CN113430369A - 一种硫化镍精矿的综合利用方法 - Google Patents

一种硫化镍精矿的综合利用方法 Download PDF

Info

Publication number
CN113430369A
CN113430369A CN202110679373.6A CN202110679373A CN113430369A CN 113430369 A CN113430369 A CN 113430369A CN 202110679373 A CN202110679373 A CN 202110679373A CN 113430369 A CN113430369 A CN 113430369A
Authority
CN
China
Prior art keywords
solution
nickel
sulfide concentrate
ions
nickel sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110679373.6A
Other languages
English (en)
Inventor
谢小平
湛金
孙峙
蔡楠
魏国
李鹏
谈伟军
党电邦
李青春
曹宏斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Zhongke Yunteng Technology Co ltd
Qinghai Yellow River Mining Co ltd
Institute of Process Engineering of CAS
Huanghe Hydropower Development Co Ltd
State Power Investment Corp Ltd Huanghe Hydropower Development Co Ltd
Original Assignee
Beijing Zhongke Yunteng Technology Co ltd
Qinghai Yellow River Mining Co ltd
Institute of Process Engineering of CAS
Huanghe Hydropower Development Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Zhongke Yunteng Technology Co ltd, Qinghai Yellow River Mining Co ltd, Institute of Process Engineering of CAS, Huanghe Hydropower Development Co Ltd filed Critical Beijing Zhongke Yunteng Technology Co ltd
Priority to CN202110679373.6A priority Critical patent/CN113430369A/zh
Publication of CN113430369A publication Critical patent/CN113430369A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/10Sulfates
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0065Leaching or slurrying
    • C22B15/0067Leaching or slurrying with acids or salts thereof
    • C22B15/0071Leaching or slurrying with acids or salts thereof containing sulfur
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • C22B15/0063Hydrometallurgy
    • C22B15/0084Treating solutions
    • C22B15/0086Treating solutions by physical methods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/005Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/22Treatment or purification of solutions, e.g. obtained by leaching by physical processes, e.g. by filtration, by magnetic means, or by thermal decomposition
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明提供了一种硫化镍精矿的综合利用方法,所述方法包括:通过超细磨‑氧压浸出工艺以选择性浸出硫化镍精矿中的金属元素获得硫化镍精矿浸出液,所述金属元素至少包括铜、铁、钴、镍、镁和钙元素;向硫化镍精矿浸出液中加入铁粉,然后采用微气泡氧化法进行氧化,以生成针铁矿型沉淀物,从而去除所述浸出液中铁离子和铜离子;加入氟化钠作为沉淀剂发生沉淀反应从而去除所述浸出液中钙离子和镁离子;通过萃取工艺萃取分别分离出钴离子和镍离子以制备获得硫酸钴产品和硫酸镍产品。该方法不仅实现了硫化镍精矿中镍元素的高效回收利用,还进一步利用了其他金属元素以减少其对环境的污染,有利于提升了原材料的资源利用率和利用价值。

Description

一种硫化镍精矿的综合利用方法
技术领域
本发明属于硫化镍精矿利用技术领域,具体涉及一种硫化镍精矿的综合利用方法。
背景技术
镍是重要的战略金属资源,因其延展性能,力学性能以及化学稳定性良好,被广泛应用于航空航天,军事以及民用工业领域。近年来,随着高镍三元锂电池行业的飞速发展,镍的市场需求量快速增加。在镍的矿产资源中,多金属硫化镍精矿是最重要的镍矿资源之一,在我国乃至世界镍资源中具有十分重要的地位。目前,全球探明的镍矿资源中硫化镍精矿资源约占40%。近年来,我国青海省夏日哈木地区发现了超大型岩浆铜镍硫化物矿床,探明332+333级镍金属量106万吨(平均品位0.7%),并伴生333级铜资源量21.77万吨(平均品位0.166%),钴资源量3.81万吨(平均品位0.025%),成为国内第二大镍矿床。这一超大型镍矿的发现有效地缓解了我国镍资源市场短缺的现状。随着夏日哈木铜镍硫化矿逐步进入开发利用阶段,开发绿色、高效的硫化镍精矿提取技术具有十分重要的意义。
镍矿常用的处理方法有火法冶金工艺和湿法冶金工艺,现有技术中对湿法浸出硫化镍精矿获得的硫化镍精矿浸出液的利用仍存在很多的问题:(1)硫化镍精矿浸出液中包含多种金属元素Fe、Ni、Cu、Co等,如何将浸出液中的金属杂质进行除杂从而制备硫酸镍以利用镍元素仍是需要解决的问题;(2)硫化镍精矿中富含的铁元素导致湿法浸出过程浸出液中的铁离子浓度较高,严重影响镍的回收工艺流程和能耗;(3)利用浸出液制备硫酸镍的过程中,如何进一步利用其他金属元素以减少对环境的污染仍是亟需解决的问题。因此,需要进一步探索一种硫化镍精矿的综合利用方法,不仅能够对浸出液中的金属杂质进行除杂从而制备硫酸镍以利用镍元素,还可以在制备硫酸镍的过程中进一步利用其他金属元素以减少对环境的污染。
发明内容
为了解决上述现有技术存在的问题,本发明提供了一种硫化镍精矿的综合利用方法,所述方法不仅能够解决硫化镍精矿浸出液中的金属杂质影响制备硫酸镍以利用镍元素的问题,还可以在制备硫酸镍的过程中进一步利用其他金属元素以减少其对环境的污染。
为实现上述目的,本发明提供了一种硫化镍精矿的综合利用方法,包括:
S10、将硫化镍精矿与溶剂混合调浆形成硫化镍精矿料浆,将所述硫化镍精矿料浆进行球磨,形成超细磨硫化镍精矿;所述超细磨硫化镍精矿的粒度为300目以下的矿料质量占比为90%以上;
S20、将所述超细磨硫化镍精矿置于反应炉中并加入浸取液,向所述浸取液中通入预定压力的氧气,以浸出所述超细磨硫化镍精矿中的金属元素,获得硫化镍精矿浸出液,所述金属元素至少包括铜、铁、钴、镍、镁和钙元素;
S30、向所述硫化镍精矿浸出液中加入还原铁粉,以还原置换所述浸出液中的铜离子,并且将所述浸出液中的铁离子还原为亚铁离子,反应完成后进行固液分离,获得液相的第一溶液,获得固相的海绵铜产品;
S40、采用微气泡氧化法对所述第一溶液进行氧化,以生成针铁矿型沉淀物,反应完成后进行固液分离,获得液相的第二溶液,获得固相的针铁矿产品;
S50、向所述第二溶液中加入氟化钠作为沉淀剂,以使得所述第二溶液中的镁离子和钙离子发生沉淀反应,反应完成后进行固液分离获得液相的第三溶液;
S60、配制包含P507萃取剂的萃取有机相,以所述第三溶液为萃取水相,通过萃取工艺萃取分离出钴离子,萃取完成后分离获得负载有机相和含镍萃余液;
S70、对所述负载有机相进行反萃获得含钴反萃液,以所述含钴反萃液为原料制备获得硫酸钴产品;
S80、以所述含镍萃余液为原料制备获得硫酸镍产品。
优选地,所述步骤S10中,将所述硫化镍精矿料浆置于球磨机中进行球磨,形成超细磨硫化镍精矿;所述超细磨硫化镍精矿的粒度为400目以下的矿料质量占比为90%以上。
优选地,所述步骤S20中,所述浸取液为硫酸溶液,所述硫酸溶液的浓度为50g/L~100g/L,所述超细磨硫化镍精矿与所述硫酸溶液的固液比为100g/L~300g/L;所述预定压力为0.8Mpa~1.4Mpa,浸出温度为110℃~160℃,浸出时间为100min~300min。
优选地,所述步骤S30中,所述还原铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度为3g/L~5g/L。
优选地,所述步骤S40具体包括:将所述第一溶液加热至预定温度,并向所述第一溶液中通入氧气,使所述第一溶液中的亚铁离子氧化为铁离子,进而铁离子水解生成针铁矿型沉淀物。
进一步优选地,所述预定温度为70℃~100℃,向所述第一溶液中通入氧气的气体流量为0.8L/min~1.2L/min,反应时间为300min~500min;反应过程中的pH控制为3~4。
优选地,所述步骤S50具体包括:将所述第二溶液置于恒温水浴锅内并搅拌,加入碳酸钠溶液使得所述第二溶液达到预定的pH值,向所述第二溶液中加入氟化钠作为沉淀剂,所述第二溶液中的镁离子和钙离子与氟化钠发生沉淀反应,反应完成后进行固液分离获得液相的第三溶液。
进一步优选地,所述步骤S50中,恒温水浴锅的温度为70℃~100℃,所述预定的pH值为4~5;按照使得所述第二溶液中的镁离子和钙离子完全沉淀的用量为基准,所述氟化钠的用量的过量系数为1.25~2.0。
优选地,所述步骤S60中:
首先,配制包含P204萃取剂的萃取有机相,以所述第三溶液为萃取水相,通过萃取工艺除杂,萃取完成后分离获得除杂后的第三溶液;
然后,使用所述包含P507萃取剂的萃取有机相对所述除杂后的第三溶液进行钴离子的萃取分离。
优选地,所述步骤S70具体包括:
使用浓度为0.1mol/L~0.4mol/L的硫酸溶液对所述负载有机相进行洗涤;
使用浓度为1.0mol/L~2.0mol/L的硫酸溶液对洗涤后的负载有机相进行反萃,获得硫酸钴溶液;
将所述硫酸钴溶液首先经过加热蒸发浓缩,然后再降温冷却结晶,制备获得所述硫酸钴产品。
优选地,所述步骤S80具体包括:
向所述含镍萃余液加入氢氧化钠溶液,控制反应液的温度为80℃~100℃,控制反应液的pH值为9~10,反应完成后固液分离获得固相的氢氧化镍沉淀;
使用硫酸溶液溶解所述氢氧化镍沉淀,获得硫酸镍溶液;反应温度控制为50℃~80℃,控制反应液的pH值为3~4,获得硫酸镍溶液中镍的浓度为80g/L~100g/L;
将所述硫酸镍溶液首先经过加热蒸发浓缩,加热温度为90℃~100℃,浓缩至镍的浓度为300g/L以上,然后再降温冷却结晶,制备获得硫酸镍产品。
有益效果:本发明通过将硫化镍精矿进行超细磨预处理,提高了硫化镍精矿的反应活性,有利于在浸出过程中降低氧压浸出温度,降低氧压浸出能耗,实现硫化镍精矿的常压选择性浸出;然后,通过加入铁粉并采用微气泡氧化法进行氧化,以生成针铁矿型沉淀物从而去除硫化镍精矿浸出液中的铁离子,解决了较高浓度的铁离子对镍的回收工艺流程和能耗的影响;最后,将硫化镍精矿浸出液中的金属杂质依次进行除杂后,通过制备硫酸钴和硫酸镍以回收利用镍元素和钴元素。因此,本发明不仅实现了硫化镍精矿浸出液中镍元素的高效回收利用,还进一步回收利用了其他金属元素,有利于提升原材料的资源利用率,减少其对环境的污染。
附图说明
图1为本发明实施例提供的一种硫化镍精矿的综合利用方法的流程图;
图2为本发明实施例1中细磨粒度对所述超细磨硫化镍精矿浸出的影响结果图;
图3为本发明实施例1中硫酸浓度对所述超细磨硫化镍精矿浸出的影响结果图;
图4为本发明实施例1中氧气压力对所述超细磨硫化镍精矿浸出的影响结果图;
图5为本发明实施例2中硫化镍精矿浸出液中还原铁粉还原置换铜离子过程中铁粉的加入量与铜离子浓度关系图;
图6为本发明实施例2中利用微气泡氧化法生成针铁矿型沉淀物反应过程中pH与所述浸出液中各金属离子的离子脱除率关系图;
图7为本发明实施例2中铁渣的X射线衍射(XRD)图;
图8为本发明实施例3中终点pH值与硫化镍精矿浸出液中的钙离子和镁离子的脱除率关系图;
图9为本发明实施例3中反应温度与硫化镍精矿浸出液中的钙离子和镁离子的脱除率关系图;
图10为本发明实施例3中氟化钠的用量的过量系数与硫化镍精矿浸出液中的钙离子和镁离子的脱除率关系图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
本发明实施例提供了一种硫化镍精矿的综合利用方法,参阅图1,所述方法包括:
步骤S10、将硫化镍精矿与溶剂混合调浆形成硫化镍精矿料浆,将所述硫化镍精矿料浆进行球磨,形成超细磨硫化镍精矿;所述超细磨硫化镍精矿的粒度为300目以下的矿料质量占比为90%以上。
优选地,将所述硫化镍精矿料浆置于球磨机中进行球磨,形成超细磨硫化镍精矿;所述超细磨硫化镍精矿的粒度为400目以下的矿料质量占比为90%以上。
优选地,所述溶剂为水,所述硫化镍矿料浆的浓度为20%~30%。
进一步优选地,所述硫化镍精矿料浆的浓度为25%。
将硫化镍精矿进行细磨预处理,可以减少硫化镍精矿反应物颗粒的粒度,提高反应物颗粒的比表面积,从而提高硫化镍精矿的反应活性。
步骤S20、将所述超细磨硫化镍精矿置于反应炉中并加入浸取液,向所述浸取液中通入预定压力的氧气,以浸出所述超细磨硫化镍精矿中的金属元素,获得硫化镍精矿浸出液,所述金属元素至少包括铜、铁、钴、镍、镁和钙元素。
优选地,所述浸取液为硫酸溶液,所述硫酸溶液的浓度为50g/L~100g/L,所述超细磨硫化镍精矿与所述硫酸溶液的固液比为100g/L~300g/L;所述预定压力为0.8Mpa~1.4Mpa,浸出温度为110℃~160℃,浸出时间为100min~300min。
进一步优选地,所述硫酸溶液的浓度为50g/L,所述超细磨硫化镍精矿与所述硫酸溶液的固液比为200g/L,所述预定压力为1.4Mpa,所述浸出的温度为110℃,所述浸出的时间为300min。
通过细磨预处理提高了硫化镍精矿的反应物活性,有利于硫化镍精矿在浸出过程中降低氧压浸出温度,降低氧压浸出能耗,从而实现硫化镍精矿的常压选择性浸出。
步骤S30、向所述硫化镍精矿浸出液中加入还原铁粉,以还原置换所述浸出液中的铜离子,并且将所述浸出液中的铁离子还原为亚铁离子,反应完成后进行固液分离,获得液相的第一溶液,获得固相的海绵铜产品。
优选地,所述还原铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度为3g/L~5g/L。
进一步优选地,所述还原铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度为3.88g/L。
所述还原铁粉将浸出液中的铜离子进行还原,使铜离子以海绵铜的形式置换出来,而后将所述海绵铜沉淀物进行过滤从而达到去除所述浸出液中的铜离子的目的;此外,所述还原铁粉还起到将所述浸出液中的铁离子还原为亚铁离子的作用。
步骤S40、采用微气泡氧化法对所述第一溶液进行氧化,以生成针铁矿型沉淀物,反应完成后进行固液分离,获得液相的第二溶液,获得固相的针铁矿产品。
优选地,所述步骤S40具体包括:将所述第一溶液加热至预定温度,并向所述第一溶液中通入氧气,使所述第一溶液中的亚铁离子氧化为铁离子,进而铁离子水解生成针铁矿型沉淀物。
针铁矿是含水氧化物的主要矿物之一,一般称为α型一水氧化铁,其组成为α-Fe2O3·H2O或α-FeOOH,其沉淀物含铁量高,对溶液中的其他金属离子吸附少,故采用针铁矿法可以使金属铁的回收率较高。
所述针铁矿法除铁的具体反应过程包括氧化反应和水解反应:
氧化反应:
4Fe2++O2+4H+→4Fe3++2H2O
水解反应:
Fe3++H2O→FeOH2++H+
FeOH2++H2O→FeOOH+2H+
氧气首先将Fe2+氧化为Fe3+,Fe3+经水解形成简单水解产物FeOH2+,该水解产物进一步水解成核生成FeOOH微晶,FeOOH微晶发生聚集、增长形成针铁矿型固体沉淀α-FeOOH,其中,Fe2+氧化和Fe3+水解反应相继发生组成串联反应。
优选地,所述预定温度为70℃~100℃,向所述第一溶液中通入氧气的气体流量为0.8L/min~1.2L/min,反应时间为300min~500min;反应过程中的pH控制为3~4。
进一步优选地,所述预定温度为80℃,向所述第一溶液中通入氧气的气体流量为1L/min,反应时间为480min。
所述氧化反应通过氧气进行氧化,氧化过程涉及气液扩散、传质等物理过程,速度较慢,而Fe3+在溶液中极不稳定,因此Fe3+通过水解反应生成FeOH2+的速度很快。但若溶液中Fe3+含量过高(>1g/L),则容易导致Fe3+生成Fe(OH)3胶状沉淀,因而,在所述针铁矿法除铁的过程中,关键是控制Fe2+的氧化速度,本发明采用微气泡氧化法氧化Fe2+,通过控制通入的氧气的流量从而控制Fe2+的氧化过程,以解决针铁矿法除铁控制困难的问题。
针铁矿法除铁过程中,Fe2+离子的氧化速度与[H+]0.25成反比,随着pH值的升高,溶液中Fe2+的氧化速度加快,Fe3+离子水解沉淀的数量增多,除铁效率明显升高;但若pH过高,氧化反应生成的Fe3+离子浓度大于1g/L,易导致Fe3+快速沉淀并生成Fe(OH)3胶体,从而导致大量的镍、钴被吸附,镍、钴的损失率急剧升高。
步骤S50、向所述第二溶液中加入氟化钠作为沉淀剂,以使得所述第二溶液中的镁离子和钙离子发生沉淀反应,反应完成后进行固液分离获得液相的第三溶液。
优选地,所述步骤S50具体包括:将所述第二溶液置于恒温水浴锅内并搅拌,加入碳酸钠溶液使得所述第二溶液达到预定的pH值,向所述第二溶液中加入氟化钠作为沉淀剂,所述第二溶液中的镁离子和钙离子与氟化钠发生沉淀反应,反应完成后进行固液分离获得液相的第三溶液。
采用氟化钠去除所述浸出液中的钙和镁的原理如下所示:
Ca2++2F-→CaF2↓,Ksp=2.7×10-11
Mg2++2F-→MgF2↓,Ksp=6.5×10-9
优选地,所述恒温水浴锅的温度为70℃~100℃,所述预定的pH值为4~5;按照使得所述第二溶液中的镁离子和钙离子完全沉淀的用量为基准,所述氟化钠的用量的过量系数为1.25~2.0。
进一步优选地,恒温水浴锅的温度为90℃,所述预定的pH值为4.5;按照使得所述第二溶液中的镁离子和钙离子完全沉淀的用量为基准,所述氟化钠的用量的过量系数为1.5。
为了达到最佳的钙和镁的脱除效率,需要加入过量的氟化钠,但若氟化钠的用量的过量系数过大,继续增加氟化钠的用量,钙、镁的脱除效率增幅不明显,并且会造成溶液中的F-离子过多,产生新的杂质。
由于氟化钠沉淀钙和镁的过程中会生成氟化钙、氟化镁,随着温度的升高,分子间的有效碰撞增大,易于形成沉淀;并且,高温有利于Ca2+、Mg2+离子的富集,使得离子能更加有效地聚集在一起,形成大颗粒的沉淀物,而形成的大颗粒的沉淀物又会使Ca2+、Mg2+离子吸附在其表面,促进沉淀的析出,因此,若过于高温会导致氟化钙、氟化镁易形成胶体,造成过滤过程时间长、过滤困难、吸附金属离子等问题。
步骤S60、配制包含P507萃取剂的萃取有机相,以所述第三溶液为萃取水相,通过萃取工艺萃取分离出钴离子,萃取完成后分离获得负载有机相和含镍萃余液。
优选地,所述步骤S60具体包括:
步骤S601、配制包含P204萃取剂的萃取有机相,以所述第三溶液为萃取水相,通过萃取工艺除杂,萃取完成后分离获得除杂后的第三溶液。
优选地,所述萃取有机相中P204萃取剂的体积分数为20%~30%,所述P204萃取剂的皂化率为50%~60%,萃取相比为1:1~2:1,萃取温度为20℃~30℃,萃取时间为10min~20min,静置时间为10min~20min,反应过程中的pH控制为3~4。
进一步优选地,所述萃取有机相中P204萃取剂的体积分数为20%,所述P204萃取剂的皂化率为60%,萃取相比为1:1,萃取温度为25℃,萃取时间为10min,静置时间为10min,反应过程中的pH控制为3.5。
优选地,所述P204萃取剂用于去除所述第三溶液中微量的铜、铁、铝金属杂质。
步骤S602、使用所述包含P507萃取剂的萃取有机相对所述除杂后的第三溶液进行钴离子的萃取分离:配制包含P507萃取剂的萃取有机相,以所述除杂后第三溶液为萃取水相,通过萃取工艺萃取分离出钴离子,萃取完成后分离获得负载有机相和含镍萃余液。
优选地,所述萃取有机相中P507萃取剂的体积分数为20%~30%,所述P507萃取剂的皂化率为70%~80%,萃取相比为1.5:1~3:1,萃取温度为20℃~30℃,萃取时间为10min~20min,静置时间为10min~20min,反应过程中的pH控制为3~4。
进一步优选地,所述萃取有机相中P507萃取剂的体积分数为25%,所述P507萃取剂的皂化率为70%,萃取相比为2:1,萃取温度为25℃,萃取时间为10min,静置时间为10min,反应过程中的pH控制为3.25。
步骤S70、对所述负载有机相进行反萃获得含钴反萃液,以所述含钴反萃液为原料制备获得硫酸钴产品。
优选地,所述步骤S70具体包括:
步骤S701、使用浓度为0.1mol/L~0.4mol/L的硫酸溶液对所述负载有机相进行洗涤。
步骤S702、使用浓度为1.0mol/L~2.0mol/L的硫酸溶液对洗涤后的负载有机相进行反萃,获得硫酸钴溶液。
优选地,所述硫酸溶液的浓度为2mol/L,反萃的时间为20min,萃取相比(O/A)为2.5:1。
步骤S703、将所述硫酸钴溶液首先经过加热蒸发浓缩,然后再降温冷却结晶,制备获得所述硫酸钴产品。
优选地,所述加热温度为90℃~100℃,所述降温冷却的温度为50℃~60℃,所述结晶时间为2h~3h。
进一步优选地,所述加热温度为90℃,所述降温冷却的温度为58℃,所述结晶时间为2h。
步骤S80、以所述含镍萃余液为原料制备获得硫酸镍产品。
优选地,所述S80具体包括:
步骤S801、向所述含镍萃余液加入氢氧化钠溶液,反应完成后固液分离获得固相的氢氧化镍沉淀。
优选地,控制反应液的温度为80℃~100℃,控制反应液的pH值为9~10,所述氢氧化钠溶液的质量分数为5%~15%,反应的时间为3h~5h。
进一步优选地,控制反应液的温度为90℃,控制反应液的pH值为9,所述氢氧化钠溶液的质量分数为10%,反应的时间为4h。
步骤S802、使用硫酸溶液溶解所述氢氧化镍沉淀,获得硫酸镍溶液。
优选地,反应温度控制为50℃~80℃,控制反应液的pH值为3~4,反应的时间为3h~5h,获得硫酸镍溶液中镍的浓度为80g/L~100g/L。
进一步优选地,反应温度控制为60℃,控制反应液的pH值为3.5~3.6,反应的时间为4h,获得硫酸镍溶液中镍的浓度为100g/L。
步骤S803、将所述硫酸镍溶液首先经过加热蒸发浓缩,然后再降温冷却结晶,制备获得硫酸镍产品。
优选地,加热温度控制为90℃~100℃,将所述硫酸镍溶液浓缩至镍的浓度为300g/L以上,控制降温冷却至温度为50℃~60℃,控制反应过程的pH值为3~4。
进一步优选地,加热温度控制为90℃,控制降温冷却的温度为53℃,控制反应过程的pH值为3.5~3.6。
通过制备硫酸镍产品从而可对硫化镍精矿中的镍元素进行回收利用。
以下将结合具体的实施例来说明上述一种硫化镍精矿的综合利用方法,本领域技术人员所理解的是,下述实施例是本发明上述一种硫化镍精矿的综合利用方法的具体示例,而不用于限制其全部。
本发明实施例的硫化镍精矿由青海黄河矿业有限责任公司提供,所述硫化镍精矿的主要成分及物相分析如表1和表2所示。
表1:硫化镍精矿主要金属成分
Figure BDA0003122257860000111
表2:硫化镍精矿全元素半定量分析(XRF)
Figure BDA0003122257860000112
实施例1:硫化镍精矿浸出液的制备
步骤一、将所述硫化镍精矿与水混合调浆以形成浓度为25%的硫化镍精矿料浆,将所述硫化镍精矿料浆进行球磨,形成超细磨硫化镍精矿。
步骤二、将所述超细磨硫化镍精矿置于反应炉中并加入硫酸溶液作为浸取液,向所述浸取液中通入预定压力的氧气,以浸出所述超细磨硫化镍精矿中的金属元素,获得硫化镍精矿浸出液,所述金属元素至少包括铜、铁、钴、镍、镁和钙元素。
(1)考察细磨粒度对制备硫化镍精矿浸出液的影响
其中,选择反应的条件为:硫酸溶液的浓度为100g/L,超细磨硫化镍精矿与所述硫酸溶液的固液比为200g/L,通入的氧气压力为1.4Mpa,浸出的温度为110℃,浸出的时间为300min。
在上述条件下,分别考察不同的细磨粒度对所述超细磨硫化镍精矿的金属元素浸出的影响;其中,当球磨时间为3min时,所述超细磨硫化镍精矿的粒度为300目以下的矿料质量占比为90%以上;当球磨时间为6min时,所述超细磨硫化镍精矿的粒度为400目以下的矿料质量占比为90%以上。
图2为细磨粒度对所述超细磨硫化镍精矿浸出的影响结果图,上述条件下获得的实验结果如图2所示。
由图2可知,在保持其他实验条件不变的情况下,未经过细磨预处理的硫化镍精矿,其镍、钴、铜的浸出率均明显低于经过细磨预处理的硫化镍精矿;当所述超细磨硫化镍精矿的粒度为300目以下的矿料质量占比为90%以上时,此时镍、钴、铜的浸出率为97%、98.8%和64.5%;继续减少颗粒粒度至粒度为-400目以下的矿料质量占比为90%以上,镍、钴、铜的浸出率为97.7%、99.8%和78.3%,而铁的浸出效率基本不变;因此,当球磨时间为6min,粒度为-400目以下的矿料质量占比为90%以上时,硫化镍精矿的金属选择性浸出效果最好。
(2)考察硫酸浓度对制备硫化镍精矿浸出液的影响
其中,选择反应的条件为:球磨时间为6min,所述超细磨硫化镍精矿的粒度为400目以下的矿料质量占比为90%以上;超细磨硫化镍精矿与硫酸溶液的固液比为200g/L,通入的氧气压力为1.4Mpa,浸出的温度为110℃,浸出的时间为300min。在上述条件下,分别考察不同的硫酸浓度对所述超细磨硫化镍精矿中的金属元素浸出的影响。
图3为硫酸浓度对所述超细磨硫化镍精矿浸出的影响结果图,上述条件下获得的实验结果如图3所示。
从图3可以看出,在保持其他实验条件不变的情况下,不加入硫酸时,镍、钴、铜、铁的浸出效率分别为44%、29.3%、35.3%和29.9%;当硫酸浓度为50g/L时,镍、钴、铜、铁的浸出率为96.8%、99.5%、74.9%及30.4%;继续增加硫酸的浓度,镍、钴、铜的浸出率基本不变,而铁的浸出率呈增加趋势;因此,综合考虑,硫酸溶液的浓度优选为50g/L~100g/L,为了避免铁过多地浸出,硫酸溶液的浓度选择为50g/L时,超细磨硫化镍精矿的金属选择性浸出效果最好。
(3)考察氧气压力对制备硫化镍精矿浸出液的影响
其中,选择反应的条件为:球磨时间为6min,所述超细磨硫化镍精矿的粒度为400目以下的矿料质量占比为90%以上;硫酸溶液的浓度为50g/L,超细磨硫化镍精矿与硫酸溶液的固液比为200g/L,浸出的温度为110℃,浸出的时间为300min。在上述条件下,分别考察氧气压力分别为0.8Mpa和1.4Mpa条件下对所述超细磨硫化镍精矿中的金属元素浸出的影响。
图4为氧气压力对所述超细磨硫化镍精矿浸出的影响结果图,上述条件下获得的实验结果如图4所示。
从图4可以看出,在保持其他实验条件不变的情况下,随着通入的氧气的压力从0.8Mpa增加至1.4Mpa,硫化镍精矿中镍和钴的浸出率均有明显增加,铜的浸出率无明显变化,而铁的浸出率则会下降,因此,增加氧气压力,可以在提高镍、钴的浸出的同时抑制铁的浸出,从而实现金属元素的选择性浸出;综上考虑,选择氧气压力为1.4Mpa时为最佳。
(4)考察浸出温度对制备硫化镍精矿浸出液的影响
其中,选择反应的条件为:球磨时间为6min,所述超细磨硫化镍精矿的粒度为400目以下的矿料质量占比为90%以上;硫酸溶液的浓度为50g/L,超细磨硫化镍精矿与硫酸溶液的固液比为200g/L,通入的氧气压力为1.4Mpa,浸出的时间为300min。在上述条件下,分别考察氧气压力分别为0.8Mpa和1.4Mpa条件下对所述超细磨硫化镍精矿中的金属元素浸出的影响。在上述条件下,分别考察不同的浸出温度条件下对所述超细磨硫化镍精矿中的金属元素浸出的影响。
表3为浸出温度对所述超细磨硫化镍精矿中金属元素浸出效率的影响,上述条件下获得的实验结果如表3所示。
表3:浸出温度对超细磨硫化镍精矿中的金属元素浸出效率的影响
浸出温度/℃ Co Cu Fe Ni
110 99.5 74.9 30.4 96.8
140 99.9 83.4 75.4 98.5
160 99.9 88.9 97.7 99.9
由表3可以看出,当浸出温度从110℃升高至160℃,此时,随着浸出温度的升高,钴和镍的浸出效率均无明显变化,而铁的浸出效率反而不断升高,因此,综合考虑镍、钴、铜和铁的浸出效果,选择浸出温度为110℃最佳,从而保证硫化镍精矿中镍、钴、铜的高效浸出的同时抑制铁的浸出。
(5)考察固液比对制备硫化镍精矿浸出液的影响
其中,选择反应的条件为:球磨时间为6min,所述超细磨硫化镍精矿的粒度为400目以下的矿料质量占比为90%以上;硫酸溶液的浓度为50g/L,,通入的氧气压力为1.4Mpa,浸出的温度为110℃,浸出的时间为300min。在上述条件下,分别考察所述超细磨硫化镍精矿与所述硫酸溶液不同的固液比对所述超细磨硫化镍精矿中的金属元素浸出的影响。
表4为所述超细磨硫化镍精矿与所述硫酸溶液不同的固液比对所述超细磨硫化镍精矿中金属元素浸出效率的影响,上述条件下获得的实验结果如表4所示。
表4:固液比对所述超细磨硫化镍精矿中的金属元素浸出效率的影响
固液比(g/L) Co Cu Fe Ni
100 99.8 86.7 53.2 99.9
200 99.5 74.9 30.4 96.8
300 85.6 70.3 39.8 89.5
由表4可以看出,当超细磨硫化镍精矿与硫酸溶液的固液比从100g/L增加到200g/L,此时,钴和镍的浸出效率均无明显变化,铜的浸出效率从86.7%下降至74.9%,铁的浸出效率从53.2%下降至30.4%;再将固液比从200g/L增加至300g/L,镍、钴、铜的浸出效率均有所下降,而铁的浸出效率则略有所升高,因此,综合考虑硫化镍精矿中镍、钴、铜和铁的浸出效果,固液比为200g/L最佳。
综上所述,所述制备硫化镍精矿浸出液的最优化的工艺条件为:球磨时间为6min,所述超细磨硫化镍精矿的粒度为400目以下的矿料质量占比为90%以上;硫酸溶液的浓度为50g/L,超细磨硫化镍精矿与硫酸溶液的固液比为200g/L,通入的氧气压力为1.4Mpa,浸出的温度为110℃,浸出的时间为300min。
在上述最优化的工艺条件下,上述活化硫化镍精矿的浸出反应结束后,将其进行过滤获得硫化镍精矿浸出液,其中,所述硫化镍精矿中镍、钴、铜和铁的浸出率分别为96.8%、99.5%、74.9%和30.4%;硫化镍精矿浸出液中铁、镍、钴和铜的浓度分别为31.5g/L(0.563mol/L)、17.2g/L(0.29mol/L)、0.61g/L(0.01mol/L)及2.94g/L(0.0459mol/L),并且包含有镁离子和钙离子。
实施例2:去除硫化镍精矿浸出液中铜离子和铁离子
步骤一、向实施例1最优化的工艺条件下获得的硫化镍精矿浸出液中加入还原铁粉,以还原所述浸出液中的铜离子,使得铜离子以海绵铜的形式置换出,并且将所述浸出液中的铁离子还原为亚铁离子,还原反应完成后进行固液分离,获得固相的海绵铜产品和液相的第一溶液,即去除了铜离子的浸出液。
步骤二、采用微气泡氧化法对所述第一溶液进行氧化,以生成针铁矿型沉淀物,反应完成后进行固液分离,获得固相的针铁矿产品和液相的第二溶液:将所述第一溶液加热至80℃,并向所述第一溶液中通入氧气,使所述第一溶液中的亚铁离子氧化为铁离子,进而铁离子水解生成针铁矿型沉淀物,反应完成后进行过滤获得固相的针铁矿产品即铁渣,获得液相的第二溶液即去除了铜离子和铁离子的浸出液;其中,向所述浸出液中通入氧气的气体流量为1L/min,反应时间为480min。
(1)在上述条件下,考察还原铁粉的加入量对去除硫化镍精矿浸出液中铜离子和铁离子的影响。
图5为硫化镍精矿浸出液中还原铁粉还原置换铜离子过程中铁粉的加入量与铜离子浓度关系图,上述条件下获得的实验结果如图5所示。
从图5可以看出,当铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度到达3.0g/L以上时,溶液中铜离子的浓度大幅度地降低,因此本发明的方案中铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度优选为3.0g/L~5.0g/L;当铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度为3.88g/L时,溶液中铜离子的浓度由2940mg/L降低至3ppm,此时,理论上可将浸出液中的铜离子脱除干净,继续增加铁粉的加入量,铜离子的浓度基本不变,因此,选择所述还原铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度为3.88g/L为最佳。
(2)在上述条件下,考察利用微气泡氧化法生成针铁矿型沉淀物反应过程中的pH对去除硫化镍精矿浸出液中铜离子和铁离子的影响,其中,选择所述还原铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度为3.88g/L。
图6为利用微气泡氧化法生成针铁矿型沉淀物反应过程中pH与所述浸出液中各金属离子的离子脱除率关系图,上述条件下获得的实验结果如图6所示。
从图6可以看出,随着反应的pH由1.5增加至3时,所述硫化镍精矿浸出液中铁离子的脱除效率由36.5%增加至92%,此时浸出液中镍离子、钴离子浓度基本不变,其离子脱除率接近于0且保持不变。继续增加反应的pH为5时,铁离子的脱除效率基本保持不变,但此时镍离子和钴离子的离子脱除率急剧增加,其离子损失率急剧增加。这是由于Fe2+的氧化速度与[H+]0.25成反比,随着pH值的升高,溶液中Fe2+离子氧化加快,Fe3+离子水解沉淀数量增多,除铁效率明显升高;但当pH为5时,由于此时pH过高,氧化产生的Fe3+离子浓度大于1g/L,导致Fe3+快速沉淀并生成Fe(OH)3胶体,使大量的镍离子和钴离子被吸附,导致镍离子和钴离子的损失率急剧升高。因而在采用所述针铁矿法除铁时,控制微气泡氧化法生成针铁矿型沉淀物反应过程中的pH为3~4之间最佳。
综上所述,所述去除硫化镍精矿浸出液中铜离子和铁离子的最优化的工艺条件为:还原铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度为3.88g/L;微气泡氧化法生成针铁矿型沉淀物反应过程:通入的氧气的流量为1L/min,反应的pH为3.5,反应温度为80℃,反应的时间为480min。
在上述最优化的工艺条件下,反应完成后进行固液分离获得铁渣沉淀物和去除了铜离子和铁离子的硫化镍精矿浸出液。
将上述获得的铁渣通过进行XRF全元素半定量分析,铁渣的XRF全元素半定量分析结果如表5所示。
表5:铁渣全元素半定量分析(XRF)
Figure BDA0003122257860000161
由表5可知,铁渣中的主要元素为Fe(65.7%)、O(31.3%)和S(1.90%),其他元素为Ni、Co、Si、Al、Cl和Ca等。
进一步采用ICP-OES电感耦合等离子体发射光谱仪对铁渣进行定量分析,铁渣中主要金属元素定量分析及浸出液成分分析结果如表6所示。
表6:铁渣中主要金属元素定量分析(ICP-OES)及浸出液成分分析
Figure BDA0003122257860000162
由表6可知,铁渣中Fe的含量可达到55.9%,可直接将所述铁渣作为铁矿外售,Ni和Co的含量仅为0.23%和0.03%。未采用上述针铁矿法进行除铁的硫化镍精矿浸出液中Fe、Ni和Co的浓度分别为31.5g/L、17.2g/L和0.61g/L,采用上述针铁矿法对硫化镍精矿浸出液进行除铁后,硫化镍精矿浸出液中Fe、Ni和Co的浓度分别为0.012g/L、16.38g/L和0.607g/L,此时,硫化镍精矿浸出液中铁的脱除率达99%以上,而镍的损失在3%以下,钴几乎无损失。
图7为所述铁渣的X射线衍射(XRD)图,由图7可知,通过上述工艺获得的铁渣为单一物相的α-FeOOH。
实施例3:去除硫化镍精矿浸出液中的钙离子和镁离子
将实施例2最优化的工艺条件下获得的第二溶液,即去除了铁离子和铜离子的浸出液置于恒温水浴锅内并搅拌,加入碳酸钠溶液使得所述第二溶液达到预定的pH值,向所述第二溶液中加入氟化钠作为沉淀剂,所述第二溶液中的镁离子和钙离子与氟化钠发生沉淀反应,反应完成后进行固液分离获得液相的第三溶液,即去除了钙离子和镁离子的浸出液。
(1)考察终点pH值对去除硫化镍精矿浸出液中的钙离子和镁离子的影响。
其中,选择反应条件为:恒温水浴锅的温度为90℃,所述碳酸钠溶液的质量分数为7%,反应的时间为1.5h,按照使得所述第二溶液中的镁离子和钙离子完全沉淀的用量为基准,所述氟化钠的用量的过量系数为1.5;分别考察预定的pH值即终点pH值为4.0、4.5、5.0条件下浸出液中镁离子和钙离子的脱除率。图8为终点pH值与硫化镍精矿浸出液中的钙离子和镁离子的脱除率关系图,上述条件下获得的实验结果如图8所示。
从图8可以看出,随着终点pH由4.0增加至4.5,镁的脱除效率从95.16%增加至98.61%,钙的脱除效率则由75.61%增加至97.3%,此时,镁的脱除效率增加不明显,钙的脱除效率明显增加;当终点pH由4.5增加至5.0时,镁的脱除效率从98.61%变为98.86%,基本无变化,钙的脱除效率则由97.3%下降至96.48%。综上所述,终点pH值优选为4~5,当终点pH值为4.5时,去除硫化镍精矿浸出液中的钙离子和镁离子的效果最好。
(2)考察反应温度对去除硫化镍精矿浸出液中的钙离子和镁离子的影响。
其中,选择反应条件为:所述碳酸钠溶液的质量分数为7%,终点pH值为4.5,反应的时间为1.5h;按照使得所述第二溶液中的镁离子和钙离子完全沉淀的用量为基准,所述氟化钠的用量的过量系数为1.5,分别考察恒温水浴锅的温度即反应温度为为70℃、80℃和90℃条件下浸出液中镁离子和钙离子的脱除率。图9为反应温度与硫化镍精矿浸出液中的钙离子和镁离子的脱除率关系图,上述条件下获得的实验结果如图9所示。
从图9可以看出,随着反应温度由70℃升高至90℃,镁的脱除效率从99.52%变为98.61%,镁的脱除率基本不发生变化;钙的脱除效率则由92.95%增加至97.3%,钙的脱出效率略有增加,说明反应温度对于钙、镁的脱除效率基本没有影响。但是由于在高温条件下,氟化钠与镁离子和钙离子发生沉淀反应的过程中生成的氟化钙、氟化镁易形成胶体,造成过滤过程时间长、过滤困难、吸附金属离子等问题,因此,应控制反应的温度不宜过高。综上所述,反应温度优选为70℃~100℃,选择反应温度为90℃为最佳。
(3)考察氟化钠的用量的过量系数对去除硫化镍精矿浸出液中的钙离子和镁离子的影响。
其中,选择反应条件为:恒温水浴锅的温度为90℃,所述碳酸钠溶液的质量分数为7%,反应的时间为1.5h,终点pH值为4.5;分别考察氟化钠的用量的过量系数为1.0、1.25、1.5、1.75以及2.0条件下浸出液中镁离子和钙离子的脱除率。图10为氟化钠的用量的过量系数与硫化镍精矿浸出液中的钙离子和镁离子的脱除率关系图,上述条件下获得的实验结果如图10所示。
由图10可知,当氟化钠的用量的过量系数从1.0增加至1.5时,钙和镁的脱除效率分别由79.5%和84.6%增加至97.3%和98.6%。继续增加氟化钠的用量,钙、镁的脱除效率增幅不明显,且会造成溶液中的F-离子过多,产生新的杂质。综上所述,氟化钠的用量的过量系数优选为1.25~2.0,选择氟化钠的用量的过量系数优选为1.5为最佳。
综上所述,所述去除硫化镍精矿浸出液中铜离子和铁离子的最优化的工艺条件为:反应的温度为90℃,终点pH值为4.5;按照使得所述第二溶液中的镁离子和钙离子完全沉淀的用量为基准,所述氟化钠的用量的过量系数为1.5。
实施例4:通过萃取工艺萃取分离硫化镍精矿浸出液中的钴离子
步骤一、配制包含P204萃取剂的萃取有机相,以实施例3最优化的工艺条件下获得的第三溶液,即去除了镁离子和钙离子的浸出液为萃取水相,通过萃取工艺除杂,萃取完成后分离获得除杂后的第三溶液,即去除了微量的铜、铁、铝金属杂质的浸出液。
其中,选择反应条件为:所述萃取有机相中P204萃取剂的体积分数为20%,所述P204萃取剂的皂化率为60%;萃取相比为1:1,萃取温度为25℃,萃取时间为10min,静置时间为10min,反应过程中的pH控制为3.5。
步骤二、使用所述包含P507萃取剂的萃取有机相对所述除杂后的第三溶液进行钴离子的萃取分离:配制包含P507萃取剂的萃取有机相,以所述除杂后第三溶液为萃取水相,通过萃取工艺萃取分离出钴离子,萃取完成后分离获得负载有机相和含镍萃余液,所述负载有机相为含钴有机相。
其中,选择反应条件为:所述萃取有机相中P507萃取剂的体积分数为25%、所述萃取有机相中P507萃取剂的皂化率为70%;萃取相比为2:1,萃取温度为25℃,萃取时间为10min,静置时间为10min,反应过程中的pH控制为3.25。
实施例5:制备硫酸钴产品
步骤一、使用浓度为0.2mol/L的硫酸溶液对实施例4获得的负载有机相进行洗涤。
步骤二、使用浓度为2.0mol/L的硫酸溶液对洗涤后的负载有机相进行反萃,获得硫酸钴溶液。
其中,选择反应条件为:硫酸溶液的浓度为2mol/L,反萃的时间为20min,萃取相比(O/A)为2.5:1。
步骤三、将所述硫酸钴溶液首先经过加热蒸发浓缩,然后再降温冷却结晶,制备获得所述硫酸钴产品。
其中,选择反应条件为:加热温度为90℃,降温冷却的温度为58℃,结晶时间为2h。
实施例6:制备硫酸镍产品
步骤一、向实施例4获得的含镍萃余液中加入氢氧化钠溶液,反应完成后固液分离获得固相的氢氧化镍沉淀。
其中,控制反应液的温度为90℃,控制反应液的pH值为9,所述氢氧化钠溶液的质量分数为10%,反应的时间为4h。
步骤二、使用硫酸溶液溶解所述氢氧化镍沉淀,获得硫酸镍溶液。
其中,反应温度控制为60℃,控制反应液的pH值为3.5~3.6,反应的时间为4h,获得硫酸镍溶液中镍的浓度为100g/L。
步骤三、将所述硫酸镍溶液首先经过加热蒸发浓缩,加热温度为90℃,浓缩至镍的浓度为300g/L以上,然后再降温冷却结晶控制降温冷却至温度为53℃,控制反应过程的pH值为3.5~3.6,制备获得硫酸镍产品。
通过制备硫酸镍产品从而可对硫化镍精矿中的镍元素进行回收利用
本发明通过将硫化镍精矿进行超细磨预处理,可以减少硫化镍精矿反应物颗粒的粒度,提高反应物颗粒的比表面积,从而提高硫化镍精矿的反应活性,有利于硫化镍精矿在浸出过程中降低氧压浸出温度,降低氧压浸出能耗,实现硫化镍精矿的常压选择性浸出,可使得硫化镍精矿中镍、钴、铜和铁的浸出率分别为96.8%、99.5%、74.9%和30.4%。然后,通过加入铁粉并采用微气泡氧化法进行氧化,以生成针铁矿型沉淀物从而去除硫化镍精矿浸出液中的铁离子,可使铁的除杂率高达99%以上,解决了较高浓度的铁离子对镍的回收工艺流程和能耗的影响,并且,反应获得的铁渣和海绵铜可直接进行外售,有利于提升原材料的利用价值。最后,将硫化镍精矿浸出液中的金属杂质依次进行除杂后,通过制备硫酸钴和硫酸以对镍元素和钴元素进行回收利用。因此,本发明不仅实现了硫化镍精矿中镍元素的高效回收利用,还进一步回收利用了其他金属元素,有利于提升原材料的资源利用率,减少其对环境的污染。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

1.一种硫化镍精矿的综合利用方法,其特征在于,所述方法包括:
S10、将硫化镍精矿与溶剂混合调浆形成硫化镍精矿料浆,将所述硫化镍精矿料浆进行球磨,形成超细磨硫化镍精矿;所述超细磨硫化镍精矿的粒度为300目以下的矿料质量占比为90%以上;
S20、将所述超细磨硫化镍精矿置于反应炉中并加入浸取液,向所述浸取液中通入预定压力的氧气,以浸出所述超细磨硫化镍精矿中的金属元素,获得硫化镍精矿浸出液,所述金属元素至少包括铜、铁、钴、镍、镁和钙元素;
S30、向所述硫化镍精矿浸出液中加入还原铁粉,以还原置换所述浸出液中的铜离子,并且将所述浸出液中的铁离子还原为亚铁离子,反应完成后进行固液分离,获得液相的第一溶液,获得固相的海绵铜产品;
S40、采用微气泡氧化法对所述第一溶液进行氧化,以生成针铁矿型沉淀物,反应完成后进行固液分离,获得液相的第二溶液,获得固相的针铁矿产品;
S50、向所述第二溶液中加入氟化钠作为沉淀剂,以使得所述第二溶液中的镁离子和钙离子发生沉淀反应,反应完成后进行固液分离获得液相的第三溶液;
S60、配制包含P507萃取剂的萃取有机相,以所述第三溶液为萃取水相,通过萃取工艺萃取分离出钴离子,萃取完成后分离获得负载有机相和含镍萃余液;
S70、对所述负载有机相进行反萃获得含钴反萃液,以所述含钴反萃液为原料制备获得硫酸钴产品;
S80、以所述含镍萃余液为原料制备获得硫酸镍产品。
2.根据权利要求1所述的综合利用方法,其特征在于,所述步骤S10中,将所述硫化镍精矿料浆置于球磨机中进行球磨,形成超细磨硫化镍精矿;所述超细磨硫化镍精矿的粒度为400目以下的矿料质量占比为90%以上。
3.根据权利要求1所述的综合利用方法,其特征在于,所述步骤S20中,所述浸取液为硫酸溶液,所述硫酸溶液的浓度为50g/L~100g/L,所述超细磨硫化镍精矿与所述硫酸溶液的固液比为100g/L~300g/L;所述预定压力为0.8Mpa~1.4Mpa,浸出温度为110℃~160℃,浸出时间为100min~300min。
4.根据权利要求1所述的综合利用方法,其特征在于,所述步骤S30中,所述还原铁粉的加入量为使得还原铁粉在所述硫化镍精矿浸出液中的浓度为3g/L~5g/L。
5.根据权利要求1所述的综合利用方法,其特征在于,所述步骤S40具体包括:将所述第一溶液加热至预定温度,并向所述第一溶液中通入氧气,使所述第一溶液中的亚铁离子氧化为铁离子,进而铁离子水解生成针铁矿型沉淀物;
其中,所述预定温度为70℃~100℃,向所述第一溶液中通入氧气的气体流量为0.8L/min~1.2L/min,反应时间为300min~500min;反应过程中的pH控制为3~4。
6.根据权利要求1所述的综合利用方法,其特征在于,所述步骤S50具体包括:将所述第二溶液置于恒温水浴锅内并搅拌,加入碳酸钠溶液使得所述第二溶液达到预定的pH值,向所述第二溶液中加入氟化钠作为沉淀剂,所述第二溶液中的镁离子和钙离子与氟化钠发生沉淀反应,反应完成后进行固液分离获得液相的第三溶液。
7.根据权利要求6所述的综合利用方法,其特征在于,所述步骤S50中,恒温水浴锅的温度为70℃~100℃,所述预定的pH值为4~5;按照使得所述第二溶液中的镁离子和钙离子完全沉淀的用量为基准,所述氟化钠的用量的过量系数为1.25~2.0。
8.根据权利要求1所述的综合利用方法,其特征在于,所述步骤S60中,
首先,配制包含P204萃取剂的萃取有机相,以所述第三溶液为萃取水相,通过萃取工艺除杂,萃取完成后分离获得除杂后的第三溶液;
然后,使用所述包含P507萃取剂的萃取有机相对所述除杂后的第三溶液进行钴离子的萃取分离。
9.根据权利要求1所述的综合利用方法,其特征在于,所述步骤S70具体包括:
使用浓度为0.1mol/L~0.4mol/L的硫酸溶液对所述负载有机相进行洗涤;
使用浓度为1.0mol/L~2.0mol/L的硫酸溶液对洗涤后的负载有机相进行反萃,获得硫酸钴溶液;
将所述硫酸钴溶液首先经过加热蒸发浓缩,然后再降温冷却结晶,制备获得所述硫酸钴产品。
10.根据权利要求1所述的综合利用方法,其特征在于,所述步骤S80具体包括:
向所述含镍萃余液加入氢氧化钠溶液,控制反应液的温度为80℃~100℃,控制反应液的pH值为9~10,反应完成后固液分离获得固相的氢氧化镍沉淀;
使用硫酸溶液溶解所述氢氧化镍沉淀,获得硫酸镍溶液;反应温度控制为50℃~80℃,控制反应液的pH值为3~4,获得硫酸镍溶液中镍的浓度为80g/L~100g/L;
将所述硫酸镍溶液首先经过加热蒸发浓缩,加热温度为90℃~100℃,浓缩至镍的浓度为300g/L以上,然后再降温冷却结晶,制备获得硫酸镍产品。
CN202110679373.6A 2021-06-18 2021-06-18 一种硫化镍精矿的综合利用方法 Pending CN113430369A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110679373.6A CN113430369A (zh) 2021-06-18 2021-06-18 一种硫化镍精矿的综合利用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110679373.6A CN113430369A (zh) 2021-06-18 2021-06-18 一种硫化镍精矿的综合利用方法

Publications (1)

Publication Number Publication Date
CN113430369A true CN113430369A (zh) 2021-09-24

Family

ID=77756585

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110679373.6A Pending CN113430369A (zh) 2021-06-18 2021-06-18 一种硫化镍精矿的综合利用方法

Country Status (1)

Country Link
CN (1) CN113430369A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892023A (zh) * 2022-05-20 2022-08-12 中国地质科学院 一种硫化镍钴矿的分级浸出方法及应用
CN116287683A (zh) * 2022-12-31 2023-06-23 广西中伟新能源科技有限公司 一种硫化矿物的浸出方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560109A (zh) * 2011-12-26 2012-07-11 江西理工大学 一种低成本从铜钴矿中提取铜、镍、钴中间产品的方法
CN110273064A (zh) * 2019-04-23 2019-09-24 国家电投黄河上游水电开发有限责任公司 一种机械活化强化硫化镍精矿常压浸出镍的方法
CN111455174A (zh) * 2020-06-09 2020-07-28 矿冶科技集团有限公司 一种从混合氢氧化镍钴制备电池级硫酸镍、硫酸钴的方法
CN111663040A (zh) * 2020-06-22 2020-09-15 中南大学 一种利用微泡发生装置强化溶液中氧气氧化除铁的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102560109A (zh) * 2011-12-26 2012-07-11 江西理工大学 一种低成本从铜钴矿中提取铜、镍、钴中间产品的方法
CN110273064A (zh) * 2019-04-23 2019-09-24 国家电投黄河上游水电开发有限责任公司 一种机械活化强化硫化镍精矿常压浸出镍的方法
CN111455174A (zh) * 2020-06-09 2020-07-28 矿冶科技集团有限公司 一种从混合氢氧化镍钴制备电池级硫酸镍、硫酸钴的方法
CN111663040A (zh) * 2020-06-22 2020-09-15 中南大学 一种利用微泡发生装置强化溶液中氧气氧化除铁的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114892023A (zh) * 2022-05-20 2022-08-12 中国地质科学院 一种硫化镍钴矿的分级浸出方法及应用
CN116287683A (zh) * 2022-12-31 2023-06-23 广西中伟新能源科技有限公司 一种硫化矿物的浸出方法

Similar Documents

Publication Publication Date Title
CN104726724B (zh) 从红土镍矿中提取钪的方法
CN113430369A (zh) 一种硫化镍精矿的综合利用方法
CN113403477B (zh) 一种硫化镍精矿的综合利用方法
CN101016581A (zh) 一种从含镍蛇纹石中综合高效回收镍镁资源的方法
CN113388743A (zh) 一种从硫化镍精矿中选择性提取钴和镍的方法
CN112250120B (zh) 利用废锂离子电池黑粉与硫化镍钴矿协同制备三元前驱体和碳酸锂的方法及应用
CN111748690B (zh) 一种基于水热晶格转型的湿法冶金浸出液净化除铁的方法
CN113430370B (zh) 一种从硫化镍精矿中选择性提取钴和镍的方法
CN113416856A (zh) 一种从硫化镍精矿中选择性提取钴和镍的方法
CN113403486B (zh) 一种硫化镍精矿浸出液针铁矿法除铁的工艺
CN113416843A (zh) 一种硫化镍精矿的超细磨-氧压浸出工艺
CN106957965B (zh) 一种氧化铁产品的制备方法
CN111455171B (zh) 一种海底多金属结核提取有价金属并联产锂电正极材料前驱体及掺钛正极材料的方法
CN116377243A (zh) 一种镍钴氢氧化物原料分离镍钴锰的方法
CN104862503B (zh) 从红土镍矿中提取钪的方法
CN113416855B (zh) 一种从硫化镍精矿浸出液制备硫酸镍的方法
CN110911675B (zh) 一种海底多金属结核制取锂电正极材料前驱体的方法
CN113416844A (zh) 一种硫化镍精矿的综合利用方法
CN112410568A (zh) 一种从含钴渣中制备铁酸钴的方法
CN113416857A (zh) 一种从硫化镍精矿中选择性提取钴和镍的方法
CN1361295A (zh) 协同浸出和协同溶剂萃取分离相耦合直接浸出硫化锌精矿的方法
CN114645143B (zh) 一种红土镍矿中镍钴铜锰的分离方法
CN112662892B (zh) 一种酸浸液的掺杂高压镍铁分离方法
CN112662871B (zh) 一种高浓度钴铁浸出液的掺钴高压钴铁分离方法
CN114959299B (zh) 一种从含钴氧化铜矿萃铜余液中回收钴的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination