CN113438651A - 基于noma的环境背向散射通信系统的物理层认证方法 - Google Patents

基于noma的环境背向散射通信系统的物理层认证方法 Download PDF

Info

Publication number
CN113438651A
CN113438651A CN202110673669.7A CN202110673669A CN113438651A CN 113438651 A CN113438651 A CN 113438651A CN 202110673669 A CN202110673669 A CN 202110673669A CN 113438651 A CN113438651 A CN 113438651A
Authority
CN
China
Prior art keywords
under
pla
user
equal
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110673669.7A
Other languages
English (en)
Other versions
CN113438651B (zh
Inventor
海林鹏
汪群书
乔大伟
李兴旺
孙江峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN202110673669.7A priority Critical patent/CN113438651B/zh
Publication of CN113438651A publication Critical patent/CN113438651A/zh
Application granted granted Critical
Publication of CN113438651B publication Critical patent/CN113438651B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种基于NOMA的环境背向散射通信系统的物理层认证方法,介绍了三种与下行NOMA相关的物理层认证方案,它们分别是用户共享认证标签的物理层认证方案PLA‑SAT、用户使用独立认证标签的物理层认证方案PLA‑SIT以及用户按时分复用使用认证标签的物理层认证方案PLA‑TDM。在AmBC‑NOMA通信系统中对NOMA用户进行物理层认证分析是本发明的关键。本发明主要分析了在三种物理层认证方案下NOMA用户的鲁棒性。最后,本发明通过计算用户的虚警概率PFA以及检测概率PD进一步分析了系统的鲁棒性。

Description

基于NOMA的环境背向散射通信系统的物理层认证方法
技术领域
本发明涉及无线通信技术领域,具体涉及一种基于NOMA的环境背向散射通信系统的物理层认证方法。
背景技术
近几年来,环境背向散射(AmBC)技术由于其低功耗、低成本及较高的频谱资源利用率,使得它成为了低能量通信系统中一项有前途的技术,而且它能够有效解决传统背向散射(Backscatter)技术带来的一些限制。在AmBC系统中,Backscatter设备可以利用周边射频源的环境信号广播进行相互通信,例如:电视塔、调频塔、蜂窝基站和Wi-Fi接入点。AmBC技术有着较高的包容性,可以与多种其它技术相结合以提高系统性能,例如:非正交多址接入(NOMA)技术、认知无线电、可见光通信、设备到设备(D2D)通信等。虽然使用AmBC技术能够带来很多益处,然而简单地使用AmBC通信可能不足以有效地连接B5G物联网中的大量设备。因此,本发明将NOMA与AmBC技术集成到一个通信系统中,基于NOMA的AmBC通信有望显著改善B5G物联网中的低功耗问题,可以有效地提高频谱效率。在AmBC-NOMA通信系统中,很多学者已经对其进行了研究分析,但关于物理层安全认证的分析目前尚未被研究,研究通信系统的物理层认证指标有助于进一步提高系统的安全性。
身份认证指的是一个验证身份声明的过程。大多数身份验证机制(如:数字签名和证书)存在于物理层之上,但也有一些方案(如扩频通信)存在于物理层。物理层的扩频技术虽然隐蔽且有较高的鲁棒性,但是它是以带宽扩展为代价的,而且这种方案只允许了解秘密且经过验证的各方参加通信。因此,本发明描述的是三种不需要额外带宽的物理层认证方案。这三种方案都是基于下行NOMA系统的物理层认证方案,分别是:用户共享认证标签的物理层认证方案(PLA-SAT)、用户使用独立认证标签的物理层认证方案(PLA-SIT)以及用户按时分复用使用认证标签的物理层认证方案(PLA-TDM)。在物理层认证中的主要分析指标是隐蔽性、鲁棒性和安全性。认证方案的隐蔽性描述的是对于旁观者来说身份验证是多么隐蔽,旁观者不应该检测到信号的异常也不应该检测到由于该方案而造成的自身性能的变化。鲁棒性描述的是认证对干扰的抵抗力。安全性描述的是对手无法发动成功的攻击。
发明内容
基于上述内容,在AmBC-NOMA通信系统中对NOMA用户进行物理层认证分析是本发明的关键。本发明主要分析了在三种物理层认证方案下NOMA用户的鲁棒性。本发明通过计算用户的虚警概率(PFA)以及检测概率(PD)进一步分析了系统的鲁棒性。
本发明采用的技术方案为:一种基于NOMA的环境背向散射通信系统的物理层认证方法,设定基于NOMA的AmBC通信网络中包括一个基站S,一个背向散射设备BD,两个NOMA用户:近端用户Dn和远端用户Df以及一个窃听用户E;假设所有设备及用户均为半双工模式且所有节点均配置单天线。
本发明包括以下步骤:
基站S向两个NOMA用户发送叠加信号,信号发送的途径有两条,一条是直接传输,另一条是经过背向散射设备反射后到达NOMA用户;而窃听用户试图在这个过程中让用户拒绝真实的消息或者接受不真实的消息去中断身份验证过程。由于本发明考虑到了三种不同的物理层认证方案。
A1,在PLA-SAT方案下,S发送到BD及NOMA用户的信号有两种情况,一种是普通信号
Figure BDA0003119818510000021
另一种是带标签的信号
Figure BDA0003119818510000022
Figure BDA0003119818510000023
那么远端用户Df接收到的信号分为两部分:
Figure BDA0003119818510000024
Figure BDA0003119818510000025
其中,PT为基站的发射功率,
Figure BDA0003119818510000026
和α均为功率分配系数且满足
Figure BDA0003119818510000027
s1、s2为传输信号且满足s1=[s1,1,s1,2,…,s1,L],s2=[s2,1,s2,2,…,s2,L];L为符号块的数量;t为标签信号,满足t=[t1,t2,…,tL]且E(|s1|2)=E(|s2|2)=E(|t|2)=L;
Figure BDA0003119818510000028
Figure BDA0003119818510000029
分别是基站到BD,BD到Df,基站到Df之间的信道增益;
Figure BDA00031198185100000210
其中:k={SDf,SDn,SE,s→BD→Df,S→BD→Dn,S→BD→E};β为反射系数,c(t)为BD自己的消息且E{|c(t)|2}=1。
Figure BDA0003119818510000031
表示的分别是从基站到Df,从基站到BD再到Df之间的噪声;它们均为加性复高斯白噪声nk=[nk,1,nk,2,…,nk,L],且满足
Figure BDA0003119818510000032
Figure BDA0003119818510000033
i=1,2,…,L。
A2,用户Df处的残差信号为:
Figure BDA0003119818510000034
通过假设进行阈值检验:
Figure BDA0003119818510000035
残差信号中不存在t
Figure BDA0003119818510000036
残差信号中存在t
对于NOMA用户来说,当
Figure BDA0003119818510000037
是真的,但接受了假设
Figure BDA0003119818510000038
这种情况被称为虚假警报,用PFA表示虚警概率;根据Neyman-Pearson准则,在虚警概率为固定值的情况下要使得检测概率最大;通过对残差信号和认证标签进行匹配滤波,得到远端用户的检验统计量:
Figure BDA0003119818510000039
所以,(3)式中
Figure BDA00031198185100000310
分为两种情况:当
Figure BDA00031198185100000311
条件下为
Figure BDA00031198185100000312
Figure BDA00031198185100000313
条件下为
Figure BDA00031198185100000314
如果忽略块衰落信道的估计误差,即
Figure BDA00031198185100000315
那么Df在假设
Figure BDA00031198185100000316
Figure BDA00031198185100000317
下的检验统计量分别为:
Figure BDA00031198185100000318
Figure BDA00031198185100000319
A3,分析在PLA-SAT方案下Df的鲁棒性:根据式(4)和(5)可以计算出
Figure BDA00031198185100000320
Figure BDA0003119818510000041
其中r=PT2,所以在PLA-SAT方案下的PFA为:
Figure BDA0003119818510000042
其中,
Figure BDA0003119818510000043
为用户Df的阈值;然后,给出了Df在最优阈值
Figure BDA0003119818510000044
下的PFA:
Figure BDA0003119818510000045
其中,
Figure BDA0003119818510000046
通过设置
Figure BDA0003119818510000047
(PFA的上界)去计算最优阈值
Figure BDA0003119818510000048
当x≤y时,
Figure BDA0003119818510000049
当x>y时,满足
Figure BDA00031198185100000410
A4,根据A3中的最优阈值,对于一个固定信道,Df的PD为
Figure BDA00031198185100000411
Figure BDA00031198185100000412
所以对于一个零均值复高斯信道来说,Df的PD为
Figure BDA00031198185100000413
经过计算,Df的PD分为两种情况:
当x≤y时:
Figure BDA00031198185100000414
当x>y时:
Figure BDA0003119818510000051
其中:
Figure BDA0003119818510000052
A5,近端用户Dn接收到的信号也可以分为两部分:
Figure BDA0003119818510000053
Figure BDA0003119818510000054
其中
Figure BDA0003119818510000055
分别为基站到BD、BD到Dn之间的信道增益;
Figure BDA0003119818510000056
表示的分别是从基站到Dn,从基站到BD再到Dn之间的噪声。
A6,根据A5可知,用户Dn处的残差信号为:
Figure BDA0003119818510000057
那么类似Df
Figure BDA0003119818510000058
Figure BDA0003119818510000059
A7,所以PLA-SAT方案下Dn的PD为:
当x≤y时:
Figure BDA00031198185100000510
当x>y时:
Figure BDA00031198185100000511
其中:
Figure BDA0003119818510000061
最优阈值
Figure BDA0003119818510000062
也可以分为两种情况:
当x≤y时,
Figure BDA0003119818510000063
当x>y时,满足
Figure BDA0003119818510000064
A8,窃听用户E接收到的信号:
Figure BDA0003119818510000065
Figure BDA0003119818510000066
其中,hSE、hBE分别表示基站到窃听者、BD到窃听者之间的信道增益;nSE、nS→BD→E表示的分别是从基站到E,从基站到BD再到E之间的噪声。
A9,当用户E窃听远端用户Df时,
Figure BDA0003119818510000067
Figure BDA0003119818510000068
当用户E窃听远端用户Dn时:
Figure BDA0003119818510000069
Figure BDA00031198185100000610
A10,根据A9,PLA-SAT方案下用户E窃听Df的PD为:
当x≤y时:
Figure BDA00031198185100000611
当x>y时:
Figure BDA00031198185100000612
Figure BDA00031198185100000613
其中:
Figure BDA0003119818510000071
最优阈值
Figure BDA0003119818510000072
也可以分为以下几种情况:
当x≤y且
Figure BDA0003119818510000073
时,
Figure BDA0003119818510000074
当x≤y且
Figure BDA0003119818510000075
时,
Figure BDA0003119818510000076
当x>y且
Figure BDA0003119818510000077
时,满足
Figure BDA0003119818510000078
x>y且
Figure BDA0003119818510000079
时,满足
Figure BDA00031198185100000710
A11,PLA-SAT方案下用户E窃听Dn的PD为:
当x≤y时:
Figure BDA00031198185100000711
当x>y时:
Figure BDA00031198185100000712
Figure BDA00031198185100000713
其中:
Figure BDA00031198185100000714
最优阈值
Figure BDA00031198185100000715
也可以分为以下几种情况:
当x≤y且
Figure BDA00031198185100000716
时,
Figure BDA00031198185100000717
Figure BDA0003119818510000081
当x≤y且
Figure BDA0003119818510000082
时,
Figure BDA0003119818510000083
Figure BDA0003119818510000084
当x>y且
Figure BDA0003119818510000085
时,满足
Figure BDA0003119818510000086
当x>y且
Figure BDA0003119818510000087
时,满足
Figure BDA0003119818510000088
B1,在PLA-SIT方案下,带标签的信号为
Figure BDA0003119818510000089
Figure BDA00031198185100000810
其中,
Figure BDA00031198185100000811
和α1、α2均为功率分配系数且
Figure BDA00031198185100000812
t1、t2均为标签信号。t1=[t1,1,t1,2,…,t1,L],t2=[t2,1,t2,2,…,t2,L]且E(|t1|2)=E(|t2|2)=L;用户Df处的残差信号为:
Figure BDA00031198185100000813
B2,用户Dn处的残差信号为:
Figure BDA00031198185100000814
所以,H0条件下:
Figure BDA00031198185100000815
H1条件下:
Figure BDA0003119818510000091
H0条件下:
Figure BDA0003119818510000092
H1条件下:
Figure BDA0003119818510000093
B3,计算了PLA-SIT下用户Df的PD为:
当x≤y时:
Figure BDA0003119818510000094
当x>y时:
Figure BDA0003119818510000095
其中:
Figure BDA0003119818510000096
在PLA-SIT方案下,最优阈值
Figure BDA0003119818510000097
分为下面两种情况:
当x≤y时,
Figure BDA0003119818510000098
当x>y时,满足
Figure BDA0003119818510000099
B4,在PLA-SIT方案下,用户Dn的PD为:
当x≤y时:
Figure BDA00031198185100000910
当x>y时:
Figure BDA00031198185100000911
其中:
Figure BDA00031198185100000912
在PLA-SIT方案下,最优阈值
Figure BDA00031198185100000913
分为下面两种情况:
当x≤y时,
Figure BDA0003119818510000101
当x>y时,满足
Figure BDA0003119818510000102
C1,在PLA-TDM方案下,带标签的信号为
Figure BDA0003119818510000103
其中,
Figure BDA0003119818510000104
Figure BDA0003119818510000105
均为功率分配系数且
Figure BDA0003119818510000106
t3为标签信号。t3=[t1;t2],t1=[t1,1,t1,2,…,t1,L],t2=[t2,1,t2,2,…,t2,L]且E(|t1|2)=L1,E(|t2|2)=L2,L=L1+L2
C2,类似于PLA-SAT和PLA-SIT:
H0条件下:
Figure BDA0003119818510000107
H1条件下:
Figure BDA0003119818510000108
H0条件下:
Figure BDA0003119818510000109
H1条件下:
Figure BDA00031198185100001010
C3,基于C2,PLA-TDM方案下用户Df的PD为:
当x≤y时:
Figure BDA00031198185100001011
当x>y时:
Figure BDA00031198185100001012
其中:
Figure BDA00031198185100001013
在PLA-TDM方案下,最优阈值
Figure BDA00031198185100001014
分为下面两种情况:
当x≤y时,
Figure BDA0003119818510000111
当x>y时,满足
Figure BDA0003119818510000112
C4,PLA-TDM方案下用户Dn的PD为:
当x≤y时:
Figure BDA0003119818510000113
当x>y时:
Figure BDA0003119818510000114
其中:
Figure BDA0003119818510000115
在PLA-TDM方案下,最优阈值
Figure BDA0003119818510000116
分为下面两种情况:
当x≤y时,
Figure BDA0003119818510000117
Figure BDA0003119818510000118
Figure BDA0003119818510000119
本发明产生的有益效果:本发明提供的基于NOMA的环境背向散射通信系统的物理层认证方案,在AmBC-NOMA系统中考虑了其物理层的安全认证问题,对该系统在三种物理层认证方案下的PD进行了详细地分析,这为AmBC设备的进一步发展提供了一定程度的参考意义。
附图说明
图1为本发明的系统模型图;
图2为本发明的三种物理层认证方案中PLA-SAT方案图;
图3为本发明的三种物理层认证方案中PLA-SIT方案图;
图4为本发明的三种物理层认证方案中PLA-TDM方案图;
图5为本发明的详细流程图。
具体实施方式
下面结合附图对本发明做进一步的说明。
如图1所示,本发明是一种基于NOMA的环境背向散射通信系统的物理层认证方法,基站S向两个NOMA用户发送叠加信号,信号发送的途径有两条,一条是直接传输,另一条是经过背向散射设备BD反射后到达NOMA用户。而窃听用户E试图在这个过程中让用户拒绝真实的消息或者接受不真实的消息去中断身份验证过程。
由于本发明考虑到了三种不同的物理层认证方案,均通过如图4所示的流程进行计算。
方案1:
如图2所示,在PLA-SAT方案下,基站S发送到BD及NOMA用户的信号有两种情况,一种是普通信号
Figure BDA0003119818510000121
另一种是带标签的信号
Figure BDA0003119818510000122
Figure BDA0003119818510000123
那么远端用户Df接收到的信号分为两部分:
Figure BDA0003119818510000124
Figure BDA0003119818510000125
其中,PT为基站的发射功率,
Figure BDA0003119818510000126
和α均为功率分配系数且满足
Figure BDA0003119818510000127
s1、s2为传输信号且满足s1=[s1,1,s1,2,…,s1,L],s2=[s2,1,s2,2,…,s2,L],L为符号块的数量,t为标签信号,满足t=[t1,t2,…,tL]且E(|s1|2)=E(|s2|2)=E(|t|2)=L,hSB
Figure BDA0003119818510000128
Figure BDA0003119818510000129
分别是基站到BD,BD到Df,基站到Df之间的信道增益。它们均服从瑞利分布,即
Figure BDA00031198185100001210
其中:k={SDf,SDn,SE,S→BD→Df,S→BD→Dn,S→BD→E}。β为反射系数,c(t)为BD自己的消息且E{|c(t)|2}=1。
Figure BDA00031198185100001211
表示的分别是从基站到Df,从基站到BD再到Df之间的噪声。它们均为加性复高斯白噪声nk=[nk,1,nk,2,…,nk,L],且满足
Figure BDA00031198185100001212
i=1,2,…,L。
根据上述可得,用户Df处的残差信号为:
Figure BDA00031198185100001213
Figure BDA00031198185100001320
本发明用下面的假设进行阈值检验:
Figure BDA0003119818510000131
残差信号中不存在t
Figure BDA0003119818510000132
残差信号中存在t
对于NOMA用户来说,当
Figure BDA0003119818510000133
是真的,但接受了假设
Figure BDA0003119818510000134
这种情况被称为虚假警报,用PFA表示虚警概率。根据Neyman-Pearson准则,在虚警概率为固定值的情况下要使得检测概率最大。通过对残差信号和认证标签进行匹配滤波,得到远端用户的检验统计量:
Figure BDA0003119818510000135
所以,(3)式中
Figure BDA0003119818510000136
分为两种情况:当
Figure BDA0003119818510000137
条件下为
Figure BDA0003119818510000138
Figure BDA0003119818510000139
条件下为
Figure BDA00031198185100001310
如果忽略块衰落信道的估计误差,即
Figure BDA00031198185100001311
那么Df在假设
Figure BDA00031198185100001312
Figure BDA00031198185100001313
下的检验统计量分别为:
Figure BDA00031198185100001314
Figure BDA00031198185100001315
根据上述内容,分析在PLA-SAT方案下Df的鲁棒性。根据式(4)和(5)可以计算出
Figure BDA00031198185100001316
Figure BDA00031198185100001317
其中r=PT2,所以在PLA-SAT方案下的PFA为:
Figure BDA00031198185100001318
其中,
Figure BDA00031198185100001319
为用户Df的阈值。
Df在最优阈值
Figure BDA0003119818510000141
下的PFA:
Figure BDA0003119818510000142
其中,
Figure BDA0003119818510000143
通过设置
Figure BDA0003119818510000144
(PFA的上界)去计算最优阈值
Figure BDA0003119818510000145
当x≤y时,
Figure BDA0003119818510000146
当x>y时,满足
Figure BDA0003119818510000147
根据上述的最优阈值,对于一个固定信道,Df的PD为
Figure BDA0003119818510000148
Figure BDA0003119818510000149
所以对于一个零均值复高斯信道来说,Df的PD为
Figure BDA00031198185100001410
经过计算,Df的PD分为两种情况:
当x≤y时:
Figure BDA00031198185100001411
当x>y时:
Figure BDA00031198185100001412
其中:
Figure BDA00031198185100001413
近端用户Dn接收到的信号也可以分为两部分:
Figure BDA00031198185100001414
Figure BDA00031198185100001415
其中
Figure BDA0003119818510000151
分别为基站到BD、BD到Dn之间的信道增益;
Figure BDA0003119818510000152
表示的分别是从基站到Dn,从基站到BD再到Dn之间的噪声。
由上述计算可得,用户Dn处的残差信号为:
Figure BDA0003119818510000153
那么类似Df
Figure BDA0003119818510000154
Figure BDA0003119818510000155
所以PLA-SAT方案下Dn的PD为:
当x≤y时:
Figure BDA0003119818510000156
当x>y时:
Figure BDA0003119818510000157
其中
Figure BDA0003119818510000158
最优阈值
Figure BDA0003119818510000159
也可以分为两种情况:
当x≤y时,
Figure BDA00031198185100001510
当x>y时,满足
Figure BDA00031198185100001511
同理,窃听用户E接收到的信号:
Figure BDA00031198185100001512
Figure BDA0003119818510000161
其中,hSE、hBE分别表示基站到窃听者、BD到窃听者之间的信道增益;nSE、nS→BD→E表示的分别是从基站到E,从基站到BD再到E之间的噪声。
当用户E窃听远端用户Df时,
Figure BDA0003119818510000162
Figure BDA0003119818510000163
当用户E窃听远端用户Dn时:
Figure BDA0003119818510000164
Figure BDA0003119818510000165
因此,PLA-SAT下用户E窃听Df的PD为:
当x≤y时:
Figure BDA0003119818510000166
当x>y时:
Figure BDA0003119818510000167
Figure BDA0003119818510000168
其中:
Figure BDA0003119818510000169
最优阈值
Figure BDA00031198185100001610
也可以分为以下几种情况:
当x≤y且
Figure BDA00031198185100001611
时,
Figure BDA00031198185100001612
Figure BDA00031198185100001613
当x≤y且
Figure BDA00031198185100001614
时,
Figure BDA00031198185100001615
Figure BDA0003119818510000171
当x>y且
Figure BDA0003119818510000172
时,满足
Figure BDA0003119818510000173
x>y且
Figure BDA0003119818510000174
时,满足
Figure BDA0003119818510000175
同理,PLA-SAT下用户E窃听Dn的PD为:
当x≤y时:
Figure BDA0003119818510000176
当x>y时:
Figure BDA0003119818510000177
Figure BDA0003119818510000178
其中:
Figure BDA0003119818510000179
最优阈值
Figure BDA00031198185100001710
也可以分为以下几种情况:
当x≤y且
Figure BDA00031198185100001711
时,
Figure BDA00031198185100001712
Figure BDA00031198185100001713
当x≤y且
Figure BDA00031198185100001714
时,
Figure BDA00031198185100001715
Figure BDA00031198185100001716
当x>y且
Figure BDA00031198185100001717
时,满足
Figure BDA0003119818510000181
当x>y且
Figure BDA0003119818510000182
时,满足
Figure BDA0003119818510000183
方案2:
如图3所示,在PLA-SIT方案下,带标签的信号为
Figure BDA0003119818510000184
Figure BDA0003119818510000185
其中,
Figure BDA0003119818510000186
和α1、α2均为功率分配系数且
Figure BDA0003119818510000187
t1、t2均为标签信号。t1=[t1,1,t1,2,…,t1,L],t2=[t2,1,t2,2,…,t2,L]且E(|t1|2)=E(|t2|2)=L。用户Df处的残差信号为:
Figure BDA0003119818510000188
用户Dn处的残差信号为:
Figure BDA0003119818510000189
所以,H0条件下:
Figure BDA00031198185100001810
H1条件下:
Figure BDA00031198185100001811
H0条件下:
Figure BDA00031198185100001812
H1条件下:
Figure BDA00031198185100001813
因此,在PLA-SIT方案下,用户Df的PD为:
当x≤y时:
Figure BDA0003119818510000191
当x>y时:
Figure BDA0003119818510000192
其中:
Figure BDA0003119818510000193
在PLA-SIT方案下,最优阈值
Figure BDA0003119818510000194
分为下面两种情况:
当x≤y时,
Figure BDA0003119818510000195
当x>y时,满足
Figure BDA0003119818510000196
在PLA-SIT方案下,用户Dn的PD为:
当x≤y时:
Figure BDA0003119818510000197
当x>y时:
Figure BDA0003119818510000198
其中:
Figure BDA0003119818510000199
在PLA-SIT方案下,最优阈值
Figure BDA00031198185100001910
分为下面两种情况:
当x≤y时,
Figure BDA00031198185100001911
当x>y时,满足
Figure BDA00031198185100001912
方案3:
如图4所示,在PLA-TDM方案下,带标签的信号为
Figure BDA0003119818510000201
Figure BDA0003119818510000202
其中,
Figure BDA0003119818510000203
和α3均为功率分配系数且
Figure BDA0003119818510000204
t3为标签信号。t3=[t1;t2],t1=[t1,1,t1,2,…,t1,L],t2=[t2,1,t2,2,…,t2,L]且E(|t1|2)=L1,E(|t2|2)=L2,L=L1+L2
类似于PLA-SAT和PLA-SIT:
H0条件下:
Figure BDA0003119818510000205
H1条件下:
Figure BDA0003119818510000206
H0条件下:
Figure BDA0003119818510000207
H1条件下:
Figure BDA0003119818510000208
因此,在方案PLA-TDM下,用户Df的PD为:
当x≤y时:
Figure BDA0003119818510000209
当x>y时:
Figure BDA00031198185100002010
其中:
Figure BDA00031198185100002011
在PLA-TDM方案下,最优阈值
Figure BDA00031198185100002012
分为下面两种情况:
当x≤y时,
Figure BDA00031198185100002013
当x>y时,满足
Figure BDA00031198185100002014
PLA-TDM下用户Dn的PD为:
当x≤y时:
Figure BDA0003119818510000211
当x>y时:
Figure BDA0003119818510000212
其中:
Figure BDA0003119818510000213
在PLA-TDM方案下,最优阈值
Figure BDA0003119818510000214
分为下面两种情况:
当x≤y时,
Figure BDA0003119818510000215
当x>y时,满足
Figure BDA0003119818510000216

Claims (1)

1.一种基于NOMA的环境背向散射通信系统的物理层认证方法,设定基于NOMA的AmBC通信网络中包括一个基站S,一个背向散射设备BD,两个NOMA用户:近端用户Dn和远端用户Df以及一个窃听用户E;假设所有设备及用户均为半双工模式且所有节点均配置单天线,其特征在于,包括PLA-SAT、PLA-SIT和PLA-TDM三种方案:
A1,在PLA-SAT方案下,S发送到BD及NOMA用户的信号为普通信号
Figure FDA0003119818500000011
Figure FDA0003119818500000012
或带标签的信号
Figure FDA0003119818500000013
那么远端用户Df接收到的信号分为两部分:
Figure FDA0003119818500000014
Figure FDA0003119818500000015
其中,PT为基站的发射功率,
Figure FDA0003119818500000016
和α均为功率分配系数且满足
Figure FDA0003119818500000017
s1、s2为传输信号且满足s1=[s1,1,s1,2,...,s1,L],s2=[s2,1,s2,2,...,s2,L];L为符号块的数量;t为标签信号,满足t=[t1,t2,...,tL]且E(|s1|2)=E(|s2|2)=E(|t|2)=L;hSB
Figure FDA0003119818500000018
Figure FDA0003119818500000019
分别是基站到BD,BD到Df,基站到Df之间的信道增益;
Figure FDA00031198185000000110
其中:k={SDf,SDn,SE,S→BD→Df,S→BD→Dn,S→BD→E};β为反射系数,c(t)为BD自己的消息且
Figure FDA00031198185000000111
表示的分别是从基站到Df,从基站到BD再到Df之间的噪声;它们均为加性复高斯白噪声nk=[nk,1,nk,2,...,nk,L],且满足
Figure FDA00031198185000000112
Figure FDA00031198185000000113
A2,用户Df处的残差信号为:
Figure FDA00031198185000000114
通过假设进行阈值检验:
Figure FDA00031198185000000115
残差信号中不存在t
Figure FDA0003119818500000021
残差信号中存在t
对于NOMA用户来说,当
Figure FDA0003119818500000022
是真的,但接受了假设
Figure FDA0003119818500000023
这种情况为虚假警报,用PFA表示虚警概率;根据Neyman-Pearson准则,在虚警概率为固定值的情况下要使得检测概率最大;通过对残差信号和认证标签进行匹配滤波,得到远端用户的检验统计量:
Figure FDA0003119818500000024
所以,(3)式中
Figure FDA0003119818500000025
分为两种情况:
Figure FDA0003119818500000026
条件下为
Figure FDA0003119818500000027
Figure FDA0003119818500000028
条件下为
Figure FDA0003119818500000029
如果忽略块衰落信道的估计误差,即
Figure FDA00031198185000000210
那么Df在假设
Figure FDA00031198185000000211
Figure FDA00031198185000000212
下的检验统计量分别为:
Figure FDA00031198185000000213
Figure FDA00031198185000000214
A3,分析在PLA-SAT方案下Df的鲁棒性:根据式(4)和(5)可以计算出
Figure FDA00031198185000000215
Figure FDA00031198185000000216
其中r=PT2,所以在PLA-SAT方案下的PFA为:
Figure FDA00031198185000000217
其中,
Figure FDA00031198185000000218
为用户Df的阈值;然后,给出了Df在最优阈值
Figure FDA00031198185000000219
下的PFA:
Figure FDA00031198185000000220
其中,
Figure FDA0003119818500000031
通过设置
Figure FDA0003119818500000032
(PFA的上界)去计算最优阈值
Figure FDA0003119818500000033
当x≤y时,
Figure FDA0003119818500000034
当x>y时,满足
Figure FDA0003119818500000035
A4,根据A3中的最优阈值,对于一个固定信道,Df的PD为
Figure FDA0003119818500000036
Figure FDA0003119818500000037
所以对于一个零均值复高斯信道来说,Df的PD为
Figure FDA0003119818500000038
经过计算,Df的PD分为两种情况:
当x≤y时:
Figure FDA0003119818500000039
当x>y时:
Figure FDA00031198185000000310
其中:
Figure FDA00031198185000000311
A5,近端用户Dn接收到的信号分为两部分:
Figure FDA00031198185000000312
Figure FDA00031198185000000313
其中
Figure FDA00031198185000000314
分别为基站到BD、BD到Dn之间的信道增益;
Figure FDA00031198185000000315
表示的分别是从基站到Dn,从基站到BD再到Dn之间的噪声;
A6,根据A5可知,用户Dn处的残差信号为:
Figure FDA0003119818500000041
那么类似Df
Figure FDA0003119818500000042
Figure FDA0003119818500000043
A7,所以PLA-SAT方案下Dn的PD为:
当x≤y时:
Figure FDA0003119818500000044
当x>y时:
Figure FDA0003119818500000045
其中:
Figure FDA0003119818500000046
最优阈值
Figure FDA0003119818500000047
分为两种情况:
当x≤y时,
Figure FDA0003119818500000048
当x>y时,满足
Figure FDA0003119818500000049
A8,窃听用户E接收到的信号:
Figure FDA00031198185000000410
Figure FDA00031198185000000411
其中,
Figure FDA00031198185000000412
分别表示基站到窃听者、BD到窃听者之间的信道增益;nSE、nS→BD→E表示的分别是从基站到E,从基站到BD再到E之间的噪声;
A9,当用户E窃听远端用户Df时,
Figure FDA0003119818500000051
Figure FDA0003119818500000052
当用户E窃听远端用户Dn时:
Figure FDA0003119818500000053
Figure FDA0003119818500000054
A10,根据A9,PLA-SAT方案下用户E窃听Df的PD为:
当x≤y时:
Figure FDA0003119818500000055
当x>y时:
Figure FDA0003119818500000056
Figure FDA0003119818500000057
其中:
Figure FDA0003119818500000058
最优阈值
Figure FDA0003119818500000059
分为以下几种情况:
当x≤y且
Figure FDA00031198185000000510
时,
Figure FDA00031198185000000511
当x≤y且
Figure FDA00031198185000000512
时,
Figure FDA00031198185000000513
当x>y且
Figure FDA00031198185000000514
时,满足
Figure FDA00031198185000000515
Figure FDA0003119818500000061
x>y且
Figure FDA0003119818500000062
时,满足
Figure FDA0003119818500000063
A11,PLA-SAT方案下用户E窃听Dn的PD为:
当x≤y时:
Figure FDA0003119818500000064
当x>y时:
Figure FDA0003119818500000065
Figure FDA0003119818500000066
其中:
Figure FDA0003119818500000067
最优阈值
Figure FDA0003119818500000068
分为以下几种情况:
当x≤y且
Figure FDA0003119818500000069
时,
Figure FDA00031198185000000610
Figure FDA00031198185000000611
当x≤y且
Figure FDA00031198185000000612
时,
Figure FDA00031198185000000613
Figure FDA00031198185000000614
当x>y且
Figure FDA00031198185000000615
时,满足
Figure FDA00031198185000000616
当x>y且
Figure FDA00031198185000000617
时,满足
Figure FDA0003119818500000071
B1,在PLA-SIT方案下,带标签的信号为
Figure FDA0003119818500000072
Figure FDA0003119818500000073
其中,
Figure FDA0003119818500000074
和α1、α2均为功率分配系数且
Figure FDA0003119818500000075
t1、t2均为标签信号;t1=[t1,1,t1,2,...,t1,L],t2=[t2,1,t2,2,...,t2,L]且E(|t1|2)=E(|t2|2)=L;用户Df处的残差信号为:
Figure FDA0003119818500000076
B2,用户Dn处的残差信号为:
Figure FDA0003119818500000077
所以,H0条件下:
Figure FDA0003119818500000078
H1条件下:
Figure FDA0003119818500000079
H0条件下:
Figure FDA00031198185000000710
H1条件下:
Figure FDA00031198185000000711
B3,计算了PLA-SIT下用户Df的PD为:
当x≤y时:
Figure FDA00031198185000000712
当x>y时:
Figure FDA0003119818500000081
其中:
Figure FDA0003119818500000082
在PLA-SIT方案下,最优阈值
Figure FDA0003119818500000083
分为下面两种情况:
当x≤y时,
Figure FDA0003119818500000084
当x>y时,满足
Figure FDA0003119818500000085
B4,在PLA-SIT方案下,用户Dn的PD为:
当x≤y时:
Figure FDA0003119818500000086
当x>y时:
Figure FDA0003119818500000087
其中:
Figure FDA0003119818500000088
在PLA-SIT方案下,最优阈值
Figure FDA0003119818500000089
分为下面两种情况:
当x≤y时,
Figure FDA00031198185000000810
当x>y时,满足
Figure FDA00031198185000000811
C1,在PLA-TDM方案下,带标签的信号为
Figure FDA00031198185000000812
其中,
Figure FDA00031198185000000813
和α3均为功率分配系数且
Figure FDA00031198185000000814
t3为标签信号;t3=[t1;t2],t1=[t1,1,t1,2,…,t1,L],t2=[t2,1,t2,2,…,t2,L]且E(|t1|2)=L1,E(|t2|2)=L2,L=L1+L2
C2,类似于PLA-SAT和PLA-SIT:
H0条件下:
Figure FDA0003119818500000091
H1条件下:
Figure FDA0003119818500000092
H0条件下:
Figure FDA0003119818500000093
H1条件下:
Figure FDA0003119818500000094
C3,基于C2,PLA-TDM方案下用户Df的PD为:
当x≤y时:
Figure FDA0003119818500000095
当x>y时:
Figure FDA0003119818500000096
其中:
Figure FDA0003119818500000097
在PLA-TDM方案下,最优阈值
Figure FDA0003119818500000098
分为下面两种情况:
当x≤y时,
Figure FDA0003119818500000099
当x>y时,满足
Figure FDA00031198185000000910
C4,PLA-TDM方案下用户Dn的PD为:
当x≤y时:
Figure FDA00031198185000000911
当x>y时:
Figure FDA00031198185000000912
其中:
Figure FDA0003119818500000101
在PLA-TDM方案下,最优阈值
Figure FDA0003119818500000102
分为下面两种情况:
当x≤y时,
Figure FDA0003119818500000103
当x>y时,满足
Figure FDA0003119818500000104
CN202110673669.7A 2021-06-17 2021-06-17 基于noma的环境背向散射通信系统的物理层认证方法 Expired - Fee Related CN113438651B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110673669.7A CN113438651B (zh) 2021-06-17 2021-06-17 基于noma的环境背向散射通信系统的物理层认证方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110673669.7A CN113438651B (zh) 2021-06-17 2021-06-17 基于noma的环境背向散射通信系统的物理层认证方法

Publications (2)

Publication Number Publication Date
CN113438651A true CN113438651A (zh) 2021-09-24
CN113438651B CN113438651B (zh) 2022-10-11

Family

ID=77756322

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110673669.7A Expired - Fee Related CN113438651B (zh) 2021-06-17 2021-06-17 基于noma的环境背向散射通信系统的物理层认证方法

Country Status (1)

Country Link
CN (1) CN113438651B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116456391A (zh) * 2023-06-16 2023-07-18 中国人民解放军军事科学院国防科技创新研究院 一种上行非正交多址接入隐蔽无线通信方法及系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109412620A (zh) * 2018-09-07 2019-03-01 北京邮电大学 一种环境反向散射通信系统的接收信号处理方法与装置
CN110324830A (zh) * 2019-07-24 2019-10-11 深圳大学 基于时分复用物理层认证标签的非正交多址认证系统
CN110381511A (zh) * 2019-07-24 2019-10-25 深圳大学 基于共享物理层认证标签的非正交多址认证系统
CN110381510A (zh) * 2019-07-24 2019-10-25 深圳大学 基于叠加物理层认证标签的非正交多址认证系统
US20200014457A1 (en) * 2018-07-03 2020-01-09 Google Llc Multi-Layer NOMA Wireless Communication for Repeating Transmission of a Transport Block
CN111148096A (zh) * 2019-12-03 2020-05-12 西安电子科技大学 5g noma系统中物理层安全最优化功率分配方法
AU2020100505A4 (en) * 2020-04-02 2020-05-14 Zhejiang Sci-Tech University Physical Layer Security Method Applicable To Non-Orthogonal Multiple Access System

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200014457A1 (en) * 2018-07-03 2020-01-09 Google Llc Multi-Layer NOMA Wireless Communication for Repeating Transmission of a Transport Block
CN109412620A (zh) * 2018-09-07 2019-03-01 北京邮电大学 一种环境反向散射通信系统的接收信号处理方法与装置
CN110324830A (zh) * 2019-07-24 2019-10-11 深圳大学 基于时分复用物理层认证标签的非正交多址认证系统
CN110381511A (zh) * 2019-07-24 2019-10-25 深圳大学 基于共享物理层认证标签的非正交多址认证系统
CN110381510A (zh) * 2019-07-24 2019-10-25 深圳大学 基于叠加物理层认证标签的非正交多址认证系统
CN111148096A (zh) * 2019-12-03 2020-05-12 西安电子科技大学 5g noma系统中物理层安全最优化功率分配方法
AU2020100505A4 (en) * 2020-04-02 2020-05-14 Zhejiang Sci-Tech University Physical Layer Security Method Applicable To Non-Orthogonal Multiple Access System

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XINGWANG LI: "Secrecy Analysis of Ambient Backscatter NOMA Systems Under I/Q Imbalance", 《IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY》, 2 July 2020 (2020-07-02) *
吴聪: "基于嵌入水印的物理层认证及优化", 《通信技术》, 10 September 2020 (2020-09-10) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116456391A (zh) * 2023-06-16 2023-07-18 中国人民解放军军事科学院国防科技创新研究院 一种上行非正交多址接入隐蔽无线通信方法及系统
CN116456391B (zh) * 2023-06-16 2023-09-05 中国人民解放军军事科学院国防科技创新研究院 一种上行非正交多址接入隐蔽无线通信方法及系统

Also Published As

Publication number Publication date
CN113438651B (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US11330434B2 (en) Security detection for a physical layer authentication system that considers signal-discriminating capability of an active adversary
WO2009051733A2 (en) Systems and methods for key generation in wireless communication systems
CN111328079B (zh) 一种针对可移动窃听者的多天线隐蔽通信方法
CN110381510B (zh) 基于叠加物理层认证标签的非正交多址认证系统
CN110113082A (zh) 基于正交空时块编码传输的多天线非正交多址接入系统的鲁棒安全和速率优化问题的方法
CN112383380B (zh) 基于非正交多址接入技术的隐蔽车辆通信方法
CN104009834A (zh) 一种基于差分混沌键控dcsk的mimo保密通信方法
CN105813081B (zh) 选择增强认知中继网络安全性能的中继节点的方法
CN113438651B (zh) 基于noma的环境背向散射通信系统的物理层认证方法
CN110324830B (zh) 基于时分复用物理层认证标签的非正交多址认证系统
CN110381511B (zh) 基于共享物理层认证标签的非正交多址认证系统
Xu et al. FM Rider: Two-FSK Modulation-Based Ambient FM Backscatter Over 100 m Distance
CN112312363B (zh) 一种d2d通信系统中物理层防窃听的方法
CN110392371B (zh) 基于时分复用认证标签的非正交多址认证系统的优化方法
CN110312255B (zh) 基于叠加认证标签的非正交多址认证系统的参数优化方法
Kim et al. Distributed cyclic delay diversity systems with spatially distributed interferers
CN106953819A (zh) 基于多无线电协作预编码的物理层保密通信方法
WO2008000187A1 (fr) Procédé, dispositif et système pour la détection d'une interférence dans un système mrof
Hsieh et al. Single carrier modulation with frequency domain equalization for intensity modulation-direct detection channels with intersymbol interference
CN106792899B (zh) 基于次用户选择的认知无线网络物理层安全传输方法
Zhao et al. Wireless Communication Network Security System Based on Big Data Information Transmission Technology
CN117915344B (zh) 基于频谱共享d2d蜂窝网络隐蔽窃听系统及方法
CN111683363A (zh) 空域调制系统中的物理层认证方法及系统
CN113507710B (zh) 一种noma场景下的导频污染攻击信道去污方法
CN118590113A (zh) 非理想条件下star-ris协助noma网络隐蔽通信方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221011

CF01 Termination of patent right due to non-payment of annual fee