CN113444284A - 一种酸催化水解废弃pet塑料的方法 - Google Patents

一种酸催化水解废弃pet塑料的方法 Download PDF

Info

Publication number
CN113444284A
CN113444284A CN202110017561.2A CN202110017561A CN113444284A CN 113444284 A CN113444284 A CN 113444284A CN 202110017561 A CN202110017561 A CN 202110017561A CN 113444284 A CN113444284 A CN 113444284A
Authority
CN
China
Prior art keywords
pet plastic
acid
waste pet
waste
terephthalic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110017561.2A
Other languages
English (en)
Inventor
胡超权
杨伟胜
刘睿
李琳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Zhongkegetekang Technology Co ltd
Nanjing Green Manufacturing Industry Innovation Research Institute of Process Engineering of CAS
Original Assignee
Nanjing Zhongkegetekang Technology Co ltd
Nanjing Green Manufacturing Industry Innovation Research Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Zhongkegetekang Technology Co ltd, Nanjing Green Manufacturing Industry Innovation Research Institute of Process Engineering of CAS filed Critical Nanjing Zhongkegetekang Technology Co ltd
Priority to CN202110017561.2A priority Critical patent/CN113444284A/zh
Publication of CN113444284A publication Critical patent/CN113444284A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/18Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material
    • C08J11/22Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds
    • C08J11/26Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with organic material by treatment with organic oxygen-containing compounds containing carboxylic acid groups, their anhydrides or esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/76Separation; Purification; Use of additives, e.g. for stabilisation by physical treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/42Separation; Purification; Stabilisation; Use of additives
    • C07C51/43Separation; Purification; Stabilisation; Use of additives by change of the physical state, e.g. crystallisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

本发明公开了一种酸催化水解废弃PET塑料的方法,属于废弃物处理的技术领域。包括以下步骤:步骤一、将废弃PET塑料、对苯二甲酸和水加入到高温高压反应釜中,在加热搅拌的条件下进行酸催化水解,待反应结束后,冷却至室温,得到混合液;步骤二、将所述混合液过滤,得到滤液;将沉淀物洗涤数次、抽干、干燥,回收对苯二甲酸;步骤三、将步骤二获得的滤液通过精馏分离得到乙二醇和去离子水;步骤四、将回收的对苯二甲酸再次作为酸催化剂、步骤三得到的去离子水重复步骤一至步骤三,催化水解废弃PET塑料,直至达到预定循环使用次数。本发明以构建PET塑料的基本单元(对苯二甲酸)为催化剂,催化废弃PET塑料的水解,实现了废弃塑料的有效降解。

Description

一种酸催化水解废弃PET塑料的方法
技术领域
本发明属于废弃物处理的技术领域,特别是涉及一种酸催化水解废弃PET塑料的方法。
背景技术
PET作为重要的工程塑料,因具有高透光性和优异化学稳定性、阻隔性、力学性能等优点,广泛地应用于涤纶纤维、食品包装、薄膜片材、电子器件、机械设备等领域。近年来,随着国民经济水平不断地发展,我国PET消费量逐年攀升,预计到2023年我国PET塑料需求量将达到7000-7100万吨。PET塑料系列产品具有较短生命周期,巨大需求量背后,必将造成大量PET塑料废弃。如果这些废弃的PET塑料无法得到有效地处理,这将会对生态环境造成严重地破坏,同时也是资源的浪费。实现废弃PET塑料的回收利用,有助于延长PET塑料的生命周期,减少不可再生资源的消耗,杜绝塑料污染,保护生态环境。
目前废弃PET塑料的回收利用以物理回收为主,通过粉碎、加热熔融等工序进行循环利用,然而此过程受限于机械处理过程中因塑料的降解而造成的品质下降等问题。相较于物理法存在PET回收质量降级的问题,化学回收法可实现废弃PET的永久循环,更加符合当前对可持续发展的需求,更加具有优势和发展前景。通过水解法能够直接获得高纯度的对苯二甲酸和乙二醇单体,这些单体为聚合PET的基础原料。目前一般以强酸(硫酸、盐酸、硝酸),强碱(氢氧化钠、三甲基溴化铵)为催化剂,催化水解PET塑料。但是在生产过程中的大量酸碱废液对环境造成了巨大的压力,其影响程度不小于PET 聚酯瓶堆积造成的环境压力,且对设备存在明显的腐蚀效应。同时,水解反应所使用的酸碱难以回收利用,这将造成资源的浪费,增加生产成本。因此亟需开发一种简单、高效、绿色、可持续的废弃PET塑料水解新技术。
发明内容
针对以上现有技术存在的缺点,提出直接以构建PET的基本单元(对苯二甲酸)为酸催化剂,催化水解废弃PET塑料,其中对苯二甲酸可回收、重复使用,整个过程无废水的产生,绿色、环保。
本发明的技术方案如下:一种酸催化水解废弃PET塑料的方法,包括以下步骤:
步骤一、将废弃PET塑料、对苯二甲酸和水加入到高温高压反应釜中,在加热搅拌的条件下进行酸催化水解,待反应结束后,冷却至室温,得到混合液;
步骤二、将所述混合液过滤,得到滤液;将沉淀物洗涤数次、抽干、干燥,
回收对苯二甲酸;
步骤三、将步骤二获得的滤液通过精馏分离得到乙二醇和去离子水;
步骤四、将回收的对苯二甲酸再次作为酸催化剂、步骤三得到的去离子水重复步骤一至步骤三,催化水解废弃PET塑料,直至达到预定循环使用次数。
在进一步的实施例中,所述废弃PET塑料为PET塑料再生料,所述PET塑料再生料采用废弃的无色塑料瓶粉碎制备而成,其中,灰分含量为0.64%。
在进一步的实施例中,所述步骤一中的对苯二甲酸与水的质量比为1:(8~12)。
在进一步的实施例中,废弃PET塑料与水的质量比为1:(6~10)。
在进一步的实施例中,所述高温高压反应釜中的温度的170~220℃,反应时间为1~3小时。
在进一步的实施例中,所述步骤一中的搅拌速度为480~520rpm。
在进一步的实施例中,所述步骤四的催化水解的条件为:反应温度170~220℃,反应时间1~3h,对苯二甲酸浓度10%,废弃PET塑料与去离子水质量比为1:(6~10),搅拌速度为480~520rpm。
在进一步的实施例中,所述步骤四中的循环使用次数为5~7次。
与现有技术相比,本发明具有的优点包括:本发明以构建PET塑料的基本单元(对苯二甲酸)为催化剂,催化废弃PET塑料的水解,水解的过程中不需要添加其它化学试剂,则避免了产物分离纯化过程。水解PET所得对苯二甲酸和添加的对苯二甲酸催化剂因难溶于水以固体形式呈现,而另一降解产物乙二醇则溶于水相中,通过简单的过滤,便实现对苯二甲酸和乙二醇的分离。
此外,所得对苯二甲酸纯度较高,可重复使用,用于废弃PET塑料的催化水解。本发明与常规强酸、强碱催化水解方法相比具有工艺简单、低成本和绿色可持续等优点,具有很好的实用性。
附图说明
图1为实施例1的制备流程图。
具体实施方式
下面将结合附图和实施例,对本发明技术方案进行清楚、完整的描述。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
发明人经研究发现:目前废弃PET塑料的回收利用以物理回收为主,通过粉碎、加热熔融等工序进行循环利用,然而此过程受限于机械处理过程中因塑料的降解而造成的品质下降等问题。相较于物理法存在PET回收质量降级的问题,化学回收法可实现废弃PET的永久循环,更加符合当前对可持续发展的需求,更加具有优势和发展前景。通过水解法能够直接获得高纯度的对苯二甲酸和乙二醇单体,这些单体为聚合PET的基础原料。目前一般以强酸(硫酸、盐酸、硝酸),强碱(氢氧化钠、三甲基溴化铵)为催化剂,催化水解PET塑料。但是在生产过程中的大量酸碱废液对环境造成了巨大的压力,其影响程度不小于PET 聚酯瓶堆积造成的环境压力,且对设备存在明显的腐蚀效应。同时,水解反应所使用的酸碱难以回收利用,这将造成资源的浪费,增加生产成本。
因此发明人提出直接以构建PET的基本单元(对苯二甲酸)为酸催化剂,催化水解废弃PET塑料,其中对苯二甲酸可回收、重复使用,整个过程无废水的产生,绿色、环保。
一种酸催化水解废弃PET塑料的方法,包括以下步骤:
步骤一、将废弃PET塑料、对苯二甲酸和水加入到高温高压反应釜中,在加热搅拌的条件下进行酸催化水解,待反应结束后,冷却至室温,得到混合液;
步骤二、将所述混合液过滤,得到滤液;将沉淀物洗涤数次、抽干、干燥,
回收对苯二甲酸;
步骤三、将步骤二获得的滤液通过精馏分离得到乙二醇和去离子水;
步骤四、将回收的对苯二甲酸再次作为酸催化剂、步骤三得到的去离子水重复步骤一至步骤三,催化水解废弃PET塑料,直至达到预定循环使用次数。
在进一步的实施例中,所述废弃PET塑料为PET塑料再生料,所述PET塑料再生料采用废弃的无色塑料瓶粉碎制备而成,其中,灰分含量为0.64%。
在进一步的实施例中,所述步骤一中的对苯二甲酸与水的质量比为1:(8~12)。
在进一步的实施例中,废弃PET塑料与水的质量比为1:(6~10),例如1:6、1:7、1:8、1:9;
在进一步的实施例中,所述高温高压反应釜中的温度的170~220℃(例如170℃、180℃、191℃、203℃、210℃),反应时间为1~3小时(可以是1小时、1.5小时、2小时、2.8小时或小时)。
在进一步的实施例中,所述步骤一中的搅拌速度为480~520rpm,例如480 rpm、490rpm、500 rpm、510 rpm或者520 rpm。
在进一步的实施例中,所述步骤四的催化水解的条件为:反应温度170~220℃(可以是170℃、175℃、182℃、190℃、205℃或者210℃),反应时间1~3h(可以是1小时、1.5小时、2小时、2.8小时或小时),对苯二甲酸浓度10%,废弃PET塑料与去离子水质量比为1:(6~10),搅拌速度为500rpm。
在进一步的实施例中,所述步骤四中的循环使用次数为5~7次;例如5次、6次或者7次。
实施例1
称取2.5g再生PET塑料,2g对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,在170℃下反应3h,反应时间包括升温过程。反应结束后,将反应釜置于冰水浴中冷却至室温,随后通过G4砂芯漏斗过滤,洗涤,干燥得对苯二甲酸固体粉末。滤液通过精馏分离得乙二醇和去离子水。
实施例2
本实施例与实施例1的不同之处在于:称取2.5g再生PET塑料,2g对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,在180℃下反应3h,反应时间包括升温过程。
其他步骤均与实施例1相同。
实施例3
本实施例与实施例1的不同之处在于:称取2.5g再生PET塑料,2g对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,在190℃下反应3h,反应时间包括升温过程。
其他步骤均与实施例1相同。
实施例4
本实施例与实施例1的不同之处在于:称取2.5g再生PET塑料,2g对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,在200℃下反应3h,反应时间包括升温过程。
其他步骤均与实施例1相同。
实施例5
本实施例与实施例1的不同之处在于:称取2.5g再生PET塑料,2g对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,在210℃下反应3h,反应时间包括升温过程。
其他步骤均与实施例1相同。
实施例6
本实施例与实施例1的不同之处在于:称取2.5g再生PET塑料,2g对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,在210℃下反应3h,反应时间包括升温过程。
其他步骤均与实施例1相同。
实施例1至实施例6过滤得到的滤液通过精馏分离得乙二醇和去离子水所得解聚结果见表1。
表1反应温度对解聚度的影响
Figure DEST_PATH_IMAGE002
实施例7
称取2.5g再生PET塑料,2g 对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,于220℃下反应60min。反应结束后,将反应釜置于冰水浴中冷却至室温,随后通过G4砂芯漏斗过滤,洗涤,干燥得对苯二甲酸。滤液通过精馏分离得乙二醇和去离子水。
实施例8
实施例与实施例7的不同之处在于:称取2.5g再生PET塑料,2g 对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,于220℃下反应90min。
其他步骤均与实施例7相同。
实施例9
实施例与实施例7的不同之处在于:称取2.5g再生PET塑料,2g 对苯二甲酸,20g水加入120mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,于220℃下反应120min。
其他步骤均与实施例7相同。
实施例10
实施例与实施例7的不同之处在于:称取2.5g再生PET塑料,2g 对苯二甲酸,20g水加入150mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,于220℃下反应150min。
其他步骤均与实施例7相同。
实施例11
实施例与实施例7的不同之处在于:称取2.5g再生PET塑料,2g 对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,于220℃下反应180min。
其他步骤均与实施例7相同。
实施例12
实施例与实施例7的不同之处在于:称取2.5g再生PET塑料,2g 对苯二甲酸,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,于220℃下反应210min。
其他步骤均与实施例7相同。
实施例7至实施例12过滤得到的滤液通过精馏分离得乙二醇和去离子水所得解聚结果见表2。
表2反应时间对解聚度的影响
Figure DEST_PATH_IMAGE004
实施例13
对苯二甲酸的循环利用过程:称取2g实施例2中反应3h所得对苯二甲酸,2.5g再生PET塑料,20g水加入100mL配有电磁搅拌器、热电偶、程序控温的高温高压反应釜中,于220℃下反应3h。反应结束后,将反应釜置于冰水浴中冷却至室温,随后通过G4砂芯漏斗过滤,洗涤,干燥得对苯二甲酸。滤液通过精馏分离得乙二醇和去离子水。重复上述过程5次,具体解聚结果见表3。由表3结果可知,在对苯二甲酸循环使用6次过程中,废弃PET塑料的降解效率保持稳定。
表3对苯二甲酸循环利用次数对解聚度的影响
循环次数 PET转化率(%) 对苯二甲酸得率(%) 对苯二甲酸纯度(%)
0 100.0 95.5 99.0
1 100.0 94.8 99.0
2 100.0 93.3 99.0
3 100.0 94.3 99.0
4 100.0 95.3 99.0
5 100.0 94.3 99.0
6 100.0 95.6 99.0
综上所述,本实施例以构建PET塑料的基本单元(对苯二甲酸)为催化剂,催化废弃PET塑料的水解,实现了废弃塑料的有效降解。此外,所得对苯二甲酸纯度较高,可重复使用。
对苯二甲酸的量会不断的增加,意图在于,整个降解工艺在首次催化中需要添加新鲜的对苯二甲酸,后续的过程中可以不断的用我们降解获得的对苯二甲酸去催化废弃PET的降解而不需要添加新鲜的对苯二甲酸,是可以一直循环下去的,从而降低整个生产成本。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

1.一种酸催化水解废弃PET塑料的方法,其特征在于,包括以下步骤:
步骤一、将废弃PET塑料、对苯二甲酸和水加入到高温高压反应釜中,在加热搅拌的条件下进行酸催化水解,待反应结束后,冷却至室温,得到混合液;
步骤二、将所述混合液过滤,得到滤液;将沉淀物洗涤数次、抽干、干燥,
回收对苯二甲酸;
步骤三、将步骤二获得的滤液通过精馏分离得到乙二醇和去离子水;
步骤四、将回收的对苯二甲酸再次作为酸催化剂、步骤三得到的去离子水重复步骤一至步骤三,催化水解废弃PET塑料,直至达到预定循环使用次数。
2.根据权利要求1所述的一种酸催化水解废弃PET塑料的方法,其特征在于,所述废弃PET塑料为PET塑料再生料,所述PET塑料再生料采用废弃的无色塑料瓶粉碎制备而成。
3.根据权利要求1所述的一种酸催化水解废弃PET塑料的方法,其特征在于,所述步骤一中的对苯二甲酸与水的质量比为1:(8~12)。
4.根据权利要求1所述的一种酸催化水解废弃PET塑料的方法,其特征在于,废弃PET塑料与水的质量比为1:(6~10)。
5.根据权利要求1所述的一种酸催化水解废弃PET塑料的方法,其特征在于,所述高温高压反应釜中的温度的170~220℃,反应时间为1~3小时。
6.根据权利要求1所述的一种酸催化水解废弃PET塑料的方法,其特征在于,所述步骤一中的搅拌速度为480~520rpm。
7.根据权利要求1所述的一种酸催化水解废弃PET塑料的方法,其特征在于,所述步骤四的催化水解的条件为:反应温度170~220℃,反应时间1~3h,对苯二甲酸浓度10%,废弃PET塑料与去离子水质量比为1:(6~10),搅拌速度为480~520rpm。
8.根据权利要求1所述的一种酸催化水解废弃PET塑料的方法,其特征在于,所述步骤四中的循环使用次数为5~7次。
CN202110017561.2A 2021-01-07 2021-01-07 一种酸催化水解废弃pet塑料的方法 Pending CN113444284A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110017561.2A CN113444284A (zh) 2021-01-07 2021-01-07 一种酸催化水解废弃pet塑料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110017561.2A CN113444284A (zh) 2021-01-07 2021-01-07 一种酸催化水解废弃pet塑料的方法

Publications (1)

Publication Number Publication Date
CN113444284A true CN113444284A (zh) 2021-09-28

Family

ID=77808781

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110017561.2A Pending CN113444284A (zh) 2021-01-07 2021-01-07 一种酸催化水解废弃pet塑料的方法

Country Status (1)

Country Link
CN (1) CN113444284A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050004390A1 (en) * 2001-10-16 2005-01-06 Takuo Nakao Method for recycling pet bottle
US20080097120A1 (en) * 2004-08-25 2008-04-24 Braskem S.A Process for Chemical Recycling of Post Consumption Poly(Ethylene Terephthalate) and Equipment for Chemical Recycling of Post Consumption Poly(Ethylene Terephthalate)
CN108047023A (zh) * 2017-11-10 2018-05-18 长春工业大学 一种由废旧pet降解制备对苯二甲酸的方法
CN108863755A (zh) * 2018-07-26 2018-11-23 长春工业大学 由水热法降解pet制备对苯二甲酸和乙二醇水溶液的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050004390A1 (en) * 2001-10-16 2005-01-06 Takuo Nakao Method for recycling pet bottle
US20080097120A1 (en) * 2004-08-25 2008-04-24 Braskem S.A Process for Chemical Recycling of Post Consumption Poly(Ethylene Terephthalate) and Equipment for Chemical Recycling of Post Consumption Poly(Ethylene Terephthalate)
CN108047023A (zh) * 2017-11-10 2018-05-18 长春工业大学 一种由废旧pet降解制备对苯二甲酸的方法
CN108863755A (zh) * 2018-07-26 2018-11-23 长春工业大学 由水热法降解pet制备对苯二甲酸和乙二醇水溶液的方法

Similar Documents

Publication Publication Date Title
CN107935846B (zh) 一种连续化生产环保型增塑剂的装置和方法
CN112851502B (zh) 一种胆碱和对苯二甲酸类非金属离子液体催化废弃pet聚酯甲醇醇解的方法
CN101429100B (zh) 废聚碳酸酯材料在离子液体环境下的化学回收方法
CN102558779B (zh) 一种废涤棉纺织品回收再利用的方法
CN110818886A (zh) 一种废弃pet聚酯制备再生食品级pet聚酯的方法
CN101407445A (zh) 以离子液体为反应介质和催化剂的废聚酯材料回收方法
CN104447341B (zh) 一种聚酯醇解方法
CN103146151B (zh) 一种废聚酯瓶回收再利用的方法
CN106167544A (zh) 一种废旧聚酯回收利用系统
CN112409125A (zh) 连续化制备二芳基六氟丙烷的方法
CN113735705B (zh) 一种聚离子液体催化废弃pet聚酯甲醇醇解的方法
CN101066904A (zh) 微波辐射下聚对苯二甲酸乙二醇酯的催化解聚方法
CN113444284A (zh) 一种酸催化水解废弃pet塑料的方法
CN104592024A (zh) 一种废聚乳酸材料的醇解回收方法
CN105601507A (zh) 低温条件下氢氧化钠催化降解聚酯类废旧纺织品方法
CN105384637A (zh) 一种多取代夹心型多金属氧簇催化降解聚对苯二甲酸乙二醇酯的方法
CN110172140B (zh) 一种用微波水解废弃涤纶纺织物制备不饱和聚酯树脂的方法
CN1239461C (zh) Pet的微波解聚方法
CN111574378A (zh) 无催化高效合成对苯二甲酸双羟乙酯的方法
CN109879760B (zh) 一种涤纶废料醇解酯化制备对苯二甲酸二辛酯的方法
CN110938231A (zh) 一种低共熔溶剂催化废弃pet聚酯甲醇醇解的方法
CN110862520A (zh) 一种利用碱减量废水中的对苯二甲酸制备pet的方法
CN102285883B (zh) 采用复合离子液体催化剂合成柠檬酸三正丁酯的方法
CN113578378A (zh) 一种对苯二甲酸基离子液体催化剂的制备方法及其在pet降解中的应用
CN113968782A (zh) 一种去除回收再利用醋酸中杂质的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination