CN113470983A - 一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用 - Google Patents

一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用 Download PDF

Info

Publication number
CN113470983A
CN113470983A CN202010238169.6A CN202010238169A CN113470983A CN 113470983 A CN113470983 A CN 113470983A CN 202010238169 A CN202010238169 A CN 202010238169A CN 113470983 A CN113470983 A CN 113470983A
Authority
CN
China
Prior art keywords
nickel
composite material
reaction
diselenide
selenide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010238169.6A
Other languages
English (en)
Inventor
陈亚楠
陈方帅
邓意达
胡文彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University
Original Assignee
Tianjin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University filed Critical Tianjin University
Priority to CN202010238169.6A priority Critical patent/CN113470983A/zh
Publication of CN113470983A publication Critical patent/CN113470983A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用,以泡沫镍为镍源,Se粉为硒源,采用一步溶剂热法在泡沫镍表面原位生成Ni3Se2/NiSe纳米棒复合结构电极材料,具有优异的电化学性能,其最大比容量为1068.0μAhcm‑2。本发明制备的过渡金属硒化物相较于普通所得具有更多的活性位点,在作为电极材料的应用中具有更好的电化学性能,原料廉价易得,工艺流程简单,有望实现工业化制备过渡金属硒化物。

Description

一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和 应用
技术领域
本发明属于复合新材料技术领域,更加具体地说,涉及一种Ni3Se2/NiSe纳米棒复合正极材料及其制备方法,主要应用于超级电容器的正极材料。
技术背景
超级电容器是指介于传统电容器和充电电池之间的一种新型储能装置,它既具有电容器快速充放电的特性,同时又具有电池的储能特性。相较于其他储能器件,突出优点是功率密度高、充放电时间短、循环寿命长、工作温度范围宽,是世界上已投入量产的电容器中容量最大的一种。因此它在移动通讯,电动交通工具,航空航天等电化学储能领域具有很大的潜在应用价值。作为超级电容器的核心,电极材料的电化学性能对其储能性能起决定性的影响。金属基硫化物电极材料凭借材料来源丰富、低成本、高理论比容量和高导电性等优点成为有潜力的超级电容器电极材料。而其复合电极材料更是达成两种电极材料之间性能的互补,复合材料结构单元可有不同的组分组合而成,材料间由于多种界面的引入和存在,更有利于实现1+1>2的优化效果。近年来随着对镍基电极材料的深入研究,其与过渡金属化合物结合形成的复合材料也倍受关注,大多数研究为Ni3S2/CoS、NiS/Ni3S2、NiS/NiMoO4等复合电极材料,但对Ni3Se2/NiSe纳米棒复合结构却鲜有涉及。
发明内容
本发明的目的在于克服现有技术的不足,提供一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用,将其应用于超级电容器的正极材料。
本发明的技术目的通过下述技术方案予以实现。
一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法,以泡沫镍为镍源,硒粉为硒源,采用一步溶剂热法在泡沫镍表面原位生成Ni3Se2/NiSe复合材料。
将硒粉均匀分散在无水乙二胺中,再加入无水乙醇,分散均匀以形成反应溶液;将泡沫镍置于所述反应溶液中进行反应,以在泡沫镍表面原位生成Ni3Se2/NiSe复合材料。
而且,采用聚四氟乙烯反应釜为水热反应容器,体积为100—200mL。
而且,无水乙二胺和无水乙醇的体积比为2:1。
而且,在使用之前,对泡沫镍进行处理,以去除油污,促进反应,泡沫镍的大小为3cm×2cm×1.5mm。
而且,反应的气氛为空气、温度为160—190摄氏度,反应时间为8—12小时。
而且,反应的气氛为空气、温度为160—180摄氏度,反应时间为10—12小时。
而且,Se粉和无水乙二胺的质量比为1:(100—500),优选1:(300—400)。
与现有技术相比,本发明的高性能Ni3Se2/NiSe复合超级电容器正极材料,属于新能源储存领域,以泡沫镍为镍源,Se粉为硒源,采用一步溶剂热法在泡沫镍表面原位生成Ni3Se2/NiSe纳米棒复合结构电极材料。基于Ni3Se2/NiSe的超级电容器材料组装的混合超级电容器具有优异的电化学性能,其最大比容量为1068.0μAh cm-2。本发明制备的过渡金属硒化物相较于普通所得具有更多的活性位点,在作为电极材料的应用中具有更好的电化学性能,原料廉价易得,工艺流程简单,有望实现工业化制备过渡金属硒化物。
附图说明
图1为本发明制备的Ni3Se2/NiSe电极材料的SEM照片。
图2为本发明制备的Ni3Se2/NiSe电极材料的XRD图。
图3为本发明制备的Ni3Se2/NiSe电极材料的TEM照片。
图4为本发明制备的Ni3Se2/NiSe电极材料应用于超级电容器的循环伏安性能测试和倍率性能测试结果曲线图。
具体实施方式
下面结合具体实施例进一步说明本发明的技术方案。
实施例1
将0.8mmoL Se粉溶解至20mL无水乙二胺中,形成均匀的溶液A,然后将10mL无水乙醇的混合均匀溶液加到溶液A中后,用磁力搅拌充分搅拌形成均匀的溶液B。最后将均匀的溶液B转移至100mL聚四氟乙烯反应釜中并加入已处理好的泡沫镍(3cm×2cm×1.5mm),在鼓风干燥箱中180℃反应10h制得复合材料Ni3Se2/NiSe。
实施例2
在实施例1的基础之上,调整反应温度为160摄氏度,时间为12小时。
实施例3
在实施例1的基础之上,调整反应温度为190摄氏度,时间为8小时。
下面以复合结构Ni3Se2/NiSe电极材料为例,对本发明制备的Ni3Se2/NiSe纳米棒复合结构电极材料(实施例1)进行表征。SEM图如图1所示,可以明显看出泡沫镍表面原位生长纳米棒,且在泡沫镍上生长的非常均匀,并具有坚固的结构。图2是电极材料的X射线粉末衍射(XRD)图。数据中在29.6°、29.9°、37.2°、47.7°和52.7°对应的是Ni3Se2(JCPDS No.85-0754)的特征峰,其对应的峰的晶面分别为(110)、(012)、(003)、(211)和(122)晶面;而在31.0°、34.0°、38.7°、48.0°、50.4°和55.1°对应的是NiSe(JCPDS No.18-0887)的特征峰其对应的峰的晶面分别为(300)、(021)、(211)、(410)、(401)和(300)晶面。而且数据中除了Ni、NiSe和Ni3Se2的特征峰外,没有发现其他的衍射峰,这表明在本实验中,在泡沫镍上直接生长Ni3Se2和NiSe复合结构。图3为复合材料的TEM图,可以看出复合材料是在纳米棒和纳米片复合形成的纳米棒。
以Ni3Se2/NiSe复合电极材料为工作电极(1cm×1cm×1.5mm),Hg/HgO(1M KOH)为参比电极,活性炭(AC)为对电极构成三电极系统,在3M KOH电解液中,控制扫描速度为2~20mV s-1,测得循环伏安曲线如图4中a所示,可以看出Ni3Se2/NiSe电极材料在充放电过程中存在明显的氧化还原反应,电流密度随着扫速的增加而增加,且氧化峰向右偏移,还原峰向左偏移。不同扫速下循环伏安曲线非常相似,表明电极发生氧化还原反应过程速度控制步骤受动力学控制;控制电流密度为2~50mA cm-2,测得恒电流充放电曲线如图4中b和c所示,当电流密度为2mA cm-2时,电极材料的质量比容量高达1068.0μAh cm-2,当电流密度为15mA cm-2时,电极材料的质量比容量高达792.0μAh cm-2,其容量保持率高达74.2%。
根据本发明内容进行工艺参数的调整,均可实现复合材料Ni3Se2/NiSe的制备,经测试表现出与本发明基本一致的性能。以上对本发明做了示例性的描述,应该说明的是,在不脱离本发明的核心的情况下,任何简单的变形、修改或者其他本领域技术人员能够不花费创造性劳动的等同替换均落入本发明的保护范围。

Claims (9)

1.一种硒化镍—二硒化三镍纳米棒复合材料,其特征在于,以泡沫镍为镍源,硒粉为硒源,将硒粉均匀分散在无水乙二胺中,再加入无水乙醇,分散均匀以形成反应溶液;将泡沫镍置于所述反应溶液中进行反应,以在泡沫镍表面原位生成Ni3Se2/NiSe复合材料;硒粉和无水乙二胺的质量比为1:(100—500),无水乙二胺和无水乙醇的体积比为2:1;反应的气氛为空气、温度为160—190摄氏度,反应时间为8—12小时。
2.根据权利要求1所述的一种硒化镍—二硒化三镍纳米棒复合材料,其特征在于,反应的气氛为空气、温度为160—180摄氏度,反应时间为10—12小时。
3.根据权利要求1所述的一种硒化镍—二硒化三镍纳米棒复合材料,其特征在于,硒粉和无水乙二胺的质量比为1:(300—400)。
4.根据权利要求1所述的一种硒化镍—二硒化三镍纳米棒复合材料,其特征在于,采用聚四氟乙烯反应釜为水热反应容器,体积为100—200mL;泡沫镍的大小为3cm×2cm×1.5mm。
5.一种硒化镍—二硒化三镍纳米棒复合材料的制备方法,其特征在于,以泡沫镍为镍源,硒粉为硒源,将硒粉均匀分散在无水乙二胺中,再加入无水乙醇,分散均匀以形成反应溶液;将泡沫镍置于所述反应溶液中进行反应,以在泡沫镍表面原位生成Ni3Se2/NiSe复合材料;硒粉和无水乙二胺的质量比为1:(100—500),无水乙二胺和无水乙醇的体积比为2:1;反应的气氛为空气、温度为160—190摄氏度,反应时间为8—12小时。
6.根据权利要求5所述的一种硒化镍—二硒化三镍纳米棒复合材料的制备方法,其特征在于,反应的气氛为空气、温度为160—180摄氏度,反应时间为10—12小时。
7.根据权利要求5所述的一种硒化镍—二硒化三镍纳米棒复合材料的制备方法,其特征在于,硒粉和无水乙二胺的质量比为1:(300—400)。
8.根据权利要求5所述的一种硒化镍—二硒化三镍纳米棒复合材料的制备方法,其特征在于,采用聚四氟乙烯反应釜为水热反应容器,体积为100—200mL;泡沫镍的大小为3cm×2cm×1.5mm。
9.如权利要求1—4之一所述的一种硒化镍—二硒化三镍纳米棒复合材料在超级电容器的正极材料中的应用。
CN202010238169.6A 2020-03-30 2020-03-30 一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用 Pending CN113470983A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010238169.6A CN113470983A (zh) 2020-03-30 2020-03-30 一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010238169.6A CN113470983A (zh) 2020-03-30 2020-03-30 一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113470983A true CN113470983A (zh) 2021-10-01

Family

ID=77865012

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010238169.6A Pending CN113470983A (zh) 2020-03-30 2020-03-30 一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113470983A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789535A (zh) * 2021-10-09 2021-12-14 华中科技大学 一种棒状钌颗粒/硒化物复合催化剂及其制备方法与应用
CN114724866A (zh) * 2022-03-11 2022-07-08 上海健康医学院 一种无粘接剂的钒掺杂硒化镍纳米阵列材料及其制备方法和应用
CN115458336A (zh) * 2022-09-20 2022-12-09 青岛科技大学 一种超级电容器正极材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158420A (zh) * 2016-08-11 2016-11-23 浙江大学 一种用于超级电容器的NiSe‑Ni3Se2多孔纳米球材料及其制备方法
WO2018015891A1 (en) * 2016-07-21 2018-01-25 Ecole Polytechnique Federale De Lausanne (Epfl) Nickel iron diselenide compound, process for the preparation thereof and its use as a catalyst for oxygen evolution reaction
CN107818873A (zh) * 2017-10-10 2018-03-20 安阳师范学院 蜂窝状硒化镍纳米片阵列电极材料及其制备方法
CN109553076A (zh) * 2019-01-04 2019-04-02 安阳师范学院 泡沫镍支撑的单晶二硒化三镍纳米线阵列及其制备方法
CN109904410A (zh) * 2019-01-22 2019-06-18 江苏理工学院 一种类石墨烯碳包覆硒化镍复合材料及其制备方法和应用
CN110581026A (zh) * 2019-09-03 2019-12-17 滨州学院 一种过渡金属硒化物/有序多孔石墨烯气凝胶复合电极材料及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018015891A1 (en) * 2016-07-21 2018-01-25 Ecole Polytechnique Federale De Lausanne (Epfl) Nickel iron diselenide compound, process for the preparation thereof and its use as a catalyst for oxygen evolution reaction
CN106158420A (zh) * 2016-08-11 2016-11-23 浙江大学 一种用于超级电容器的NiSe‑Ni3Se2多孔纳米球材料及其制备方法
CN107818873A (zh) * 2017-10-10 2018-03-20 安阳师范学院 蜂窝状硒化镍纳米片阵列电极材料及其制备方法
CN109553076A (zh) * 2019-01-04 2019-04-02 安阳师范学院 泡沫镍支撑的单晶二硒化三镍纳米线阵列及其制备方法
CN109904410A (zh) * 2019-01-22 2019-06-18 江苏理工学院 一种类石墨烯碳包覆硒化镍复合材料及其制备方法和应用
CN110581026A (zh) * 2019-09-03 2019-12-17 滨州学院 一种过渡金属硒化物/有序多孔石墨烯气凝胶复合电极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LI WEI等: "Single-crystal beta-NiS nanorod arrays with a hollow-structured Ni3S2 framework for supercapacitor applications", 《JOURNAL OF MATERIALS CHEMISTRY A》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113789535A (zh) * 2021-10-09 2021-12-14 华中科技大学 一种棒状钌颗粒/硒化物复合催化剂及其制备方法与应用
CN114724866A (zh) * 2022-03-11 2022-07-08 上海健康医学院 一种无粘接剂的钒掺杂硒化镍纳米阵列材料及其制备方法和应用
CN115458336A (zh) * 2022-09-20 2022-12-09 青岛科技大学 一种超级电容器正极材料的制备方法
CN115458336B (zh) * 2022-09-20 2024-03-12 青岛科技大学 一种超级电容器正极材料的制备方法

Similar Documents

Publication Publication Date Title
Fu et al. Origami and layered-shaped ZnNiFe-LDH synthesized on Cu (OH) 2 nanorods array to enhance the energy storage capability
Chen et al. Simple growth of mesoporous zinc cobaltite urchin-like microstructures towards high-performance electrochemical capacitors
CN113470983A (zh) 一种硒化镍—二硒化三镍纳米棒复合材料及其制备方法和应用
Sheng et al. Design and synthesis of dendritic Co 3 O 4@ Co 2 (CO 3)(OH) 2 nanoarrays on carbon cloth for high-performance supercapacitors
Ye et al. Co ions doped NiTe electrode material for asymmetric supercapacitor application
Gan et al. Flower-like NiCo2O4 from Ni-Co 1, 3, 5-benzenetricarboxylate metal organic framework tuned by graphene oxide for high-performance lithium storage
CN109616331B (zh) 一种核壳型的氢氧化镍纳米片/锰钴氧化物复合电极材料及其制备方法
Sanchez et al. Synthesis and application of NiMnO3-rGO nanocomposites as electrode materials for hybrid energy storage devices
Sun et al. One-step construction of 3D N/P-codoped hierarchically porous carbon framework in-situ armored Mn3O4 nanoparticles for high-performance flexible supercapacitors
Shi et al. 3D mesoporous hemp-activated carbon/Ni3S2 in preparation of a binder-free Ni foam for a high performance all-solid-state asymmetric supercapacitor
JP4798507B2 (ja) 単結晶LiMn2O4ナノワイヤーの製造方法及び単結晶LiMn2O4ナノワイヤーを用いたハイレートLiイオン電池
CN111540610A (zh) 一种用于超级电容器的电极材料及其制备方法和用途
Liu et al. Agglomerated nickel–cobalt layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric supercapacitor electrodes
Liu et al. 3D nanoflower-like MoS2 grown on wheat straw cellulose carbon for lithium-ion battery anode material
CN108428562B (zh) 一种三元钴镍钼氧化物在石墨烯上原位生长的复合材料及其两步合成法
Zha et al. Intimately coupled hybrid of carbon black/nickel cobaltite for supercapacitors with enhanced energy-storage properties and ultra-long cycle life
Jin et al. Large-scale production of Cu 3 P nanocrystals for ultrahigh-rate supercapacitor
Yang et al. Comparative analysis of Co9S8/S-doped rGO composites as high-performance electrodes via facile one-step anneal fabrication for supercapacitor application
Yu et al. Two for one: a biomass strategy for simultaneous synthesis of MnO2 microcubes and porous carbon microcubes for high performance asymmetric supercapacitors
Wang et al. Controllable synthesis of Co/Ni basic carbonate composite via regulating Co/Ni ratio with super rate performance for asymmetric solid-state supercapacitor
Zhao et al. A novel capacitive negative electrode material of Fe3N
Singhal et al. Recent developments in transition metal-based nanomaterials for supercapacitor applications
Xie et al. Freestanding needle flower structure CuCo2S4 on carbon cloth for flexible high energy supercapacitors with the gel electrolyte
CN109192938B (zh) 一种柔性材料及其制备方法与应用
Zhang et al. KOH-assisted aqueous synthesis of bimetallic metal-organic frameworks and their derived selenide composites for efficient lithium storage

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20211001