexer
CN110380172B (en) Double-layer stacked differential dual-passband microwave band-pass filter
TWI744042B (en) Dielectric waveguide resonator and dielectric waveguide filter
CN110176660A (en) A kind of double stacked formula difference microwave band-pass filter based on higher mode
CN113471650A (en) Glass-based millimeter wave interdigital microstrip filter and duplexer structure
CN202159756U (en) Quasi-elliptic function type planar integrated waveguide band-pass filter
CN117117445A (en) Silicon-based ultra-wide passband/double passband adjustable microwave filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant