CN113463136B - 一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法 - Google Patents

一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法 Download PDF

Info

Publication number
CN113463136B
CN113463136B CN202110881140.4A CN202110881140A CN113463136B CN 113463136 B CN113463136 B CN 113463136B CN 202110881140 A CN202110881140 A CN 202110881140A CN 113463136 B CN113463136 B CN 113463136B
Authority
CN
China
Prior art keywords
molten salt
electrolysis
salt
solid oxide
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110881140.4A
Other languages
English (en)
Other versions
CN113463136A (zh
Inventor
许静茹
谢宏伟
李佳乐
蔡晨扬
余娟
张尧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN202110881140.4A priority Critical patent/CN113463136B/zh
Publication of CN113463136A publication Critical patent/CN113463136A/zh
Application granted granted Critical
Publication of CN113463136B publication Critical patent/CN113463136B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/26Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium
    • C25C3/28Electrolytic production, recovery or refining of metals by electrolysis of melts of titanium, zirconium, hafnium, tantalum or vanadium of titanium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/36Alloys obtained by cathodic reduction of all their ions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,属于固态氧化物阴极熔盐电化学法电解还原制备金属及合金技术领域。该方法是在电解过程中,以固态氧化物为阴极,石墨为阳极,采用混合盐为电解质,电解时,投入NH4Cl,直至电解完成;该方法能够调控固态氧化物阴极熔盐电解过程中石墨阳极气体中CO2在熔盐中的溶解量,降低其活度,减少副反应,提高电流效率,以促进该技术大规模应用。

Description

一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法
技术领域
本发明涉及固态氧化物阴极熔盐电化学法电解还原制备金属及合金技术领域,具体涉及一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法。
背景技术
将氧化物溶解在熔盐中,石墨做阳极,电解脱除氧制备金属或合金技术具有悠久的历史。例如,工业上电解氧化铝制备金属铝及铝合金、电解稀土氧化物制备稀土金属或合金等。但一些氧化物在熔盐中溶解度低,无法采用熔盐电解方法制备。例如,将二氧化钛在熔盐中溶解电解无法生产金属钛就是一个典型例子。因此,人们针对低成本、资源丰富的二氧化钛为原料开发了无需其在熔盐中溶解就能生产金属钛的FFC,OS,EMR及PRP等新技术[Direct Reduction Processes for Titanium Oxide in Molten Salt,JOM,2007,68-71],其中,以固态TiO2为阴极,石墨为阳极,在CaCl2及CaCl2基熔盐中直接电解制取Ti(FFC)工艺无污染、对环境友好,具有很好发展前景[UK.Pat,PCT/GB99/01781.1998-06-05.;Direct electrochemical reduction of titanium dioxide to titanium in moltencalcium chloride[J],Nature,2000,407:361-363.],被称为固态氧化物阴极直接电脱氧法,其电解过程为:
阴极:TiO2+4e=Ti+2O2-
石墨阳极:O2-+C=CO(g)+2e
2O2-+C=CO2(g)+4e;
但研究发现该方法几个关键问题需要解决:①加快电场作用下固态阴极片中解离出来的O2-离子溶解进入熔盐;②加快熔盐中的O2-离子迁移到阳极;③阻止或控制石墨阳极气体中CO2溶解在熔盐中的量,防止其在阴极上发生还原生成碳的副反应,以提高电流效率,提高电解速率。针对第①个问题,George Z.Chen等[Study on the reduction ofhighly porous TiO2 precursors and thin TiO2 layers by the FFC-Cambridgeprocess,J Mater Sci,2007,42:7494–7501]采用制备多孔阴极的方法增加阴极片与熔盐的接触面积,促进了解离出来的氧离子快速进入熔盐,电流效率最高40%。针对第②个问题,C.Schwandta等[Electrochimica Acta,2009,54(14):3819-3829]采用在熔盐中添加适量氧化钙,增加氧离子在熔盐中的浓度,降低了O2-离子在熔盐中传递电阻,加快了氧离子在熔盐中传递,电流效率41%。而针对第③个问题,至今束手无策,仅有Liwen Hu[ReducingCarbon Contamination by Controlling CO3 2-Formation During ElectrochemicalReduction of TiO2,Metallurgycal and Materials Transactions B,2021,52B:1061-1070.]讨论了在CaCl2熔盐中添加KCl改善熔盐与石墨阳极的润湿,减少O2-+CO2=CO3 2-可逆化学反应正向进行的量,但该方法并不能改变溶解在熔盐中碳酸根的活度,仍无法避免溶解的CO2在施加的电解电压达到熔盐中碳酸根活度对应分解电压时,分解成碳和氧离子CO3 2-+4e=C+3O2-,电流效率仅为51%,不利于阴极中氧离子的深度脱除。因此,现有技术对避免和降低石墨阳极气体中CO2溶解进入熔盐,并分解成碳和氧离子这个副反应,并没有行知有效的应对手段,导致①低电流效率;②阴极碳污染;③释放出的氧离子再次回到熔盐中吸收阳极气体中的CO2促进其溶解,如此周而复始,不利于阴极中氧离子的深度脱除,电流效率低(目前最高为51%),导致该技术无法大规模应用。
因此,固态二氧化钛在熔融CaCl2或CaCl2基熔盐中直接电解脱氧制备金属钛过程中,脱除熔盐中溶解的CO2,提高电流效率的技术目前还鲜有报道。
发明内容
针对现有技术存在的问题,本发明提供一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,用于调控固态氧化物阴极熔盐电解过程中石墨阳极气体中CO2在熔盐中的溶解量,降低其活度,减少副反应,提高电流效率,以促进该技术大规模应用。
本发明的一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,电解过程中,在阳极周围加入NH4Cl,降低熔盐中碳酸根溶解的量,降低其活度,减少副反应。
更具体的是,电解过程以固态氧化物为阴极,石墨为阳极,采用混合盐为电解质,电解时,投入NH4Cl,直至电解完成;
混合盐优选为CaCl2-CaO盐、SrCl2-SrO盐、CaCl2-CaO-MeClx盐或SrCl2-SrO-MeClx盐中的一种,其中,Me为K、Na、Sr中的一种或几种的混合,x为MeClx中Cl和Me的摩尔比。
进一步的,CaCl2-CaO盐中,按摩尔比,CaCl2:CaO=3:1。
SrCl2-SrO盐中,按摩尔比,SrCl2:SrO=3:1。
所述的CaCl2-CaO-MeClx盐中,按摩尔比,CaCl2:CaO=3:1,CaCl2和MeClx摩尔比为其最低共晶点比例。
所述的SrCl2-SrO-MeClx盐中,按摩尔比,SrCl2:SrO=3:1,SrCl2和MeClx摩尔比为其最低共晶点比例。
本发明的一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,包括以下步骤:
步骤1:
将固态氧化物制成阴极,将石墨棒制成阳极;
步骤2:
将混合盐,按比例称量混合后,烘干除水,作为熔盐电解的电解质,置于坩埚中,再放入反应器中;将阴极和阳极悬吊在电解质上方,封闭反应器,采用惰性气体排出反应器内空气,形成惰性气体氛围;
步骤3:
加热至电解质熔化成熔盐并稳定后,将阴极和阳极插入熔盐中,保持电极间距为10~20mm;并在阳极周围持续通入惰性气体,加热过程中产生的湿气被惰性气体带走,在阴极和阳极之间施加恒电压电解,其中,固态氧化物的电解电压<恒电压电解的电压<熔盐氯化物的分解电压;
步骤4:
恒电压电解1~2h后,向阳极周围的熔盐中间隔加入多次NH4Cl,直至电解结束,加入的NH4Cl的总量根据熔盐中加入的混合盐中的氧化物的总量计算;
步骤5:
电解结束后,阴极取出冷却,除盐,得到金属。
进一步的,在步骤1中,固态氧化物为包括氧化铝在内、以及所有比铝活泼性差的金属对应的氧化物,其中,优选为固态二氧化钛。
在步骤1中,将固态氧化物片体和阴极集流体连接,制成阴极;或将装有固态氧化物的不锈钢坩埚与阴极集流体连接,制成阴极。
进一步的,固态氧化物片体为压片成型后,高温烧结得到的固态氧化物片体。装有固态氧化物的不锈钢坩埚中的固态氧化物优选为压片后的固态氧化物。
所述的步骤1中,阴极集流体优选为不锈钢丝集流体,其直径优选为1.5~2.0mm;阳极集流体优选为不锈钢丝集流体,其直径优选为1.5~2.0mm。
所述的步骤1中,石墨棒的直径优选为10~15mm。
所述的步骤1中,固体氧化物的厚度优选为2~3mm。
所述的步骤2中,惰性气体优选为氩气或氮气中的一种。
所述的步骤3中,当电解质为CaCl2-CaO盐时,加热至电解质熔化成熔盐的温度优选为800~850℃;当电解质为SrCl2-SrO盐时,加热至电解质熔化成熔盐的温度优选为900~1000℃;当电解质为CaCl2-CaO-MeClx盐时,加热至电解质熔化成熔盐的温度优选为600~800℃。
所述的步骤3中,恒电压电解的电压优选为2.9~3.1V。
进一步的,惰性气体的流量优选为0.5~1mL/min。
所述的步骤4中,间隔加入多次NH4Cl的具体加入次数根据电解过程电流变化确定加入次数;
进一步的,电流以电解过程中第一次达到最低电流为标准,高于该电流时开始加入NH4Cl;通常以电解持续1.5~2h为优选起始加入时间点;
进一步的,每次间隔2h为优选计入时间间隔,每次加入NH4Cl的量为:根据和熔盐中加入的氧化物反应的化学计量比,计算获得的NH4Cl总量,除以加入次数得到的平均数量,首次加入的NH4Cl量为平均数的1.5~2倍,间隔加入NH4Cl的量为总量减去首次加入NH4Cl量的剩余量的平均数量;具体计算公式为:
按摩尔比,CaO或SrO:NH4Cl=1:2;根据CaO的量根据摩尔比计算NH4Cl的加入总质量,记为m
NH4Cl的首次加入质量m=(1.5~2)m/N;
剩余间隔加入NH4Cl的质量m=(m-m)/(N-1);
其中,m为NH4Cl的加入总质量;N为总加入次数;m为NH4Cl的首次加入质量;m为除首次后剩余间隔加入NH4Cl的质量。
所述的步骤4中,电解时间为10~12h。
所述的步骤5中,除盐采用加入稀盐酸进行超声振荡清洗去除阴极上的盐;或采用置于高温真空炉中熔化熔炼除盐,高温真空炉的温度为900~1000℃,时间为1~2h。
本发明的一种固态二氧化钛阴极熔盐电解过程中氧离子传输调控方法,其以CaCl2-CaO盐、或SrCl2-SrO盐或CaCl2-CaO-MeClx盐为电解质,固态二氧化钛作阴极,石墨棒作阳极,施加高于固态二氧化钛电解电压,并低于熔盐中氯化物分解的电压,电解还原固态二氧化钛,电解过程中,从反应器进气口通入氩气或氮气,出气口排出,始终保持高于大气压强的正压,涉及的化学反应为:阴极:TiO2+4e=Ti+2O2-;石墨阳极:2O2-+C-4e=CO2(g);溶解在熔盐中的CO2会发生O2-+CO2=CO3 2-,而通过本发明的方法,其在熔盐中(高温区)会发生CaO+2NH4Cl+CO3 2-=2NH3+CO2+CaCl2+H2O+O2-;在反应器低温区蒸气中组分会发生NH3+CO2+H2O=NH4HCO3反应。
这样既可以除去溶解在熔盐中的CO2,控制生成的碳酸根活度,减少副反应,提高电流效率高达60%以上,同时又产生NH4HCO3和NH3等无机肥料,成本低。
本发明的本质是通过电化学和化学法结合除去阴极固体氧化物中的氧,提高电流效率和电解速率。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
以下实施例中,采用的原料和设备除非特殊说明,均为市购,其纯度采用分析纯。
本发明采用的高密度石墨棒为市购,以下实施例中,高密度石墨棒的密度为1.85g/cm3
实施例1
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,包括以下步骤:
1、将2g TiO2粉体压成直径15mm厚3mm的片,800℃烧结1h增加强度后,中心打孔串在1.5mm直径不锈钢丝集流体,连接制成阴极,直径10±0.1mm高密度石墨棒与直径1.5±0.01mm 304不锈钢丝集流体连接制成阳极;
2、将除水后的分析纯氯化钙333g、氧化钙56g混匀,形成CaCl2-CaO盐;置于直径150±0.01mm氧化铝坩埚中,再将坩埚置于反应器中;将阴极和阳极悬吊在CaCl2-CaO盐表面,封闭反应器,通过反应器上盖的进气管和出气口向反应器中持续通入氩气,排出反应器内空气,在反应器内形成氩气气氛;
3、将CaCl2-CaO盐加热至800±5℃熔化,将阴极、阳极插入熔盐构成两电极体系,保持电极间距在15±5mm,并在阳极周围持续通入氩气,氩气流量0.5mL/min,加热过程中产生的湿气被氩气带走;在阴、阳两电极间施加3.0±0.1V电压电解,根据CaCl2-CaO盐中56g氧化钙的量,可算出氧化钙为1摩尔,根据化学计量比计算出氯化铵的量为2摩尔,由此可以算出可算出总共需加入113g氯化铵,恒电压电解2h后,首次加入35g氯化铵,之后每隔2h加入19.5g氯化铵,恒电压电解10h后停止电解,将阴极提离熔盐,在反应器上方冷却;
4、将取出的阴极片,在pH为3的稀盐酸中0.5kHZ超声波振荡清洗10分钟除去盐,真空烘干、分析氧含量,计算电流效率为65%。
实施例2
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤3的电解质熔化成熔盐的温度为850±5℃;
(2)电流效率为62%;
其他方式相同。
实施例3
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤3的恒电压电解2h,加入30g氯化铵,之后每隔2h加入16.6g氯化铵,恒电压电解12h停止电解;
(2)电流效率61%;
其他方式相同。
实施例4
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤1的固态氧化物为氧化铝,压片后直接放入不锈钢坩埚中;
(2)电解效率为60%;
其他方式相同。
实施例5
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤2为将除水后的分析纯氯化锶477g、氧化锶104g混匀,形成SrCl2-SrO盐;
(2)步骤3的电解质熔化成熔盐的温度为900±5℃;
(3)电解效率为65%;
其他方式相同。
实施例6
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤2将除水后的分析纯氯化钙333g、氧化钙56g、氯化钠282g混匀,形成CaCl2-CaO-NaCl盐;
(2)步骤3的电解质熔化成熔盐的温度为600±5℃;
(3)电解效率为63%;
其他方式相同。
实施例7
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤2为将除水后的分析纯氯化钙333g、氧化钙56g、氯化钾330g混匀,形成CaCl2-CaO-KCl盐;
(2)电解效率为63%;
其他方式相同。
实施例8
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤2为将除水后的分析纯氯化锶477g、氧化锶104g、氯化钠282g混匀,形成SrCl2-SrO-NaCl盐;
(2)步骤3的电解质熔化成熔盐的温度为900±5℃;
(3)电解效率为63%;
其他方式相同。
实施例9
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤2中通入的惰性气体为氮气;
(2)电解效率为65%
其他方式相同。
实施例10
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤4中将取出的阴极片,置于高温真空炉中熔化熔炼除盐,高温真空炉的温度为950℃,时间为1h去除熔盐,得到Ti。
(2)电解效率为67%;
其他方式相同。
实施例11
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤4中,恒电压电解1h后,首次加入35g氯化铵,之后每隔2h加入19.5g氯化铵恒电压电解10h后停止电解;
(2)电解效率为60%;
其他方式相同。
实施例12
一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,同实施例1,不同点在于:
(1)步骤1中2g TiO2、NiO混合物粉体(按摩尔比,TiO2:NiO=1:1);
(2)电解效率为67%;
(3)经过电解,得到的是TiNi合金。
其他方式相同。
对比例1
一种固态氧化物阴极熔盐电解的方法,同实施例1,不同之处在于:
在步骤4中,恒电压电解30min,再向阳极周围熔盐中加入NH4Cl,再每间隔两h加入NH4Cl,其他和实施例1相同。
采用该方法,其电流效率为50%,这是因为,在前期恒电压电解时间短,在熔盐体系中并没有形成足够多的二氧化碳,直接导致熔盐中氧化钙被电解,增加了氧离子迁移的阻力,因此,电流效率提高小。
对比例2
一种固态氧化物阴极熔盐电解的方法,同实施例1,不同之处在于:
步骤4中,恒电压电解2h后,一次性将所有NH4Cl加入阳极周围熔盐中,其他和实施例1相同。
采用该方法,其电流效率为45%,这是因为二氧化碳被消耗后,剩余的氯化铵将会导致熔盐中的氧化钙被电解,氧离子减少,氧离子传递速率变慢,因此,电流效率提高小。
对比例3
一种固态氧化物阴极熔盐电解的方法,同实施例1,不同之处在于:
步骤4中,间隔1h再加入NH4Cl,直至电解结束,其他和实施例1相同。
采用该方法,其电流效率为51%,这是因为氯化铵加入的时间处于电流的峰值和谷值中间,因此得到的电流效率也在平均值附近,因此,电流效率提高小。
对比例4
一种固态氧化物阴极熔盐电解的方法,同实施例1,不同之处在于:
步骤4中,间隔3h再加入NH4Cl,直至电解结束,其他和实施例1相同。
采用该方法,其电流效率为46%,这是因为二氧化碳含量过多,加入氯化铵后反应仍有剩余二氧化碳,导致碳酸钙含量达到分解,有碳析出,增加副反应,因此,电流效率提高小。

Claims (10)

1.一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,在电解过程中,向阳极周围加入NH4Cl;其中,NH4Cl间隔多次加入,间隔多次加入NH4Cl的具体加入次数根据电解过程电流变化确定加入次数;电流以电解过程中第一次达到最低电流为标准,高于该电流时开始加入NH4Cl;通常以电解持续1.5~2h为起始加入时间点。
2.根据权利要求1所述的固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,以固态氧化物为阴极,石墨为阳极,采用混合盐为电解质,电解时,向阳极周围加入NH4Cl,直至电解完成。
3.根据权利要求2所述的固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,混合盐为CaCl2-CaO盐、SrCl2-SrO盐、CaCl2-CaO-MeClx盐或SrCl2-SrO-MeClx盐中的一种,其中,Me为K、Na、Sr中的一种或几种的混合,x为MeClx中Cl和Me的摩尔比。
4.根据权利要求3所述的固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,CaCl2-CaO盐中,按摩尔比,CaCl2:CaO=3:1;SrCl2-SrO盐中,按摩尔比,SrCl2:SrO=3:1;CaCl2-CaO-MeClx盐中,按摩尔比,CaCl2:CaO=3:1,CaCl2和MeClx摩尔比为其最低共晶点比例;SrCl2-SrO-MeClx盐中,按摩尔比,SrCl2:SrO=3:1,SrCl2和MeClx摩尔比为其最低共晶点比例。
5.一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,包括以下步骤:
步骤1:
将固态氧化物制成阴极,将石墨棒制成阳极;
步骤2:
将混合盐,按比例称量混合后,烘干除水,作为熔盐电解的电解质,置于坩埚中,再放入反应器中;将阴极和阳极悬吊在电解质上方,封闭反应器,采用惰性气体排出反应器内空气,形成惰性气体氛围;
步骤3:
加热至电解质熔化成熔盐并稳定后,将阴极和阳极插入熔盐中,保持电极间距为10~20mm;并在阳极周围持续通入惰性气体,加热过程中产生的湿气被惰性气体带走,在阴极和阳极之间施加恒电压电解,其中,固态氧化物的电解电压<恒电压电解的电压<熔盐氯化物的分解电压;
步骤4:
恒电压电解1~2h后,向阳极周围的熔盐中间隔加入多次NH4Cl,直至电解结束,加入的NH4Cl的总量根据熔盐中加入的混合盐中的氧化物的总量计算;
步骤5:
电解结束后,阴极取出冷却,除盐,得到金属。
6.根据权利要求5所述的固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,在步骤1中,固态氧化物为包括氧化铝在内、以及所有比铝活泼性差的金属对应的氧化物中的一种或几种。
7.根据权利要求5所述的固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,所述的步骤3中,当电解质为CaCl2-CaO盐时,加热至电解质熔化成熔盐的温度为800~850℃;当电解质为SrCl2-SrO盐时,加热至电解质熔化成熔盐的温度为900~1000℃;当电解质为CaCl2-CaO-MeClx盐时,加热至电解质熔化成熔盐的温度为600~800℃。
8.根据权利要求5所述的固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,所述的步骤3中,恒电压电解的电压为2.9~3.1V,电解时间为10~12h。
9.根据权利要求5所述的固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,所述的步骤4中,间隔加入多次NH4Cl的具体加入次数根据电解过程电流变化确定加入次数;电流以电解过程中第一次达到最低电流为标准,高于该电流时开始加入NH4Cl;通常以电解持续1.5~2h为起始加入时间点。
10.根据权利要求9所述的固态氧化物阴极熔盐电解过程中氧离子传输调控方法,其特征在于,每次间隔2h为计入时间间隔,每次加入NH4Cl的量根据以下公式进行计算:
根据和熔盐中加入的氧化物反应的化学计量比,计算得到NH4Cl的加入总质量,记为m
NH4Cl的首次加入质量m=(1.5~2)m/N;
剩余间隔加入NH4Cl的质量m=( m-m)/(N-1);
其中,m为NH4Cl的加入总质量;N为总加入次数;m为NH4Cl的首次加入质量;m为除首次后剩余间隔加入NH4Cl的质量。
CN202110881140.4A 2021-08-02 2021-08-02 一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法 Active CN113463136B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110881140.4A CN113463136B (zh) 2021-08-02 2021-08-02 一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110881140.4A CN113463136B (zh) 2021-08-02 2021-08-02 一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法

Publications (2)

Publication Number Publication Date
CN113463136A CN113463136A (zh) 2021-10-01
CN113463136B true CN113463136B (zh) 2022-07-29

Family

ID=77883701

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110881140.4A Active CN113463136B (zh) 2021-08-02 2021-08-02 一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法

Country Status (1)

Country Link
CN (1) CN113463136B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1936085B (zh) * 2006-09-19 2010-04-14 东北大学 一种低温熔盐电解制备铝及铝合金的方法
CN107532320A (zh) * 2015-05-05 2018-01-02 艾绿卡资源有限公司 新型合成金红石产品及其生产方法
CN112030008B (zh) * 2020-07-13 2021-06-08 昆明理工大学 一种二氧化钛还原制备金属钛的方法
CN112981467B (zh) * 2021-02-04 2024-01-26 重庆大学 一种降低熔盐电解过程中碳污染的方法

Also Published As

Publication number Publication date
CN113463136A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
CN103451682B (zh) 一种含钛可溶阳极熔盐电解提取金属钛的方法
CN101368282B (zh) 下阴极稀土金属电解槽及采用该电解槽的电解工艺
JP4765066B2 (ja) シリコンの製造方法
CN101949038B (zh) 一种电解法制备碳氧钛复合阳极的方法
EP3461275A1 (en) Electrochemical method of ammonia generation
WO2019104809A1 (zh) 电解废弃硬质合金直接制备钨基合金粉末的方法
CN104561550A (zh) 一种冰晶石基熔盐中铝热还原钛铁矿制备Al-Ti-Fe合金的方法
CN113106496A (zh) 一种钒碳氧固溶体阳极熔盐电解高纯金属钒方法
CN100532653C (zh) 一种熔盐电解提取钛的方法
CN113832473B (zh) 一种联产金属/碳复合材料和氢气的熔盐电化学方法
JP4783310B2 (ja) 溶融塩電解法による白金族金属の回収・精製方法
CN113463136B (zh) 一种固态氧化物阴极熔盐电解过程中氧离子传输调控方法
KR101185836B1 (ko) 금속산화물로부터 금속을 제조하기 위한 전해환원공정
CN104711637B (zh) 一种从固体氧化铅中回收金属铅的方法
CN111924938B (zh) 一种去除卤水中钙离子并回收碳酸钙的电化学方法
CN112522741A (zh) 一种封闭式稀土氯化物体系电解槽
CN101302630B (zh) 固体氧化物电解槽制备金属的方法
CN112981467B (zh) 一种降低熔盐电解过程中碳污染的方法
CN114262905B (zh) 一种捕集co2的熔融碳酸盐电解液及其用途
CN115305512A (zh) 一种熔盐电解制备金属锆的方法
CN113046787A (zh) 用于废铅蓄电池铅膏三元体系湿法铅回收电解液、系统及方法
CN115305521A (zh) 一种熔盐电解制备金属铌的方法
US4595466A (en) Metal electrolysis using a low temperature bath
CN112921363B (zh) 一种钇镍储氢合金的制备方法
CN113136585B (zh) 一种原位合成碳化钨粉的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant