CN113470980A - 一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料及其制备方法和应用 - Google Patents
一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料及其制备方法和应用 Download PDFInfo
- Publication number
- CN113470980A CN113470980A CN202010237080.8A CN202010237080A CN113470980A CN 113470980 A CN113470980 A CN 113470980A CN 202010237080 A CN202010237080 A CN 202010237080A CN 113470980 A CN113470980 A CN 113470980A
- Authority
- CN
- China
- Prior art keywords
- electrode material
- nickel
- reaction
- performance
- nanorod array
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000007772 electrode material Substances 0.000 title claims abstract description 44
- 239000002073 nanorod Substances 0.000 title claims abstract description 29
- -1 nickel sulfide-nickel disulfide Chemical compound 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims abstract description 24
- 238000000034 method Methods 0.000 claims abstract description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 64
- 229910052759 nickel Inorganic materials 0.000 claims description 24
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 14
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 12
- 239000006260 foam Substances 0.000 claims description 8
- 230000035484 reaction time Effects 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 claims description 6
- 238000011065 in-situ storage Methods 0.000 claims description 5
- 238000001027 hydrothermal synthesis Methods 0.000 claims description 4
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 4
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 4
- 239000000463 material Substances 0.000 claims description 2
- 229910052717 sulfur Inorganic materials 0.000 claims 2
- 239000011593 sulfur Substances 0.000 claims 2
- 238000009776 industrial production Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 abstract description 2
- 239000004094 surface-active agent Substances 0.000 abstract description 2
- 230000001988 toxicity Effects 0.000 abstract description 2
- 231100000419 toxicity Toxicity 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000002484 cyclic voltammetry Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- YGHCWPXPAHSSNA-UHFFFAOYSA-N nickel subsulfide Chemical compound [Ni].[Ni]=S.[Ni]=S YGHCWPXPAHSSNA-UHFFFAOYSA-N 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000000634 powder X-ray diffraction Methods 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 229910021503 Cobalt(II) hydroxide Inorganic materials 0.000 description 1
- 229910005809 NiMoO4 Inorganic materials 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 238000007600 charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012983 electrochemical energy storage Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000003760 magnetic stirring Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 238000004729 solvothermal method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000004763 sulfides Chemical class 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003623 transition metal compounds Chemical class 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
本发明公开一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料及其制备方法和应用,采用一步溶剂热法在泡沫镍表面原位生成NiS/Ni3S2纳米棒异质结构电极材料,具有优异的电化学性能,其最大比容量为230.3mAh g‑1。在其制备过程中,原材料廉价易得,反应条件温和、时间短、成本低、低毒,并且无模板和无表面活性剂,更易应用于工业生产。
Description
技术领域
本发明涉及一种高性能NiS/Ni3S2纳米棒阵列超级电容器电极材料及其制备方法,属于复合新材料技术领域,主要应用于电化学电容器的电极材料。
技术背景
超级电容器是一种新型储能装置。相较于锂离子电池,超级电容器具有功率密度高、稳定性好、倍率性能好、寿命长等优点。因此它在移动通讯,电动交通工具,航空航天等电化学储能领域具有很大的潜在应用价值。在储能方面和锂离子电池形成优势互补,是近年来研究的一个热点领域。Co、Ni、Zn、Cu、Mg等具有法拉第电容行为的过渡金属硫化物和双金属硫化物由于具有较高的能量密度、较好的循环寿命,且价格低廉、制备工艺简单,现已经成为超级电容器电极材料的研究热点。而其复合电极材料更是达成两种电极材料之间性能的互补,复合材料结构单元可有不同的组分组合而成,材料间由于多种界面的引入和存在,更有利于实现1+1>2的优化效果。近年来随着对镍基电极材料的深入研究,其与过渡金属化合物结合形成的复合材料也倍受关注,大多数研究为Ni3S2/Co(OH)2、NiCo2S4/CuO、NiO/NiMoO4等复合电极材料。
发明内容
本发明的目的在于克服现有技术的不足,提供一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料及其制备方法,并将其应用于电化学电容器的电极材料。
本发明的技术目的通过下述技术方案予以实现。
一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料及其制备方法,以泡沫镍为镍源,硫粉为硫源,采用一步溶剂热法在泡沫镍表面原位生成NiS/Ni3S2纳米棒结构电极材料。
将硫粉均匀分散在无水乙二胺中,再加入无水乙醇,分散均匀以形成反应溶液;将泡沫镍置于所述反应溶液中进行反应,以在泡沫镍表面原位生成NiS/Ni3S2纳米棒结构电极材料。
而且,采用聚四氟乙烯反应釜为水热反应容器,体积为100—200mL。
而且,反应的气氛为空气、温度为140—180摄氏度,反应时间为4—8小时。
而且,反应的气氛为空气、温度为160—180摄氏度,反应时间为6—8小时。
而且,在使用之前,对泡沫镍进行处理,以去除油污,促进反应,泡沫镍的大小为3cm×2cm×1.5mm。
而且,硫粉和无水乙二胺的质量比为1:(50—200),优选1:(100—200)。
而且,无水乙二胺和无水乙醇的体积比为1:1。
本发明的技术方案采用一步溶剂热法在泡沫镍表面原位生成NiS/Ni3S2纳米棒异质结构电极材料,具有优异的电化学性能,其最大比容量为230.3mAh g-1。在其制备过程中,原材料廉价易得,反应条件温和、时间短、成本低、低毒,并且无模板和无表面活性剂,更易应用于工业生产。
附图说明
图1为本发明制备的NiS/Ni3S2电极材料的SEM照片。
图2为本发明制备的NiS/Ni3S2电极材料的XRD图。
图3为本发明制备的NiS/Ni3S2电极材料应用于超级电容器的循环伏安性能测试曲线图。
图4为本发明制备的NiS/Ni3S2电极材料应用于超级电容器的倍率性能测试曲线图。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
将4mmoL S粉溶解至16mL无水乙二胺中,形成均匀的溶液A,然后将16mL无水乙醇的混合均匀溶液加到溶液A中后,用磁力搅拌充分搅拌形成均匀的溶液B。最后将均匀的溶液B转移至100mL聚四氟乙烯反应釜中并加入已处理好的泡沫镍(3cm×2cm×1.5mm),在鼓风干燥箱中160℃反应6h制得异质材料NiS/Ni3S2。
实施例2
在实施例1的基础之上,调整反应温度为140摄氏度,反应时间为8小时。
实施例3
在实施例1的基础之上,调整反应温度为180摄氏度,反应时间为4小时。
对上述制备的NiS/Ni3S2纳米棒阵列电极材料(实施例1)进行表征。SEM如图1所示,可以明显看出泡沫镍表面原位生长纳米棒阵列,且在泡沫镍上生长的非常均匀,并具有坚固的结构。图2是电极材料的X射线粉末衍射(XRD)图。数据中在21.7°、31.4°、37.4°、44.3°、49.7°和54.9°对应的是Ni3S2(JCPDS No.44-1418)的特征峰,其对应的峰的晶面分别为(101)、(110)、(003)、(202)、(113)和(104)晶面;而在18.4°、30.4°、35.7°、40.5°、48.8°、57.4°和59.8°对应的是NiS(JCPDS No.86-2281)的特征峰其对应的峰的晶面分别为(110)、(101)、(021)、(211)、(131)、(330)和(012)晶面。值得注意的是,数据中除了Ni、NiS和Ni3S2的特征峰外,没有发现其他的衍射峰,这表明在本实验中,在泡沫镍上直接生长Ni3S2和NiS复合结构。以NiS/Ni3S2纳米棒阵列超级电容器电极材料为工作电极(1cm×1cm×1.5mm),Hg/HgO(1M KOH)为参比电极,活性炭(AC)为对电极构成三电极系统,在3M KOH电解液中,控制扫描速度为5~20mV s-1,测得循环伏安曲线如图3所示,可以看出NiS/Ni3S2电极材料在充放电过程中存在明显的氧化还原反应,电流密度随着扫速的增加而增加,且氧化峰向右偏移,还原峰向左偏移。不同扫速下循环伏安曲线非常相似,表明电极发生氧化还原反应过程速度控制步骤受动力学控制;控制电流密度为2~20mA cm-2,测得恒电流充放电曲线如图4所示,当电流密度为2mA cm-2时,电极材料的质量比容量高达230.3mAh g-1,当电流密度为20mA cm-2时,电极材料的质量比容量高达170.0mAh g-1,其倍率性能高达74.1%。
根据本发明内容进行工艺参数的调整,均可实现高性能NiS/Ni3S2纳米棒阵列电极材料的制备,经测试表现出与本发明基本一致的性能。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。
Claims (10)
1.一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料,其特征在于,以泡沫镍为镍源,硫粉为硫源,将硫粉均匀分散在无水乙二胺中,再加入无水乙醇,分散均匀以形成反应溶液;将泡沫镍置于所述反应溶液中进行水热反应,以在泡沫镍表面原位生成NiS/Ni3S2纳米棒结构电极材料;反应的气氛为空气、温度为140—180摄氏度,反应时间为4—8小时;硫粉和无水乙二胺的质量比为1:(50—200),无水乙二胺和无水乙醇的体积比为1:1。
2.根据权利要求1所述的一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料,其特征在于,反应的气氛为空气、温度为160—180摄氏度,反应时间为6—8小时。
3.根据权利要求1所述的一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料,其特征在于,硫粉和无水乙二胺的质量比为1:(100—200)。
4.根据权利要求1所述的一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料,其特征在于,采用聚四氟乙烯反应釜为水热反应容器,体积为100—200mL。
5.根据权利要求1所述的一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料,其特征在于,在使用之前,对泡沫镍进行处理,以去除油污,促进反应,泡沫镍的大小为3cm×2cm×1.5mm。
6.一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料的制备方法,其特征在于,以泡沫镍为镍源,硫粉为硫源,将硫粉均匀分散在无水乙二胺中,再加入无水乙醇,分散均匀以形成反应溶液;将泡沫镍置于所述反应溶液中进行水热反应,以在泡沫镍表面原位生成NiS/Ni3S2纳米棒结构电极材料;反应的气氛为空气、温度为140—180摄氏度,反应时间为4—8小时;硫粉和无水乙二胺的质量比为1:(50—200),无水乙二胺和无水乙醇的体积比为1:1。
7.根据权利要求6所述的一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料的制备方法,其特征在于,反应的气氛为空气、温度为160—180摄氏度,反应时间为6—8小时。
8.根据权利要求6所述的一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料的制备方法,其特征在于,硫粉和无水乙二胺的质量比为1:(100—200)。
9.根据权利要求6所述的一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料的制备方法,其特征在于,在使用之前,对泡沫镍进行处理,以去除油污,促进反应,泡沫镍的大小为3cm×2cm×1.5mm。
10.如权利要求1—5之一所述的一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料在电容器材料中的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010237080.8A CN113470980A (zh) | 2020-03-30 | 2020-03-30 | 一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010237080.8A CN113470980A (zh) | 2020-03-30 | 2020-03-30 | 一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料及其制备方法和应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN113470980A true CN113470980A (zh) | 2021-10-01 |
Family
ID=77865015
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010237080.8A Pending CN113470980A (zh) | 2020-03-30 | 2020-03-30 | 一种高性能硫化镍—二硫化三镍纳米棒阵列超级电容器电极材料及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113470980A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115385386A (zh) * | 2022-09-19 | 2022-11-25 | 哈尔滨工业大学 | 一种双金属硫化物/金属硫化物/泡沫镍异质结构材料的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2341601A (en) * | 1998-09-15 | 2000-03-22 | Nat Power Plc | Preparing reticulated copper or nickel sulfide |
CN109553076A (zh) * | 2019-01-04 | 2019-04-02 | 安阳师范学院 | 泡沫镍支撑的单晶二硒化三镍纳米线阵列及其制备方法 |
CN110880423A (zh) * | 2019-12-03 | 2020-03-13 | 武汉理工大学 | 一种自支撑NF@Co-Ni3S2@NiO纳米棒材料及其制备方法和应用 |
-
2020
- 2020-03-30 CN CN202010237080.8A patent/CN113470980A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2341601A (en) * | 1998-09-15 | 2000-03-22 | Nat Power Plc | Preparing reticulated copper or nickel sulfide |
CN109553076A (zh) * | 2019-01-04 | 2019-04-02 | 安阳师范学院 | 泡沫镍支撑的单晶二硒化三镍纳米线阵列及其制备方法 |
CN110880423A (zh) * | 2019-12-03 | 2020-03-13 | 武汉理工大学 | 一种自支撑NF@Co-Ni3S2@NiO纳米棒材料及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
FANGSHUAI CHEN等: "High-performance all-solid-state asymmetric supercapacitors based", 《MATERIALS TODAY ENERGY》 * |
WEI LI等: "Single-crystal β-NiS nanorod arrays with a hollow-structured Ni3S2 framework for supercapacitor applications", 《JOURNAL OF MATERIALS CHEMISTRY A》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115385386A (zh) * | 2022-09-19 | 2022-11-25 | 哈尔滨工业大学 | 一种双金属硫化物/金属硫化物/泡沫镍异质结构材料的制备方法 |
CN115385386B (zh) * | 2022-09-19 | 2023-12-08 | 哈尔滨工业大学 | 一种双金属硫化物/金属硫化物/泡沫镍异质结构材料的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liu et al. | Microwave synthesis of sodium nickel-cobalt phosphates as high-performance electrode materials for supercapacitors | |
Yue et al. | Effect of electronic structure modulation and layer spacing change of NiAl layered double hydroxide nanoflowers caused by cobalt doping on supercapacitor performance | |
CN109616331B (zh) | 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法 | |
Gan et al. | Flower-like NiCo2O4 from Ni-Co 1, 3, 5-benzenetricarboxylate metal organic framework tuned by graphene oxide for high-performance lithium storage | |
Hai et al. | Cr-doped (Co, Ni) 3S4/Co9S8/Ni3S2 nanowires/nanoparticles grown on Ni foam for hybrid supercapacitor | |
CN110808172B (zh) | 一种Fe-Co-S纳米片材料及其制备方法与应用 | |
CN109637825B (zh) | 一种硫化镍纳米片/碳量子点复合材料及其制备方法和应用 | |
CN110428976B (zh) | 一种Cu-Co-S-MOF纳米片的制备方法及其应用 | |
CN111689523B (zh) | 金属铬掺杂δ-MnO2纳米片的制备方法 | |
Jiao et al. | Vanadium-doped Co0. 85Se nanowire arrays with high areal capacitance for hybrid supercapacitor electrodes | |
Yi et al. | Co1-xS/Co3S4@ N, S-co-doped agaric-derived porous carbon composites for high-performance supercapacitors | |
CN113077999B (zh) | 一种无粘结剂CoFe LDH@Co8FeS8复合电极材料的制备方法 | |
CN105185606A (zh) | 一种新型碱式碳酸钴-掺氮石墨烯复合电极材料的制备方法 | |
CN113470983A (zh) | 一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用 | |
CN110304620A (zh) | 一种利用豆渣制成的氮掺杂多孔碳材料及其制备方法和应用 | |
Zhang et al. | High electrochemical performance of MnCo2O4. 5 nanoneedles/NiCo LDH nanosheets as advanced electrodes of supercapacitor | |
Li et al. | Nickel sulfide and cobalt-containing carbon nanoparticles formed from ZIF-67@ ZIF-8 as advanced electrode materials for high-performance asymmetric supercapacitors | |
Huo et al. | Honeycomb ZnO/N/C obtained from cornsilk and ZIF-8 dual induced method for long-life aqueous zinc-ion batteries | |
Xiong et al. | Rational design of multiple Prussian-blue analogues/NF composites for high-performance surpercapacitors | |
Chen et al. | Unique hollow-concave CoMoSx boxes with abundant mesoporous structure for high-performance hybrid supercapacitors | |
Guo et al. | High-performance supercapacitors based on flower-like FexCo3-xO4 electrodes | |
Zhao et al. | Phosphate ions functionalized spinel iron cobaltite derived from metal organic framework gel for high-performance asymmetric supercapacitors | |
Luo et al. | Preparation of NiMoO4 nanoarrays electrodes with optimized morphology and internal crystal water for efficient supercapacitors and water splitting | |
He et al. | MOF-derived carbon coated Cu 3 P with Ni doping as advanced supercapacitor electrode materials | |
Cai et al. | One-step solvothermal method to obtain flower-like NiCoMn Hydroxides for Super Capacitance Performance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20211001 |