CN113430224A - Visual CRISPR/Cas9 gene editing system and using method - Google Patents

Visual CRISPR/Cas9 gene editing system and using method Download PDF

Info

Publication number
CN113430224A
CN113430224A CN202110679391.4A CN202110679391A CN113430224A CN 113430224 A CN113430224 A CN 113430224A CN 202110679391 A CN202110679391 A CN 202110679391A CN 113430224 A CN113430224 A CN 113430224A
Authority
CN
China
Prior art keywords
seq
grna
gene
dna
cas9
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110679391.4A
Other languages
Chinese (zh)
Other versions
CN113430224B (en
Inventor
余东
袁定阳
段美娟
周天顺
刘玲
刘海
孙学武
孙志忠
刘次桃
谭炎宁
盛夏冰
陈劲
袁贵龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Agricultural University
Hunan Hybrid Rice Research Center
Original Assignee
Hunan Agricultural University
Hunan Hybrid Rice Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Agricultural University, Hunan Hybrid Rice Research Center filed Critical Hunan Agricultural University
Priority to CN202110679391.4A priority Critical patent/CN113430224B/en
Publication of CN113430224A publication Critical patent/CN113430224A/en
Application granted granted Critical
Publication of CN113430224B publication Critical patent/CN113430224B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/102Mutagenizing nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8209Selection, visualisation of transformants, reporter constructs, e.g. antibiotic resistance markers
    • C12N15/821Non-antibiotic resistance markers, e.g. morphogenetic, metabolic markers
    • C12N15/8212Colour markers, e.g. beta-glucoronidase [GUS], green fluorescent protein [GFP], carotenoid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8231Male-specific, e.g. anther, tapetum, pollen
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/823Reproductive tissue-specific promoters
    • C12N15/8234Seed-specific, e.g. embryo, endosperm
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8287Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for fertility modification, e.g. apomixis
    • C12N15/8289Male sterility
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • C12N9/2411Amylases
    • C12N9/2414Alpha-amylase (3.2.1.1.)
    • C12N9/2422Alpha-amylase (3.2.1.1.) from plant source
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01001Alpha-amylase (3.2.1.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Botany (AREA)
  • Pregnancy & Childbirth (AREA)
  • Reproductive Health (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Virology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a visual CRISPR/Cas9 gene editing system, which comprises a gene editing element, an exogenous T-DNA visual tracking element and a transgenic pollen inactivation element, wherein the transgenic pollen inactivation element is an expression frame of a corn alpha-amylase gene ZMAA 1; the gene editing element is a CRISPR/Cas9 expression structure, and the CRISPR/Cas9 expression structure comprises a Cas9 gene expression frame and a gRNA expression frame; the exogenous T-DNA visual tracking element is an expression frame of a red fluorescent protein gene DsRed. The invention utilizes endosperm fluorescent protein to mark transgenic seeds carrying an exogenous Cas9 gene T-DNA region so as to screen mutant seeds without transgenes. Meanwhile, pollen carrying the Cas9 gene is inactivated by a pollen inactivation technology, the proportion of seeds without transgenic components is increased, and the biological potential safety hazard caused by transgenic pollen drift is avoided.

Description

Visual CRISPR/Cas9 gene editing system and using method
Technical Field
The invention relates to the technical field of genetic engineering, in particular to a visual CRISPR/Cas9 gene editing system and a using method thereof.
Background
Currently, a number of classical CRISPR/Cas9 systems suitable for plant gene editing have been developed. The CRISPR/Cas9 system has the characteristics of simple operation, high efficiency and controllability, and is widely used for the improvement of crop genetic breeding. However, when the CRISPR/Cas9 system is used for gene editing breeding in crops, the problems of large and tedious screening workload of early positive transgenic plants, long and difficult period of later non-transgenic mutants screening and the like still exist. Particularly, in the process of screening the mutant without transgene, an exogenous T-DNA region carrying a Cas9 gene element is removed mainly by selfing or backcrossing, gene editing plants without transgene are obtained by the method, stable mutation single plants can be obtained generally by planting more than 2 generations, and the time span is usually more than 2 years and even longer. In addition, researchers also try to directly introduce the Cas9 protein and the gRNA into plant cells by using a gene gun and nanoparticles or to avoid the integration of elements such as the Cas9 gene into the genome by using methods such as agrobacterium-mediated transgene transient expression of the Cas9 protein and the gRNA, so as to obtain a non-transgenic gene editing plant. However, the above strategies have low efficiency of gene editing, and require high throughput methods to identify the edited plants, which is very costly. In addition, there are reports of methods for screening non-transgenic plants by killing transgenic plants with herbicides, but the methods are not environmentally friendly and cannot avoid drift of transgenic pollen, and there may be a transgenic safety risk.
The CRISPR/Cas9 gene editing system is simple to operate, particularly, the standardized biological brick assembling technology developed by BsaI endonuclease is utilized for the problem of Liu flare light, the construction of the CRISPR/Cas9 gene editing vector is greatly simplified, and the application of the CRISPR/Cas9 gene editing system in crop genetic improvement is accelerated. However, when DsRed and ZMAA1 expression cassettes are introduced, IIS type restriction enzymes such as BsaI cannot be used, which makes it difficult to construct vectors.
Disclosure of Invention
The invention aims to solve the technical problem of seeking a CRISPR/Cas9 gene editing system for visually screening positive transgenic plants and quickly rejecting transgenic components and a using method thereof in the face of urgent need to solve the problem. Transgenic seeds carrying a T-DNA region of an exogenous Cas9 gene are marked by endosperm fluorescent protein to screen mutant seeds without transgenes. Meanwhile, pollen carrying the Cas9 gene is inactivated by a pollen inactivation technology, the proportion of seeds without transgenic components is increased, and the biological potential safety hazard caused by transgenic pollen drift is avoided.
In order to achieve the above object, the invention provides a visual CRISPR/Cas9 gene editing system, comprising a gene editing element, an exogenous T-DNA visual tracking element and a transgenic pollen inactivation element; the gene editing element, the exogenous T-DNA visual tracking element and the transgenic pollen inactivation element are constructed in the same T-DNA region of the expression vector, so that the three genes are linked to be inherited;
the transgenic pollen inactivation element is an expression frame of a corn alpha-amylase gene ZMAA1, a ZMAA1 gene is driven by a pollen specific promoter Pg47, and the gene is terminated by an IN2-1 terminator;
the DNA sequence of the pollen specific promoter Pg47 is shown in SEQ ID NO. 12;
the DNA sequence of the ZMAA1 gene is shown as SEQ ID NO. 13;
the DNA sequence of the IN2-1 terminator is shown IN SEQ ID NO. 14.
In the visualized CRISPR/Cas9 gene editing system, the gene editing element is a CRISPR/Cas9 expression structure, and the CRISPR/Cas9 expression structure comprises a Cas9 gene expression cassette and a gRNA expression cassette.
In the visualized CRISPR/Cas9 gene editing system, further, the Cas9 gene expression cassette is driven by a Ubi promoter to drive a Cas9 gene and is terminated by an NOS terminator;
the DNA sequence of the Ubi promoter is shown as SEQ ID NO. 1;
the DNA sequence of the Cas9 gene is shown as SEQ ID NO. 2;
the DNA sequence of the NOS terminator is shown in SEQ ID NO. 3.
The above visualized CRISPR/Cas9 gene editing system, further, the gRNA expression cassette comprises a small RNA promoter and guide-RNA separated by a 1.8kb spacer sequence;
the small RNA promoter is one of OsU3, OsU6a, OsU6b and OsU6 c;
the DNA sequence of OsU3 is shown in SEQ ID NO. 4;
the DNA sequence of OsU6a is shown as SEQ ID NO. 5;
the DNA sequence of OsU6b is shown as SEQ ID NO. 6;
the DNA sequence of OsU6c is shown as SEQ ID NO. 7;
the guide-RNA sequence is shown as SEQ ID NO. 8;
the DNA sequence of the spacer sequence is shown as SEQ ID NO. 15.
In the visualized CRISPR/Cas9 gene editing system, the exogenous T-DNA visualized tracking element is an expression cassette of a red fluorescent protein gene DsRed, an endosperm-specific promoter ltp drives the DsRed gene, and a PINII terminator terminates;
the DNA sequence of the endosperm-specific promoter ltp is shown as SEQ ID NO. 9;
the DNA sequence of the DsRed gene is shown in SEQ ID NO. 10;
the DNA sequence of the PINII terminator is shown as SEQ ID NO. 11.
The visualized CRISPR/Cas9 gene editing system introduces an enzymatic assembly inlet sequence between a transgenic pollen inactivation element and an exogenous T-DNA visualization tracking element; the DNA sequence of the enzymatic assembly inlet sequence is shown as SEQ ID NO. 16.
Based on a general technical concept, the invention also provides a using method of the visualized CRISPR/Cas9 gene editing system, which comprises the following steps:
s1, designing a joint primer sequence according to a target site of a gene to be knocked out, and synthesizing a target site recombination joint T1-Adapter and T2-Adapter; designing primers gRNA-F, OsU3-R and OsU6-R according to a small RNA promoter and guide-RNA, and respectively amplifying corresponding U3-gRNA expression frame precursors and U6-gRNA expression frame precursors;
s2, carrying out enzymatic assembly on the U3-gRNA expression frame precursor and the U6-gRNA expression frame precursor and a target site recombinant joint T1-Adapter and T2-Adapter respectively to obtain enzymatic assembly products U3-T1-gRNA and U6-T2-gRNA;
s3, converting the enzymatic assembly products U3-T1-gRNA and U6-T2-gRNA into escherichia coli competent cells to obtain transformants pU3-T1-gRNA and pU6-T2-gRNA containing the complete gRNA expression cassette of the target site;
s4, amplifying transformants pU3-T1-gRNA and pU6-T2-gRNA containing the complete gRNA expression frame of the target site by using recombinant primers gR-ZF and gR-ZR to obtain an amplification product U3-T1-gRNA expression frame and U6-T1-gRNA expression frame containing the recombinant primers and the complete gRNA expression frame;
s5, carrying out enzymatic assembly on the U3-T1-gRNA expression cassette and a C9DZ vector to obtain an enzymatic assembly product I;
s6, after the enzymatic assembly product I is transformed into an escherichia coli competent cell, screening a transformant containing a gene editing vector of a single target site;
s7, carrying out enzymatic assembly on the transformant and the U6-T2-gRNA expression cassette to obtain an enzymatic assembly product II;
s8, introducing the enzymatic assembly product II into rice to obtain a gene editing plant with a mutated target site;
s9, screening seeds without red fluorescence according to the fact that whether endosperm contains fluorescence or not from gene editing plant offspring with mutation of the target site, namely the target plant with the transgenic components removed and the target site mutated.
In the using method, the sequence of the gRNA-F is shown as SEQ ID NO. 23;
the sequence of OsU3-R is shown in SEQ ID NO. 24;
the sequence of OsU6-R is shown in SEQ ID NO. 25.
The using method is characterized in that the DNA sequence of the recombinant primer gR-ZF is shown as SEQ ID NO. 26;
the DNA sequence of the recombinant primer gR-ZR is shown in SEQ ID NO. 27.
In the above method of use, further, the vector is a C9DZ vector.
In the above using method, further, the gene to be edited is rice panicle neck elongation gene OsEUI1, and the method for editing the rice panicle neck elongation gene OsEUI1 and visually removing transgenic components comprises the following steps:
(1) designing a joint primer sequence according to a target site of OsEUI1, and synthesizing target site recombination joints EUI1-U3-T1-Adapter and EUI-U6-T2-Adapter;
(2) carrying out enzymatic assembly on a U3-gRNA expression frame precursor and a U6-gRNA expression frame precursor and a target site recombinant joint EUI1-U3-T1-Adapter and EUI-U6-T2-Adapter respectively to obtain enzymatic assembly products EUI1-U3-T1-gRNA and EUI 1-U6-T2-gRNA;
(3) after the enzymatic assembly products EUI1-U3-T1-gRNA and EUI1-U6-T2-gRNA are transformed into escherichia coli competent cells, transformants pEUI1-U3-T1-gRNA and pEUI1-U6-T2-gRNA containing a complete gRNA expression frame of a target site are obtained;
(4) amplifying plasmid pEUI1-U3-T1-gRNA and pEUI1-U6-T2-gRNA containing a complete gRNA expression frame by using recombinant primers gR-ZF and gR-ZR;
(5) carrying out enzymatic assembly on an expression frame of an amplification product EUI1-U3-T1-gRNA containing a recombinant primer and a complete gRNA expression frame and a C9DZ vector to obtain an enzymatic assembly product C9DZ-EUI 1-T1;
(6) s5, after the enzymatic assembly product C9DZ-EUI1-T1 is transformed into an escherichia coli competent cell, a transformant pC9DZ-EUI1-T1 containing a gene editing vector of a single target site is screened;
(7) after SwaI enzyme digestion pC9DZ-EUI1-T1, carrying out enzymatic assembly with an amplification product EUI1-U6-T2-gRNA expression frame containing a recombinant primer and a complete gRNA expression frame to obtain an enzymatic assembly product pC9DZ-EUI 1-T1-T2;
(8) introducing the enzymatic assembly product pC9DZ-EUI1-T1-T2 into rice to obtain a gene editing plant with a mutant target site;
(9) and screening seeds without red fluorescence from the offspring of the edited plant with the EUI1 gene mutation according to the fact that whether the endosperm contains fluorescence or not, namely the target plant with the transgenic components removed and the EUI1 gene mutation.
Compared with the prior art, the invention has the advantages that:
1. the invention provides a visual CRISPR/Cas9 gene editing system, which utilizes endosperm fluorescent protein to mark transgenic seeds carrying an exogenous Cas9 gene T-DNA region, can visually screen gene editing plants without transgenosis without molecular biology means such as PCR and the like, thereby not only reducing a large amount of screening work, but also saving time and cost; the pollen inactivation technology inactivates transgenic pollen carrying the Cas9 gene, increases the proportion of seeds without transgenic components, and more importantly, can avoid the biological potential safety hazard caused by the drift of the transgenic pollen.
2. The invention provides a use method of a visual CRISPR/Cas9 gene editing system, belonging to a method for circularly stacking and enzymatically assembling a CRISPR/Cas9 gene editing vector.
Drawings
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention.
FIG. 1 is a diagram showing a vector structure of a gRNA expression cassette according to example 1 of the present invention.
Fig. 2 is a technical flow chart for constructing a CRISPR/Cas9 gene editing vector C9DZ and a gRNA expression cassette for visually removing a transgenic component in embodiment 1 of the present invention.
FIG. 3 shows a strain and a seed whose plant height becomes high after the OsEUI1 gene is knocked out in example 2 of the present invention.
FIG. 4 is a field phenotype after the development of the plant from the non-fluorescent seeds with increased plant height of example 2 of the present invention.
FIG. 5 shows the PCR detection of the transgenic components after the non-fluorescent seeds with increased plant height developed into plants in example 2 of the present invention. M is TAKARA 100bp DNA ladder, 1-12 are non-fluorescent and plant height increased gene editing plants, "-" is negative control, and "+" is positive control.
Detailed Description
The invention is further described below with reference to specific preferred embodiments, without thereby limiting the scope of protection of the invention.
Unless otherwise defined, all terms of art used hereinafter have the same meaning as commonly understood by one of ordinary skill in the art. The terminology used herein is for the purpose of describing particular embodiments only and is not intended to limit the scope of the present invention.
Unless otherwise specifically stated, various raw materials, reagents, instruments, equipment and the like used in the present invention are commercially available or can be prepared by existing methods. The methods in the following examples are conventional in the art unless otherwise specified.
Examples
The materials and equipment used in the following examples are commercially available.
Example 1
A CRISPR/Cas9 gene editing system for visually removing transgenic components comprises three basic structural elements which are respectively a gene editing element, an exogenous T-DNA visual tracking element and a transgenic pollen inactivation element, wherein the gene editing element, the exogenous T-DNA visual tracking element and the transgenic pollen inactivation element are constructed in the same T-DNA region of an expression vector, so that the three genes are linked and inherited. Introducing an enzymatic assembly entry sequence between the transgenic pollen inactivation element and the exogenous T-DNA visual tracking element; the DNA sequence of the enzymatic assembly inlet sequence is shown as SEQ ID NO.16, and specifically comprises: cgtggatggacaatttaaattccgttttacctg are provided.
The gene editing element is a CRISPR/Cas9 expression structure, and the CRISPR/Cas9 expression structure comprises a Cas9 gene expression frame and a gRNA expression frame; the Cas9 gene expression cassette was driven by the Ubi promoter (seq1) for the Cas9 gene (seq2) and terminated by the NOS terminator (seq 3). The nucleotide sequence of the Ubi promoter (SEQ1) is shown in SEQ ID NO. 1. The nucleotide sequence of the Cas9 gene (SEQ2) is shown as SEQ ID No. 2. The nucleotide sequence of the NOS terminator (SEQ3) is shown in SEQ ID NO. 3.
The gRNA expression cassette consists of a small RNA promoter (which may be one of OsU3(seq4), OsU6a (seq5), OsU6b (seq6), OsU6c (seq 7)), a target site, and a guide-RNA (seq 8).
OsU3 promoter (SEQ4) has the nucleotide sequence shown in SEQ ID NO. 4. The nucleotide sequence of the OsU6a promoter (SEQ5) is shown as SEQ ID No. 5. The nucleotide sequence of the OsU6b promoter (SEQ6) is shown as SEQ ID No. 6. The nucleotide sequence of the OsU6c promoter (SEQ7) is shown as SEQ ID No. 7.
The nucleotide sequence of guide-RNA (SEQ8) is shown in SEQ ID NO.8, and specifically comprises:
gttttagagctagaaatagcaagttaaaataaggctagtccgttatcaacttgaaaaagtggcaccgagtcggtgctttttttcaagagcttggagtggatggaattttcctccg。
the small RNA promoter and the guide-RNA are separated by a 1.8kb spacer sequence (SEQ15), and the DNA sequence of the spacer sequence is shown as SEQ ID NO.15, and specifically comprises:
tctgccagcccggctacccggcgaacttcgccggcgccggcggcttcagggacaacgtgaggacgctgctcggcttcgcgcacctggaggccggcgtccacggcgagaccaagtgctggtcgttccagctcgagctgcaccgccacccccccaccgtcgtgaggctcttcgtcgtcgaggaggaggtcgccgcctcgccgcaccgccagtgccacctctgccgccatattggtccgtcgaacaaactacaattaatcaatcaacctttacataggattgatccgatcgatgccatggtgttgtagggtgggggaggcatctgatatgcagcaagaggtatcacttcttgctgccgaggagggaatcggcggcggaagccgacggcctgtgcttcgcgatcaaccacggcggcggcggtggcgcggagaaagcgtcgtcgaaagggacgacgacgacggcctccagcagaggccacctgctacacggcgtcgtgcacctcaacggctacggccacctcgtcgccctccacggcctcgagggcggctccgacttcgtctccggccaccagatcatggacctctgggaccgcatttgctcagccttgcacgtaaggtagtagtagtatacatgtgcgtgtgcatgcatgcaagcaatgcaacgatgtcgggctgcgtgtgagaacatttgcttgggcatggtgtggtgtatgcaaggacggtgagcctggtggacacggcgaggaagggccacatggagctgaggctgctgcacggcgtcgcgtacggcgagacgtggttcgggcggtgggggtacaggtacggccggccgagctacggcgtcgcgctgccgtcgtaccggcagtcgctgcacgtgctcggctccatgccgctctgcgtgctggtgccgcacctgtcgtgcttcagccaggagctccccatggtggtcaccaagtaccaggccatcagcggccacaagctgctcagcctcggcgacctcctccgcttcatgctcgagctgcgcgcccgcctgccggccacctccgtcacggccatggactaccggggcatcatgtcggaggcctcgtgccggtggtcggcgaagcgcgtcgacatggcggcgcgcgccgtcgtggacgcgctccgccgcgccgagccggcggcgcggtgggtcacgcggcaggaggtgcgcgacgcggcgcgcgcctacatcggcgacacgggcctcctcgacttcgtgctcaagtccctcggcaaccacatcgtcggcaactacgtcgtgcgccgcaccatgaacccggtgaccaaggtgctcgagtactgcctcgaggacgtctccagcgtgctcccggcggtcgccgccggcggcggcgtgccggcgcagggcaagatgagggtgaggttccagctcacgcgtgcgcagctcatgagggacctggtgcacctgtaccggcacgtgctcaaggagcccagccaggcgctcaccggcggcgcgttcggcgcgatcccggtggcggtgcggatggtcctggacatcaagcacttcgtcaaagattaccacgaaggacaagccgcggcgagcagcaatggcggtggcggattcgggcatccccacatcaacctgtgctgcacgctgctcgtgagcaacgggagcccggagctagctccaccgtacgagacggtgaccctgccggcgcacgcgacggtgggcgagctgaagtgggaggcgcagagggtgttcagcgagatgtacctcggcctgaggagcttcgcggcggactccgtcgtcggggtcggcgccgac。
the exogenous T-DNA visual tracking element is an expression frame of a red fluorescent protein gene DsRed, an endosperm-specific promoter ltp (seq9) drives the DsRed gene (seq10), and a PINII terminator (seq11) terminates. The nucleotide sequence of the Ltp promoter (SEQ9) is shown in SEQ ID NO. 9. The nucleotide sequence of the DsRed gene (SEQ10) is shown in SEQ ID NO. 10. The nucleotide sequence of the PINII terminator (SEQ11) is shown in SEQ ID NO. 11.
The transgenic pollen inactivation element is an expression frame of a maize alpha-amylase gene ZMAA1, a ZMAA1 gene (seq13) is driven by a pollen-specific promoter Pg47(seq12), and is terminated by an IN2-1 terminator (seq 14). The nucleotide sequence of the Pg47 promoter (SEQ12) is shown as SEQ ID No. 12. The nucleotide sequence of the ZMAA1 gene (SEQ13) is shown as SEQ ID No. 13. The nucleotide sequence of the IN2-1 terminator (SEQ14) is shown IN SEQ ID NO. 14.
In the above basic structural elements, the gRNA expression cassette is constructed by homologous recombination of a gRNA expression cassette precursor with a target site, and the gRNA expression cassette precursor is constructed on pMD18-T, wherein a small RNA promoter (mainly OsU3, OsU6a, OsU6b, OsU6c) is separated from guide-RNA by a 1.8kb spacer sequence, so that the PCR-amplified gRNA expression cassette precursor can be conveniently recovered and subjected to homologous recombination with the target site (see fig. 1). The expression frame of the Cas9 gene, the expression frame of the DsRed gene and the expression frame of the ZMAA1 gene are constructed in the same T-DNA region of a plant expression vector C9DZ, so that the three genes are inherited in a linkage manner (shown in figure 2). A33 bp enzymatic assembly entry sequence cgtggatggacaatttaaattccgttttacctg is introduced between the ZMAA1 gene expression frame and the DsRed gene expression frame, the assembly entry sequence comprises a SwaI blunt-end enzyme cutting site, 15bp of homology is respectively arranged between the linearized vector after the SwaI enzyme cutting and forward and reverse primers of the gRNA expression frame, and an identical assembly entry sequence is regenerated after each gRNA expression frame is recombined and can be used for the cycle assembly of the next gRNA expression frame (see the attached figure 2).
Example 2
An application method of CRISPR/Cas9 gene editing for visually rejecting transgenic components in embodiment 1 is specifically applied to a rice panicle neck elongation gene OsEUI1, and specifically comprises the following steps:
(1) by usinghttp://skl.scau.edu.cn/targetdesign/The website targetDesign tool designs 2 target sites EUI1-U3-T1 and EUI-U6a-T2 of the OsEUI1 gene. The recombinant linker primer sequences EUI1-U3-T1-F and EUI1-U3-T1-R, EUI1-U6a-T2-F and EUI1-U6a-T2-R are designed according to target sites as follows, wherein underlined sequences are the corresponding target site sequences.
The target site-directed sequence is as follows:
the nucleotide sequence of EUI1-U3-T1(SEQ17) is shown as SEQ ID NO.17, and specifically comprises:gatcgccgggctgtgcatta
the nucleotide sequence of EUI-U6a-T2(SEQ18) is shown as SEQ ID NO.18, and specifically comprises:caagtacctccagaaaggcc
the target site recombination linker primer sequence is as follows:
the nucleotide sequence of EUI1-U3-T1-F (SEQ19) is shown as SEQ ID NO.19, and specifically comprises the following steps: agatgatccgtggcagatcgccgggctgtgcattagttttagagctagaa;
The nucleotide sequence of EUI1-U3-T1-R (SEQ20) is shown as SEQ ID NO.20, and specifically comprises: ttctagctctaaaactaatgcacagcccggcgatctgccacggatcatct, respectively;
the nucleotide sequence of EUI1-U6a-T2-F (SEQ21) is shown as SEQ ID NO.21, and specifically comprises the following steps: ctggcttggctgccgcaagtacctccagaaaggccgttttagagctagaa;
The nucleotide sequence of EUI1-U6a-T2-R (SEQ22) is shown as SEQ ID NO.22, and specifically comprises the following steps: ttctagctctaaaacggcctttctggaggtacttgcggcagccaagccag are provided.
(2) Respectively taking 10 mu L of forward primer F and reverse primer R, uniformly mixing, heating to 94 ℃, standing to room temperature, and preparing into target site recombinant joints EUI1-U3-T1-adapter and EUI-U6 a-T2-adapter.
(3) The corresponding U3-gRNA expression cassette precursor and U6a-gRNA expression cassette precursor were amplified using gRNA-F/OsU3-R and gRNA-F/OsU6a-R, respectively.
The nucleotide sequence of gRNA-F (SEQ23) is shown in SEQ ID NO.23, and specifically comprises: gttttagagctagaaatagcaagttaaaataag, respectively;
OsU3-R (SEQ24) has a nucleotide sequence shown as SEQ ID NO.24, and specifically comprises: tgccacggatcatctgcacaactcttttaaac, respectively;
OsU6 (6 a-R) (SEQ25) has a nucleotide sequence shown in SEQ ID NO.25, which specifically comprises: cggcagccaagccagcaccc are provided.
The PCR reaction system is as follows: KOD 2 XPCR buffer 25ul, 2mM dNTP 10ul, forward and reverse primers 1.5 uL each, KOD FX DNA polymerase 1 uL, template 1 uL about 50ng, 10uL ddH2O to a total volume of 50. mu.L.
The PCR reaction program is: firstly, performing pre-denaturation at 98 ℃ for 3 min; ② 35 circulation (98 ℃ for 10s, 60 ℃ for 30s and 68 ℃ for 2.5 min); extending for 5min at 68 ℃; and fourthly, storing at 4 ℃.
Agarose gel electrophoresis recovered 2.6kb of U3-gRNA expression cassette precursor and U6a-gRNA expression cassette precursor.
(4) The U3-gRNA expression frame precursor and the U6a-gRNA expression frame precursor are respectively subjected to enzymatic assembly with a target site recombinant joint EUI1-U3-T1-Adaptor and EUI-U6a-T2-Adaptor to obtain enzymatic assembly products EUI1-U3-T1-gRNA and EUI1-U6 a-T2-gRNA.
The enzymatic reaction system is as follows: the full gold 2 × Assembly Mix 5ul, gRNA expression cassette precursor 2.0 μ L (about 200ng), target site recombination linker 1.0 μ L, complement ddH2O to a total volume of 10. mu.L.
Reaction conditions are as follows: 50 ℃ for 20 min; 2min at 20 ℃; then stored at 12 ℃.
(5) And (3) transforming the enzymatic assembly products EUI1-U3-T1-gRNA and EUI1-U6a-T2-gRNA into escherichia coli competent cells in a heat shock mode to obtain transformation products. The transformation products were plated on LB plates containing kanamycin resistance for overnight culture. Single colonies are picked the next day and subjected to colony PCR detection by using universal primers M13-F and M13-R, and single colonies with the band size of 650bp are screened and sequenced.
The sequencing result shows that: the pEUI1-U3-T1-gRNA and pEUI1-U6a-T2-gRNA plasmids contain the complete gRNA expression cassette for the target site.
(6) The C9DZ vector was digested with SwaI, the linearized vector C9DZ was recovered after agarose gel electrophoresis, and the digestion system and digestion conditions were performed according to the instructions of NEB Inc. Plasmids pEUI1-U3-T1-gRNA and pEUI1-U6a-T2-gRNA containing the complete gRNA expression cassette, which are correctly sequenced in the amplification step (5) by using the recombinant primers gR-ZF and gR-ZR.
The nucleotide sequence of gR-ZF (SEQ26) is shown in SEQ ID NO.26, and specifically comprises the following steps:cgtggatggacaatttaa attccgttttacctgtggaatcgg;
the nucleotide sequence of gR-ZR (SEQ27) is shown in SEQ ID NO.27, and specifically comprises:caggtaaaacggaatttaattccatccactccaagctcttg。
the PCR reaction system is as follows: KOD 2 XPCR buffer 25. mu.L, 2mM dNTP 10. mu.L, forward and reverse primers 1.5. mu.L each, KOD FX DNA polymerase 1. mu.L, template 1. mu.L about 50ng, 10. mu.L ddH2O to a total volume of 50. mu.L.
The PCR reaction program is: firstly, performing pre-denaturation at 98 ℃ for 3 min; ② 35 circulation (98 ℃ for 10s, 60 ℃ for 30s and 68 ℃ for 45 s); extending for 5min at 68 ℃; and fourthly, storing at 4 ℃.
The expression cassettes of EUI1-U3-T1-gRNA and EUI1-U6a-T2-gRNA with the size of 600bp are recovered after agarose gel electrophoresis.
(7) And carrying out enzymatic assembly on a PCR product of a linearized vector C9DZ and EUI1-U3-T1-gRNA containing a recombinant primer and a complete gRNA expression frame to obtain an enzymatic assembly product C9DZ-EUI 1-T1.
The enzymatic reaction system is as follows: the total gold 2 × Assembly Mix 5 μ L, gRNA expression cassette precursor 2.0 μ L (about 200ng), target site recombination linker 1.0 μ L, complement ddH2O to a total volume of 10. mu.L.
Reaction conditions are as follows: 50 ℃ for 20 min; 2min at 20 ℃; then stored at 12 ℃.
(8) The enzymatic assembly product C9DZ-EUI1-T1 was transformed into E.coli competent cells by heat shock and the transformation product was plated on LB plates containing kanamycin resistance for overnight culture. And selecting a single colony on the next day, carrying out colony PCR detection by using primers Target-J-F and Target-J-R, screening the single colony with the band size of 803bp, and sequencing.
The PCR reaction system is as follows: KOD 2 XPCR buffer 25ul, 2mM dNTP 10uL, forward and reverse primers 1.5 uL each, KOD FX DNA polymerase 1 uL, template 1 uL about 50ng, 10uL ddH2O to a total volume of 50. mu.L.
The PCR reaction program is: firstly, performing pre-denaturation at 98 ℃ for 3 min; ② 35 circulation (98 ℃ for 10s, 60 ℃ for 30s and 68 ℃ for 50 s); extending for 5min at 68 ℃; and fourthly, storing at 4 ℃.
The sequencing result shows that: the correct plasmid was the gene editing vector pC9DZ-EUI1-T1 containing a single target site.
(9) SwaI enzyme digestion pC9DZ-EUI1-T1 vector, and EUI1-U6a-T2-gRNA expression frame PCR product containing recombinant primer and complete gRNA expression frame are subjected to enzymatic assembly to obtain enzymatic assembly product C9DZ-EUI 1-T1-T2. After the enzymatic assembly product is transformed into escherichia coli, single colonies with the band size of 1362bp are screened by using Target-J-F and Target-J-R primers and sequenced.
The PCR reaction system is as follows: KOD 2 XPCR buffer 25. mu.L, 2mM dNTP 10. mu.L, forward and reverse primers 1.5. mu.L each, KOD FX DNA polymerase 1. mu.L, template 1. mu.L about 50ng, 10. mu.L ddH2O to a total volume of 50. mu.L.
The PCR reaction program is: firstly, performing pre-denaturation at 98 ℃ for 3 min; ② 35 circulation (98 ℃ for 10s, 60 ℃ for 30s and 68 ℃ for 1 min); extending for 5min at 68 ℃; and fourthly, storing at 4 ℃.
The sequencing result shows that: the correct plasmid is the gene editing vector pC9DZ-EUI1-T1-T2 containing double target sites.
(10) The gene editing vector pC9DZ-EUI1-T1-T2 is used for transforming the rice variety Zhonghua 11 by adopting an agrobacterium-mediated method.
(11) Plant height was observed from T0 plant, seeds of T0 plant with increased plant height were harvested, and non-fluorescent seeds were screened from the individual plants with increased plant height (see FIG. 3).
(12) After the non-fluorescent seeds with increased plant height are planted, the field phenotype is that the plant height is increased, the seeds do not fluoresce (see figure 4), Cas9 gene and HPT gene in the plants are detected by PCR, the plants developed by the non-fluorescent seeds are found to contain no exogenous Cas9 gene and HPT gene (see figure 5), and the plants are gene editing plants without transgenic components and mutation of target sites.
The foregoing is merely a preferred embodiment of the invention and is not intended to limit the invention in any manner. Although the present invention has been described with reference to the preferred embodiments, it is not intended to be limited thereto. Those skilled in the art can make many possible variations and modifications to the disclosed embodiments, or equivalent modifications, without departing from the spirit and scope of the invention, using the methods and techniques disclosed above. Therefore, any simple modification, equivalent replacement, equivalent change and modification made to the above embodiments according to the technical essence of the present invention are still within the scope of the protection of the technical solution of the present invention.
Sequence listing
<110> research center for hybrid rice in Hunan province
Hunan Agricultural University
<120> visual CRISPR/Cas9 gene editing system and using method
<160> 27
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1763
<212> DNA
<213> corn (corn)
<400> 1
aggacaattg agtattttga caacaggact ctacagtttt atctttttag tgtgcatgtg 60
ttctcctttt tttttgcaaa tagcttcacc tatataatac ttcatccatt ttattagtac 120
atccatttag ggtttagggt taatggtttt tatagactaa tttttttagt acatctattt 180
tattctattt tagcctctaa attaagaaaa ctaaaactct attttagttt ttttatttaa 240
taatttagat ataaaataga ataaaataaa gtgactaaaa attaaacaaa taccctttaa 300
gaaattaaaa aaactaagga aacatttttc ttgtttcgag tagataatgc cagcctgtta 360
aacgccgtcg acgagtctaa cggacaccaa ccagcgaacc agcagcgtcg cgtcgggcca 420
agcgaagcag acggcacggc atctctgtcg ctgcctctgg acccctctcg agagttccgc 480
tccaccgttg gacttgctcc gctgtcggca tccagaaatt gcgtggcgga gcggcagacg 540
tgagccggca cggcaggcgg cctcctcctc ctctcacggc accggcagct acgggggatt 600
cctttcccac cgctccttcg ctttcccttc ctcgcccgcc gtaataaata gacaccccct 660
ccacaccctc tttccccaac ctcgtgttgt tcggagcgca cacacacaca accagatctc 720
ccccaaatcc acccgtcggc acctccgctt caaggtacgc cgctcgtcct cccccccccc 780
cctctctacc ttctctagat cggcgttccg gtccatggtt agggcccggt agttctactt 840
ctgttcatgt ttgtgttaga tccgtgtttg tgttagatcc gtgctgctag cgttcgtaca 900
cggatgcgac ctgtacgtca gacacgttct gattgctaac ttgccagtgt ttctctttgg 960
ggaatcctgg gatggctcta gccgttccgc agacgggatc gatttcatga ttttttttgt 1020
ttcgttgcat agggtttggt ttgccctttt cctttatttc aatatatgcc gtgcacttgt 1080
ttgtcgggtc atcttttcat gctttttttt gtcttggttg tgatgatgtg gtctggttgg 1140
gcggtcgttc tagatcggag tagaattctg tttcaaacta cctggtggat ttattaattt 1200
tggatctgta tgtgtgtgcc atacatattc atagttacga attgaagatg atggatggaa 1260
atatcgatct aggataggta tacatgttga tgcgggtttt actgatgcat atacagagat 1320
gctttttgtt cgcttggttg tgatgatgtg gtgtggttgg gcggtcgttc attcgttcta 1380
gatcggagta gaatactgtt tcaaactacc tggtgtattt attaattttg gaactgtatg 1440
tgtgtgtcat acatcttcat agttacgagt ttaagatgga tggaaatatc gatctaggat 1500
aggtatacat gttgatgtgg gttttactga tgcatataca tgatggcata tgcagcatct 1560
attcatatgc tctaaccttg agtacctatc tattataata aacaagtatg ttttataatt 1620
attttgatct tgatatactt ggatgatggc atatgcagca gctatatgtg gattttttta 1680
gccctgcctt catacgctat ttatttgctt ggtactgttt cttttgtcga tgctcaccct 1740
gttgtttggt gttacttctg cag 1763
<210> 2
<211> 4203
<212> DNA
<213> Streptococcus thermophilus
<400> 2
atggctccta agaagaagcg gaaggttggt attcacgggg tgcctgcggc tgacaagaag 60
tactccatcg gcctcgacat cggcaccaac agcgtcggct gggcggtgat caccgacgag 120
tacaaggtcc cgtccaagaa gttcaaggtc ctgggcaaca ccgaccgcca ctccatcaag 180
aagaacctca tcggcgccct cctcttcgac tccggcgaga cggcggaggc gacccgcctc 240
aagcgcaccg cccgccgccg ctacacccgc cgcaagaacc gcatctgcta cctccaggag 300
atcttctcca acgagatggc gaaggtcgac gactccttct tccaccgcct cgaggagtcc 360
ttcctcgtgg aggaggacaa gaagcacgag cgccacccca tcttcggcaa catcgtcgac 420
gaggtcgcct accacgagaa gtaccccact atctaccacc ttcgtaagaa gcttgttgac 480
tctactgata aggctgatct tcgtctcatc taccttgctc tcgctcacat gatcaagttc 540
cgtggtcact tccttatcga gggtgacctt aaccctgata actccgacgt ggacaagctc 600
ttcatccagc tcgtccagac ctacaaccag ctcttcgagg agaaccctat caacgcttcc 660
ggtgtcgacg ctaaggcgat cctttccgct aggctctcca agtccaggcg tctcgagaac 720
ctcatcgccc agctccctgg tgagaagaag aacggtcttt tcggtaacct catcgctctc 780
tccctcggtc tgacccctaa cttcaagtcc aacttcgacc tcgctgagga cgctaagctt 840
cagctctcca aggataccta cgacgatgat ctcgacaacc tcctcgctca gattggagat 900
cagtacgctg atctcttcct tgctgctaag aacctctccg atgctatcct cctttcggat 960
atccttaggg ttaacactga gatcactaag gctcctcttt ctgcttccat gatcaagcgc 1020
tacgacgagc accaccagga cctcaccctc ctcaaggctc ttgttcgtca gcagctcccc 1080
gagaagtaca aggagatctt cttcgaccag tccaagaacg gctacgccgg ttacattgac 1140
ggtggagcta gccaggagga gttctacaag ttcatcaagc caatccttga gaagatggat 1200
ggtactgagg agcttctcgt taagcttaac cgtgaggacc tccttaggaa gcagaggact 1260
ttcgataacg gctctatccc tcaccagatc caccttggtg agcttcacgc catccttcgt 1320
aggcaggagg acttctaccc tttcctcaag gacaaccgtg agaagatcga gaagatcctt 1380
actttccgta ttccttacta cgttggtcct cttgctcgtg gtaactcccg tttcgcttgg 1440
atgactagga agtccgagga gactatcacc ccttggaact tcgaggaggt tgttgacaag 1500
ggtgcttccg cccagtcctt catcgagcgc atgaccaact tcgacaagaa cctccccaac 1560
gagaaggtcc tccccaagca ctccctcctc tacgagtact tcacggtcta caacgagctc 1620
accaaggtca agtacgtcac cgagggtatg cgcaagcctg ccttcctctc cggcgagcag 1680
aagaaggcta tcgttgacct cctcttcaag accaaccgca aggtcaccgt caagcagctc 1740
aaggaggact acttcaagaa gatcgagtgc ttcgactccg tcgagatcag cggcgttgag 1800
gaccgtttca acgcttctct cggtacctac cacgatctcc tcaagatcat caaggacaag 1860
gacttcctcg acaacgagga gaacgaggac atcctcgagg acatcgtcct cactcttact 1920
ctcttcgagg atagggagat gatcgaggag aggctcaaga cttacgctca tctcttcgat 1980
gacaaggtta tgaagcagct caagcgtcgc cgttacaccg gttggggtag gctctcccgc 2040
aagctcatca acggtatcag ggataagcag agcggcaaga ctatcctcga cttcctcaag 2100
tctgatggtt tcgctaacag gaacttcatg cagctcatcc acgatgactc tcttaccttc 2160
aaggaggata ttcagaaggc tcaggtgtcc ggtcagggcg actctctcca cgagcacatt 2220
gctaaccttg ctggttcccc tgctatcaag aagggcatcc ttcagactgt taaggttgtc 2280
gatgagcttg tcaaggttat gggtcgtcac aagcctgaga acatcgtcat cgagatggct 2340
cgtgagaacc agactaccca gaagggtcag aagaactcga gggagcgcat gaagaggatt 2400
gaggagggta tcaaggagct tggttctcag atccttaagg agcaccctgt cgagaacacc 2460
cagctccaga acgagaagct ctacctctac tacctccaga acggtaggga tatgtacgtt 2520
gaccaggagc tcgacatcaa caggctttct gactacgacg tcgaccacat tgttcctcag 2580
tctttcctta aggatgactc catcgacaac aaggtcctca cgaggtccga caagaacagg 2640
ggtaagtcgg acaacgtccc ttccgaggag gttgtcaaga agatgaagaa ctactggagg 2700
cagcttctca acgctaagct cattacccag aggaagttcg acaacctcac gaaggctgag 2760
aggggtggcc tttccgagct tgacaaggct ggtttcatca agaggcagct tgttgagacg 2820
aggcagatta ccaagcacgt tgctcagatc ctcgattcta ggatgaacac caagtacgac 2880
gagaacgaca agctcatccg cgaggtcaag gtgatcaccc tcaagtccaa gctcgtctcc 2940
gacttccgca aggacttcca gttctacaag gtccgcgaga tcaacaacta ccaccacgct 3000
cacgatgctt accttaacgc tgtcgttggt accgctctta tcaagaagta ccctaagctt 3060
gagtccgagt tcgtctacgg tgactacaag gtctacgacg ttcgtaagat gatcgccaag 3120
tccgagcagg agatcggcaa ggccaccgcc aagtacttct tctactccaa catcatgaac 3180
ttcttcaaga ccgagatcac cctcgccaac ggcgagatcc gcaagcgccc tcttatcgag 3240
acgaacggtg agactggtga gatcgtttgg gacaagggtc gcgacttcgc tactgttcgc 3300
aaggtccttt ctatgcctca ggttaacatc gtcaagaaga ccgaggtcca gaccggtggc 3360
ttctccaagg agtctatcct tccaaagaga aactcggaca agctcatcgc taggaagaag 3420
gattgggacc ctaagaagta cggtggtttc gactccccta ctgtcgccta ctccgtcctc 3480
gtggtcgcca aggtggagaa gggtaagtcg aagaagctca agtccgtcaa ggagctcctc 3540
ggcatcacca tcatggagcg ctcctccttc gagaagaacc cgatcgactt cctcgaggcc 3600
aagggctaca aggaggtcaa gaaggacctc atcatcaagc tccccaagta ctctcttttc 3660
gagctcgaga acggtcgtaa gaggatgctg gcttccgctg gtgagctcca gaagggtaac 3720
gagcttgctc ttccttccaa gtacgtgaac ttcctctacc tcgcctccca ctacgagaag 3780
ctcaagggtt cccctgagga taacgagcag aagcagctct tcgtggagca gcacaagcac 3840
tacctcgacg agatcatcga gcagatctcc gagttctcca agcgcgtcat cctcgctgac 3900
gctaacctcg acaaggtcct ctccgcctac aacaagcacc gcgacaagcc catccgcgag 3960
caggccgaga acatcatcca cctcttcacg ctcacgaacc tcggcgcccc tgctgctttc 4020
aagtacttcg acaccaccat cgacaggaag cgttacacgt ccaccaagga ggttctcgac 4080
gctactctca tccaccagtc catcaccggt ctttacgaga ctcgtatcga cctttcccag 4140
cttggtggtg ataagcgtcc tgctgccacc aaaaaggccg gacaggctaa gaaaaagaag 4200
tag 4203
<210> 3
<211> 253
<212> DNA
<213> nopaline synthase (nopalinesynthase)
<400> 3
gatcgttcaa acatttggca ataaagtttc ttaagattga atcctgttgc cggtcttgcg 60
atgattatca tataatttct gttgaattac gttaagcatg taataattaa catgtaatgc 120
atgacgttat ttatgaggtg ggtttttatg attagagtcc cgcaattata catttaatac 180
gcgatagaaa acaaaatata gcgcgcaaac taggataaat tatcgcgcgc ggtgtcatct 240
atgttactag atc 253
<210> 4
<211> 383
<212> DNA
<213> Rice (rice)
<400> 4
aaggaatctt taaacatacg aacagatcac ttaaagttct tctgaagcaa cttaaagtta 60
tcaggcatgc atggatcttg gaggaatcag atgtgcagtc agggaccata gcacaagaca 120
ggcgtcttct actggtgcta ccagcaaatg ctggaagccg ggaacactgg gtacgttgga 180
aaccacgtgt gatgtgaagg agtaagataa actgtaggag aaaagcattt cgtagtgggc 240
catgaagcct ttcaggacat gtattgcagt atgggccggc ccattacgca attggacgac 300
aacaaagact agtattagta ccacctcggc tatccacata gatcaaagct ggtttaaaag 360
agttgtgcag atgatccgtg gca 383
<210> 5
<211> 466
<212> DNA
<213> Rice (rice)
<400> 5
tggaatcggc agcaaaggat tttttcctgt agttttccca caaccatttt ttaccatccg 60
aatgatagga taggaaaaat atccaagtga acagtattcc tataaaattc ccgtaaaaag 120
cctgcaatcc gaatgagccc tgaagtctga actagccggt cacctgtaca ggctatcgag 180
atgccataca agagacggta gtaggaacta ggaagacgat ggttgattcg tcaggcgaaa 240
tcgtcgtcct gcagtcgcat ctatgggcct ggacggaata ggggaaaaag ttggccggat 300
aggagggaaa ggcccaggtg cttacgtgcg aggtaggcct gggctctcag cacttcgatt 360
cgttggcacc ggggtaggat gcaatagaga gcaacgttta gtaccacctc gcttagctag 420
agcaaactgg actgccttat atgcgcgggt gctggcttgg ctgccg 466
<210> 6
<211> 350
<212> DNA
<213> Rice (rice)
<400> 6
gaatcggcag caaaggatgc aagaacgaac taagccggac aaaaaaaaaa ggagcacata 60
tacaaaccgg ttttattcat gaatggtcac gatggatgat ggggctcaga cttgagctac 120
gaggccgcag gcgagagaag cctagtgtgc tctctgcttg tttgggccgt aacggaggat 180
acggccgacg agcgtgtact accgcgcggg atgccgctgg gcgctgcggg ggccgttgga 240
tggggatcgg tgggtcgcgg gagcgttgag gggagacagg tttagtacca cctcgcctac 300
cgaacaatga agaacccacc ttataacccc gcgcgctgcc gcttgtgttg 350
<210> 7
<211> 760
<212> DNA
<213> Rice (rice)
<400> 7
ggaatcggca gcaaaggact cattagcggt atgcatgttg gtagaagtcg gagatgtaaa 60
taattttcat tatataaaaa aggtacttcg agaaaaataa atgcatacga attaattctt 120
tttatgtttt ttaaaccaag tatatagaat ttattgatgg ttaaaatttc aaaaatatga 180
cgagagaaag gttaaacgta cggcatatac ttctgaacag agagggaata tggggttttt 240
gttgctccca acaattctta agcacgtaaa ggaaaaaagc acattatcca cattgtactt 300
ccagagatat gtacagcatt acgtaggtac gttttctttt tcttcccgga gagatgatac 360
aataatcatg taaacccaga atttaaaaaa tattctttac tataaaaatt ttaattaggg 420
aacgtattat tttttacatg acaccttttg agaaagaggg acttgtaata tgggacaaat 480
gaacaatttc taagaaatgg gcatatgact ctcagtacaa tggaccaaat tccctccagt 540
cggcccagca atacaaaggg aaagaaatga gggggcccac aggccacggc ccacttttct 600
ccgtggtggg gagatccagc tagaggtccg gcccacaagt ggcccttgcc ccgtgggacg 660
gtgggattgc agagcgcgtg ggcggaaaca acagtttagt accacctcgc tcacgcaacg 720
acgcgaccac ttgcttataa gctgctgcgc tgaggctcag 760
<210> 8
<211> 115
<212> DNA
<213> Rice (rice)
<400> 8
gttttagagc tagaaatagc aagttaaaat aaggctagtc cgttatcaac ttgaaaaagt 60
ggcaccgagt cggtgctttt tttcaagagc ttggagtgga tggaattttc ctccg 115
<210> 9
<211> 831
<212> DNA
<213> corn (corn)
<400> 9
aaaccgtctc ttcgtgagaa taaccgtggc ctaaaaataa gccgatgagg ataaataaaa 60
tgtggtggta cagtacttca agaggtttac tcatcaagag gatgcttttc cgatgagctc 120
tagtagtaca tcggacctca catacctcca ttgtggtgaa atattttgtg ctcatttagt 180
gatgggtaaa ttttgtttat gtcactctag gttttgacat ttcagttttg ccactcttag 240
gttttgacaa ataatttcca ttccgcggca aaagcaaaac aattttattt tacttttacc 300
actcttagct ttcacaatgt atcacaaatg ccactctaga aattctgttt atgccacaga 360
atgtgaaaaa aaacactcac ttatttgaag ccaaggtgtt catggcatgg aaatgtgaca 420
taaagtaacg ttcgtgtata agaaaaaatt gtactcctcg taacaagaga cggaaacatc 480
atgagacaat cgcgtttgga aggctttgca tcacctttgg atgatgcgca tgaatggagt 540
cgtctgcttg ctagccttcg cctaccgccc actgagtccg ggcggcaact accatcggcg 600
aacgacccag ctgacctcta ccgaccggac ttgaatgcgc taccttcgtc agcgacgatg 660
gccgcgtacg ctggcgacgt gcccccgcat gcatggcggc acatggcgag ctcagaccgt 720
gcgtggctgg ctacaaatac gtaccccgtg agtgccctag ctagaaactt acacctgcaa 780
ctgcgagagc gagcgtgtga gtgtagccga gtagatccac cggtcgccac c 831
<210> 10
<211> 678
<212> DNA
<213> coral worm (Discosoma)
<400> 10
atggcctcct ccgagaacgt catcaccgag ttcatgcgct tcaaggtgcg catggagggc 60
accgtgaacg gccacgagtt cgagatcgag ggcgagggcg agggccgccc ctacgagggc 120
cacaacaccg tgaagctgaa ggtgacgaag ggcggccccc tgcccttcgc ctgggacatc 180
ctgtcccccc agttccagta cggctccaag gtgtacgtga agcaccccgc cgacatcccc 240
gactacaaga agctgtcctt ccccgagggc ttcaagtggg agcgcgtgat gaacttcgag 300
gacggcggcg tggcgaccgt gacccaggac tcctccctgc aggacggctg cttcatctac 360
aaggtgaagt tcatcggcgt gaacttcccc tccgacggcc ccgtgatgca gaagaagacc 420
atgggctggg aggcctccac cgagcgcctg tacccccgcg acggcgtgct gaagggcgag 480
acccacaagg ccctgaagct gaaggacggc ggccactacc tggtggagtt caagtccatc 540
tacatggcca agaagcccgt gcagctgccc ggctactact acgtggacgc caagctggac 600
atcacctccc acaacgagga ctacaccatc gtggagcagt acgagcgcac cgagggccgc 660
caccacctgt tcctgtag 678
<210> 11
<211> 342
<212> DNA
<213> corn (corn)
<400> 11
cggcccatgg atattcgaac gcgtagactt gtccatcttc tggattggcc aacttaatta 60
atgtatgaaa taaaaggatg cacacatagt gacatgctaa tcactataat gtgggcatca 120
aagttgtgtg ttatgtgtaa ttactagtta tctgaataaa agagaaagag atcatccata 180
tttcttatcc taaatgaatg tcacgtgtct ttataattct ttgatgaacc agatgcattt 240
cattaaccaa atccatatac atataaatat taatcatata taattaatat caattgggtt 300
agcaaaacaa atctagtcta ggtgtgtttt gcgaatgcgg cc 342
<210> 12
<211> 2717
<212> DNA
<213> corn (corn)
<400> 12
ggcataccag acagtccggt gtgccagatc agggcaccct tcggttcctt tgctcctttg 60
cttttgaacc ctaactttga tcgtttattg gtttgtgttg aacctttatg cacctgtgga 120
atatataatc tagaacaaac tagttagtcc aatcatttgt gttgggcatt caaccaccaa 180
aattatttat aggaaaaggt taaaccttat ttccctttca atctccccct ttttggtgat 240
tgatgccaac acaaaccaaa gaaaatatat aagtgcagaa ttgaactagt ttgcataagg 300
taagtgcata ggttacttag aattaaatca atttatactt ttacttgata tgcatggttg 360
ctttctttta ttttaacatt ttggaccaca tttgcaccac ttgttttgtt ttttgcaaat 420
ctttttggaa attctttttc aaagtctttt gcaaatagtc aaaggtatat gaataagatt 480
gtaagaagca ttttcaagat ttgaaatttc tccccctgtt tcaaatgctt ttcctttgac 540
taaacaaaac tccccctgaa taaaattctc ctcttagctt tcaagagggt tttaaataga 600
tatcaattgg aaatatattt agatgctaat tttgaaaata taccaattga aaatcaacat 660
accaatttga aattaaacat accaatttaa aaaatttcaa aaagtggtgg tgcggtcctt 720
ttgctttggg cttaatattt ctcccccttt ggcattaatc gccaaaaacg gagactttgt 780
gagccattta tactttctcc ccattggtaa atgaaatatg agtgaaagat tataccaaat 840
ttggacagtg atgcggagtg acggcgaagg ataaacgata ccgttagagt ggagtggaag 900
ccttgtcttc gccgaagact ccatttccct ttcaatctac gacttagcat agaaatacac 960
ttgaaaacac attagtcgta gccacgaaag agatatgatc aaaggtatac aaatgagcta 1020
tgtgtgtaat gtttcaatca aagtttcgag aatcaagaat atttagctca ttcctaagtt 1080
tgctaaaggt tttatcatat aatggtttgg taaagatatc gactaattgt tctttggtgc 1140
taacataagc aatctcgata tcaccccttt gttggtgatc cctcaaaaag tgataccgaa 1200
tgtctatgtg cttagtgcgg ctgtgttcaa cgggattatc cgccatgcag atagcactct 1260
cattgtcaca taggagaggg actttgctca atttgtagcc atagtcccta aggttttgcc 1320
tcatccaaag taattgcaca caacaatgtc ctgcggcaat atacttggct tcggcggtag 1380
aaagagctat tgagttttgt ttctttgaag tccaagacac cagggatctc cctagaaact 1440
gacaagtccc tgatgtgctc ttcctatcaa ttttacaccc tgcccaatcg gcatctgaat 1500
atcctattaa atcaaaggtg gatcccttgg ggtaccaaag accaaattta ggagtgtaaa 1560
ctaaatatct catgattctt ttcacggccc taaggtgaac ttccttagga tcggcttgga 1620
atcttgcaca catgcatata gaaagcatac tatctggtcg agatgcacat aaatagagta 1680
aagatcctat catcgaccgg tatacctttt ggtctacgga tttacctccc gtgtcgaggt 1740
cgagatgccc attagttccc atgggtgtcc tgatgggctt ggcatccttc attccaaact 1800
tgttgagtat gtcttgaatg tactttgttt ggctgatgaa ggtgccatct tggagttgct 1860
tgacttgaaa tcctagaaaa tatttcaact tccccatcat agacatctcg aatttcggaa 1920
tcatgatcct actaaactct tcacaagtag atttgttagt agacccaaat ataatatcat 1980
caacataaat ttggcataca aacaaaactt ttgaaatggt tttagtaaag agagtaggat 2040
cggctttact gactctgaag ccattagtga taagaaaatc tcttaggcat tcataccatg 2100
ctgttggggc ttgcttgagc ccataaagcg cctttgagag tttataaaca tggttagggt 2160
actcactatc ttcaaagccg agaggttgct caacatagac ctattcaccc catttgatca 2220
cttttttggt ccttcaggat ctaatagtta tgtataattt agagtctctt gtttaatggc 2280
cagatatttc taattaatct aagaatttat gatatttttt aattttttat catgtctgat 2340
gagaattaac ataaaggctc aattgggtcc tgaattaata atagagtgaa aattaatcca 2400
gaggctctat tagaaccttc aattagtaat accaagatat atataagata gtagagtata 2460
gtttaaatgt tggcattgtt cattctttct tttgttattt aatttatgct ttccacggtg 2520
gttagtggtt acttctgaag ggtccaaata atgcatgaag agtttgagga caagaagtct 2580
gccctaaaaa tagcgatgca aaggcatggt gtccaagcca tacatatagc gcactaattt 2640
tatcagcaga acaatggtat ttataggtcc tagtgcccag gcaacaagag acacgaataa 2700
agcatcgatc acgacac 2717
<210> 13
<211> 1488
<212> DNA
<213> corn (corn)
<400> 13
atggcggcga caatggcagt gacgacgatg gtgacgagga gcaaggagag ctggtcgtca 60
ttgcaggtcc cggcggtggc attcccttgg aagccacgag gtggcaagac cggcggcctc 120
gagttccctc gccgggcgat gttcgccagc gtcggcctca acgtgtgccc gggcgtcccg 180
gcggggcgcg acccgcggga gcccgatccc aaggtcgtcc gggcggcctg cggcctggtc 240
caggcacaag tcctcttcca ggggtttaac tgggagtcgt gcaagcagca gggaggctgg 300
tacaacaggc tcaaggccca ggtcgacgac atcgccaagg ccggcgtcac gcacgtctgg 360
ctgcctccac cctcgcactc cgtctcgcca caaggctaca tgccaggccg cctatacgac 420
ctggacgcgt ccaagtacgg cacggcggcg gagctcaagt ccctgatagc ggcgttccac 480
ggcaggggcg tgcagtgcgt ggcggacatc gtcatcaacc accggtgcgc ggaaaagaag 540
gacgcgcgcg gcgtgtactg catcttcgag ggcgggactc ccgacgaccg cttggactgg 600
ggccccggga tgatctgcag cgacgacacg cagtactcgg acgggacggg gcaccgcgac 660
acgggcgagg ggttcgcggc ggcgcccgac atcgaccacc tcaacccgcg cgtgcagcgg 720
gagctctccg cctggctcaa ctggctcagg tccgacgccg tggggttcga cggctggcgc 780
ctcgacttcg ccaagggcta ctcgccggcc gtcgccagaa tgtacgtgga gagcacgggg 840
ccgccgagct tcgtcgtcgc ggagatatgg aactcgctga gctacagcgg ggacggcaag 900
ccggcgccca accaggacca gtgccggcag gagctgctgg actggacgcg ggccgtcggc 960
gggcccgcca tggcgttcga cttccccacc aagggcctgc tgcaggcggg cgtgcagggg 1020
gagctgtggc ggctgcgcga cagctccggc aacgcggccg gcctgatcgg gtgggcgccc 1080
gagaaggccg tcaccttcgt cgacaaccat gacaccgggt cgacgcagaa gctctggccg 1140
ttcccatccg acaaggtcat gcagggctac gcctacatcc tcacccatcc aggagtcccc 1200
tgcattttct acgaccacat gttcgactgg aacctgaagc aggagatatc cacgctgtct 1260
gccatcaggg cgcggaacgg catccgcgcc gggagcaagc tgcggatcct cgtggcggac 1320
gcggacgcgt acgtggccgt cgtcgacgag aaggtcatgg tgaagatcgg gacaaggtac 1380
ggcgtgagca gcgtggtccc gtcggatttc cacccggcgg cgcacggcaa ggactactgc 1440
gtctgggaga aagcgagcct ccgcgtcccg gcggggcgcc acctctag 1488
<210> 14
<211> 421
<212> DNA
<213> corn (corn)
<400> 14
cagctcagat tgctcagtct tgtgctgcat tgcaaacaca gcagcacgac actgcataac 60
gtcttttcct tgagatctga caaagcagca ttagtccgtt gatcggtgga agaccactcg 120
tcagtgttga gttgaatgtt tgatcaataa aatacggcaa tgctgtaagg gttgtttttt 180
atgccattga taatacactg tactgttcag ttgttgaact ctatttctta gccatgccaa 240
gtgcttttct tattttgaat aacattacag caaaaagttg aaagacaaaa aaaaaaaccc 300
ccgaacagag tgctttgggt cccaagctac tttagactgt gttcggcgtt ccccctaaat 360
ttctccccct atatctcact cacttgtcac atcagcgttc tctttcccct atatctccac 420
g 421
<210> 15
<211> 1800
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 15
tctgccagcc cggctacccg gcgaacttcg ccggcgccgg cggcttcagg gacaacgtga 60
ggacgctgct cggcttcgcg cacctggagg ccggcgtcca cggcgagacc aagtgctggt 120
cgttccagct cgagctgcac cgccaccccc ccaccgtcgt gaggctcttc gtcgtcgagg 180
aggaggtcgc cgcctcgccg caccgccagt gccacctctg ccgccatatt ggtccgtcga 240
acaaactaca attaatcaat caacctttac ataggattga tccgatcgat gccatggtgt 300
tgtagggtgg gggaggcatc tgatatgcag caagaggtat cacttcttgc tgccgaggag 360
ggaatcggcg gcggaagccg acggcctgtg cttcgcgatc aaccacggcg gcggcggtgg 420
cgcggagaaa gcgtcgtcga aagggacgac gacgacggcc tccagcagag gccacctgct 480
acacggcgtc gtgcacctca acggctacgg ccacctcgtc gccctccacg gcctcgaggg 540
cggctccgac ttcgtctccg gccaccagat catggacctc tgggaccgca tttgctcagc 600
cttgcacgta aggtagtagt agtatacatg tgcgtgtgca tgcatgcaag caatgcaacg 660
atgtcgggct gcgtgtgaga acatttgctt gggcatggtg tggtgtatgc aaggacggtg 720
agcctggtgg acacggcgag gaagggccac atggagctga ggctgctgca cggcgtcgcg 780
tacggcgaga cgtggttcgg gcggtggggg tacaggtacg gccggccgag ctacggcgtc 840
gcgctgccgt cgtaccggca gtcgctgcac gtgctcggct ccatgccgct ctgcgtgctg 900
gtgccgcacc tgtcgtgctt cagccaggag ctccccatgg tggtcaccaa gtaccaggcc 960
atcagcggcc acaagctgct cagcctcggc gacctcctcc gcttcatgct cgagctgcgc 1020
gcccgcctgc cggccacctc cgtcacggcc atggactacc ggggcatcat gtcggaggcc 1080
tcgtgccggt ggtcggcgaa gcgcgtcgac atggcggcgc gcgccgtcgt ggacgcgctc 1140
cgccgcgccg agccggcggc gcggtgggtc acgcggcagg aggtgcgcga cgcggcgcgc 1200
gcctacatcg gcgacacggg cctcctcgac ttcgtgctca agtccctcgg caaccacatc 1260
gtcggcaact acgtcgtgcg ccgcaccatg aacccggtga ccaaggtgct cgagtactgc 1320
ctcgaggacg tctccagcgt gctcccggcg gtcgccgccg gcggcggcgt gccggcgcag 1380
ggcaagatga gggtgaggtt ccagctcacg cgtgcgcagc tcatgaggga cctggtgcac 1440
ctgtaccggc acgtgctcaa ggagcccagc caggcgctca ccggcggcgc gttcggcgcg 1500
atcccggtgg cggtgcggat ggtcctggac atcaagcact tcgtcaaaga ttaccacgaa 1560
ggacaagccg cggcgagcag caatggcggt ggcggattcg ggcatcccca catcaacctg 1620
tgctgcacgc tgctcgtgag caacgggagc ccggagctag ctccaccgta cgagacggtg 1680
accctgccgg cgcacgcgac ggtgggcgag ctgaagtggg aggcgcagag ggtgttcagc 1740
gagatgtacc tcggcctgag gagcttcgcg gcggactccg tcgtcggggt cggcgccgac 1800
<210> 16
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 16
cgtggatgga caatttaaat tccgttttac ctg 33
<210> 17
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 17
gatcgccggg ctgtgcatta 20
<210> 18
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 18
caagtacctc cagaaaggcc 20
<210> 19
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 19
agatgatccg tggcagatcg ccgggctgtg cattagtttt agagctagaa 50
<210> 20
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 20
ttctagctct aaaactaatg cacagcccgg cgatctgcca cggatcatct 50
<210> 21
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 21
ctggcttggc tgccgcaagt acctccagaa aggccgtttt agagctagaa 50
<210> 22
<211> 50
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 22
ttctagctct aaaacggcct ttctggaggt acttgcggca gccaagccag 50
<210> 23
<211> 33
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 23
gttttagagc tagaaatagc aagttaaaat aag 33
<210> 24
<211> 32
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 24
tgccacggat catctgcaca actcttttaa ac 32
<210> 25
<211> 20
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 25
cggcagccaa gccagcaccc 20
<210> 26
<211> 42
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 26
cgtggatgga caatttaaat tccgttttac ctgtggaatc gg 42
<210> 27
<211> 41
<212> DNA
<213> Artificial Sequence (Artificial Sequence)
<400> 27
caggtaaaac ggaatttaat tccatccact ccaagctctt g 41

Claims (10)

1. A visual CRISPR/Cas9 gene editing system is characterized by comprising a gene editing element, an exogenous T-DNA visual tracking element and a transgenic pollen inactivation element, wherein the gene editing element, the exogenous T-DNA visual tracking element and the transgenic pollen inactivation element are constructed in the same T-DNA region of an expression vector;
the transgenic pollen inactivation element is an expression frame of a corn alpha-amylase gene ZMAA1, a ZMAA1 gene is driven by a pollen specific promoter Pg47, and the gene is terminated by an IN2-1 terminator;
the DNA sequence of the pollen specific promoter Pg47 is shown in SEQ ID NO. 12;
the DNA sequence of the ZMAA1 gene is shown as SEQ ID NO. 13;
the DNA sequence of the IN2-1 terminator is shown IN SEQ ID NO. 14.
2. The visualized CRISPR/Cas9 gene editing system according to claim 1, wherein the gene editing element is a CRISPR/Cas9 expression structure, and the CRISPR/Cas9 expression structure comprises a Cas9 gene expression cassette and a gRNA expression cassette.
3. The visualized CRISPR/Cas9 gene editing system according to claim 2, wherein the Cas9 gene expression cassette is characterized in that the Cas9 gene is driven by a Ubi promoter and is terminated by a NOS terminator;
the DNA sequence of the Ubi promoter is shown as SEQ ID NO. 1;
the DNA sequence of the Cas9 gene is shown as SEQ ID NO. 2;
the DNA sequence of the NOS terminator is shown in SEQ ID NO. 3.
4. The visualized CRISPR/Cas9 gene editing system according to claim 2, wherein the gRNA expression cassette comprises a small RNA promoter and a guide-RNA separated by a spacer sequence;
the small RNA promoter is one of OsU3, OsU6a, OsU6b and OsU6 c;
the DNA sequence of OsU3 is shown in SEQ ID NO. 4;
the DNA sequence of OsU6a is shown as SEQ ID NO. 5;
the DNA sequence of OsU6b is shown as SEQ ID NO. 6;
the DNA sequence of OsU6c is shown as SEQ ID NO. 7;
the guide-RNA sequence is shown as SEQ ID NO. 8;
the DNA sequence of the spacer sequence is shown as SEQ ID NO. 15.
5. The visualized CRISPR/Cas9 gene editing system according to claim 1, wherein the exogenous T-DNA visualization tracking element is an expression cassette of red fluorescent protein gene DsRed, the DsRed gene is driven by endosperm-specific promoter ltp and terminated by a PINII terminator;
the DNA sequence of the endosperm-specific promoter ltp is shown as SEQ ID NO. 9;
the DNA sequence of the DsRed gene is shown in SEQ ID NO. 10;
the DNA sequence of the PINII terminator is shown as SEQ ID NO. 11.
6. The visual CRISPR/Cas9 gene editing system according to claims 1 to 5, characterized in that an enzymatic assembly entry sequence is introduced between a transgenic pollen inactivation element and an exogenous T-DNA visual tracking element; the DNA sequence of the enzymatic assembly inlet sequence is shown as SEQ ID NO. 16.
7. A method of using the visualized CRISPR/Cas9 gene editing system of any one of claims 1-6, comprising the steps of:
s1, designing a joint primer sequence according to a target site of a gene to be knocked out, and synthesizing a target site recombination joint T1-Adapter and T2-Adapter; primers gRNA-F, OsU3-R and OsU6-R are designed according to a small RNA promoter and guide-RNA, and a U3-gRNA expression frame precursor and a U6-gRNA expression frame precursor are obtained through respective amplification;
s2, carrying out enzymatic assembly on the U3-gRNA expression frame precursor and the U6-gRNA expression frame precursor and a target site recombinant joint T1-Adapter and T2-Adapter respectively to obtain enzymatic assembly products U3-T1-gRNA and U6-T2-gRNA;
s3, converting the enzymatic assembly products U3-T1-gRNA and U6-T2-gRNA into escherichia coli competent cells to obtain transformants pU3-T1-gRNA and pU6-T2-gRNA containing the complete gRNA expression cassette of the target site;
s4, amplifying the pU3-T1-gRNA and the pU6-T2-gRNA by using recombinant primers gR-ZF and gR-ZR to obtain an amplification product U3-T1-gRNA expression frame and a U6-T1-gRNA expression frame which contain recombinant primers and a complete gRNA expression frame;
s5, carrying out enzymatic assembly on the U3-T1-gRNA expression cassette and a C9DZ vector to obtain an enzymatic assembly product I;
s6, after the enzymatic assembly product I is transformed into an escherichia coli competent cell, screening a transformant containing a gene editing vector of a single target site;
s7, carrying out enzymatic assembly on the transformant and the U6-T2-gRNA expression cassette to obtain an enzymatic assembly product II;
s8, introducing the enzymatic assembly product II into rice to obtain a gene editing plant with a mutated target site;
s9, screening seeds without red fluorescence according to the fact that whether endosperm contains fluorescence or not from gene editing plant offspring with mutation of the target site, namely the target plant with the transgenic components removed and the target site mutated.
8. The use of claim 7, wherein the gRNA-F has the sequence set forth in SEQ ID No. 23;
the sequence of OsU3-R is shown in SEQ ID NO. 24;
the sequence of OsU6-R is shown in SEQ ID NO. 25.
9. The use method as claimed in claim 7, characterized in that the DNA sequence of the recombination primer gR-ZF is shown in SEQ ID No. 26;
the DNA sequence of the recombinant primer gR-ZR is shown in SEQ ID NO. 27.
10. The use of claim 7, wherein the vector is a C9DZ vector.
CN202110679391.4A 2021-06-18 2021-06-18 Visual CRISPR/Cas9 gene editing system and using method Active CN113430224B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110679391.4A CN113430224B (en) 2021-06-18 2021-06-18 Visual CRISPR/Cas9 gene editing system and using method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110679391.4A CN113430224B (en) 2021-06-18 2021-06-18 Visual CRISPR/Cas9 gene editing system and using method

Publications (2)

Publication Number Publication Date
CN113430224A true CN113430224A (en) 2021-09-24
CN113430224B CN113430224B (en) 2022-10-18

Family

ID=77756584

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110679391.4A Active CN113430224B (en) 2021-06-18 2021-06-18 Visual CRISPR/Cas9 gene editing system and using method

Country Status (1)

Country Link
CN (1) CN113430224B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807198A (en) * 2022-05-31 2022-07-29 南京农业大学 CRISPR/Cas9 vector with visual protein fusion antibiotic screening marker and construction method and application thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634506A (en) * 2012-04-06 2012-08-15 湖南杂交水稻研究中心 Method for applying adhesive tail end joints to flanking sequence separation
CN105063083A (en) * 2015-07-16 2015-11-18 湖南杂交水稻研究中心 Method for creating rice engineering maintainer lines preventive against gene flow and application of rice engineering maintainer lines
CN105331604A (en) * 2014-05-29 2016-02-17 中国科学院上海生命科学研究院 DNA construct and DNA extracorporeal splicing method
CN106893750A (en) * 2017-02-15 2017-06-27 湖南杂交水稻研究中心 A kind of external seamless integration method of macromolecular DNA

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102634506A (en) * 2012-04-06 2012-08-15 湖南杂交水稻研究中心 Method for applying adhesive tail end joints to flanking sequence separation
CN105331604A (en) * 2014-05-29 2016-02-17 中国科学院上海生命科学研究院 DNA construct and DNA extracorporeal splicing method
CN105063083A (en) * 2015-07-16 2015-11-18 湖南杂交水稻研究中心 Method for creating rice engineering maintainer lines preventive against gene flow and application of rice engineering maintainer lines
CN106893750A (en) * 2017-02-15 2017-06-27 湖南杂交水稻研究中心 A kind of external seamless integration method of macromolecular DNA

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
ALLEN,R.L.等: "《Z.mays gene for polygalacturonase》", 《GENBANK: X66692.1》 *
ALLEN,R.L.等: "《Z.mays gene for polygalacturonase》", 《GENBANK: X66692.1》, 25 July 2016 (2016-07-25) *
DONG YU等: "《In Vitro Seamless Stack Enzymatic Assembly of DNA Molecules Based on a Strategy Involving Splicing of Restriction Sites》", 《SCIENTIFIC REPROTS》, vol. 7, 27 October 2017 (2017-10-27) *
GANG LIANG等: "《Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing》", 《SCIENTIFIC REPORTS》 *
GANG LIANG等: "《Selection of highly efficient sgRNAs for CRISPR/Cas9-based plant genome editing》", 《SCIENTIFIC REPORTS》, vol. 6, 19 February 2016 (2016-02-19) *
KUN YU等: "《Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system》", 《BMC PLANT BIOLOGY》 *
KUN YU等: "《Highly efficient generation of bacterial leaf blight-resistant and transgene-free rice using a genome editing and multiplexed selection system》", 《BMC PLANT BIOLOGY》, vol. 21, no. 1, 24 April 2021 (2021-04-24), pages 1 *
MA,X.等: "《Plant multiplex genome editing vector pYLsgRNA-OsU3m/LacZ,complete sequence》", 《GENBANK: KR559260.1》 *
MA,X.等: "《Plant multiplex genome editing vector pYLsgRNA-OsU3m/LacZ,complete sequence》", 《GENBANK: KR559260.1》, 26 May 2015 (2015-05-26) *
MARIAN F. LAUGHERY等: "《Simple CRISPR-Cas9 Genome Editing in S.cerevisiae》", 《CURR PROTOC MOL BIOL.》 *
MARIAN F. LAUGHERY等: "《Simple CRISPR-Cas9 Genome Editing in S.cerevisiae》", 《CURR PROTOC MOL BIOL.》, vol. 129, no. 1, 31 December 2019 (2019-12-31) *
NORMA ALIAGA-FRANCO等: "《Identification of transgene-free CRISPR edited plants of rice, tomato and Arabidopsis by monitoring DsRED fluorescence in dry seeds》", 《FRONTIERS IN PLANT SCIENCE 》 *
NORMA ALIAGA-FRANCO等: "《Identification of transgene-free CRISPR edited plants of rice, tomato and Arabidopsis by monitoring DsRED fluorescence in dry seeds》", 《FRONTIERS IN PLANT SCIENCE 》, vol. 10, 18 September 2019 (2019-09-18) *
THOMAS B. JACOBS等: "《High-throughput CRISPR Vector Construction and Characterization of DNA Modifications by Generation of Tomato Hairy Roots》", 《JOURNAL OF VISUALIZED EXPERIMENTS》 *
THOMAS B. JACOBS等: "《High-throughput CRISPR Vector Construction and Characterization of DNA Modifications by Generation of Tomato Hairy Roots》", 《JOURNAL OF VISUALIZED EXPERIMENTS》, vol. 110, 30 April 2016 (2016-04-30), pages 5 - 6 *
WANG M等: "《Multiplex gene editing in Rice using the CRISPR-Cpf1 system》", 《MOL PLANT》 *
WANG M等: "《Multiplex gene editing in Rice using the CRISPR-Cpf1 system》", 《MOL PLANT》, vol. 10, no. 7, 5 July 2017 (2017-07-05), pages 1 *
XIANTAO QI等: "《Genome Editing Enables Next-Generation Hybrid Seed Production Technology》", 《MOLECULAR PLANT》 *
XIANTAO QI等: "《Genome Editing Enables Next-Generation Hybrid Seed Production Technology》", 《MOLECULAR PLANT》, vol. 13, no. 9, 7 September 2020 (2020-09-07), pages 5 - 6 *
柯焕春: "《基于CRISPR/Cas9系统的水稻品种穗颈长等性状的遗传改良》", 《华南农业大学硕士学位论文》 *
柯焕春: "《基于CRISPR/Cas9系统的水稻品种穗颈长等性状的遗传改良》", 《华南农业大学硕士学位论文》, 30 June 2019 (2019-06-30) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114807198A (en) * 2022-05-31 2022-07-29 南京农业大学 CRISPR/Cas9 vector with visual protein fusion antibiotic screening marker and construction method and application thereof
CN114807198B (en) * 2022-05-31 2024-03-22 南京农业大学 CRISPR/Cas9 vector with visualized protein fusion antibiotic screening marker, construction method and application thereof

Also Published As

Publication number Publication date
CN113430224B (en) 2022-10-18

Similar Documents

Publication Publication Date Title
CN107304428B (en) Wheat fertility restorer gene and application thereof
CN108064297B (en) Wheat fertility-related gene TaMS7 and application method thereof
CN110157726A (en) The method of Plant Genome fixed point replacement
CN108034671B (en) Plasmid vector and method for establishing plant population by using same
US20210348179A1 (en) Compositions and methods for regulating gene expression for targeted mutagenesis
CN110331161B (en) Method for improving color selection precision of rice genetic engineering genic male sterile line seeds by utilizing dominant black glume characters
CN111996181A (en) Application of DRK protein and coding gene thereof in drought resistance of plants
CN114667292A (en) Methods for improving plant regeneration using Growth Regulatory Factors (GRFs), GRF Interacting Factors (GIFs) or chimeric GRF-GIFs
CN110250000B (en) Method for improving color selection precision of rice genetic engineering genic male sterile line seeds by utilizing recessive glume color characters
CN113430224B (en) Visual CRISPR/Cas9 gene editing system and using method
CN113832179B (en) Application of ZmELF3.1 protein and functional deletion mutant thereof in regulating and controlling number of tassel branches of crops
CN111304241B (en) Method for improving yield of upland rice by polygene editing
CN112011547A (en) Major gene for controlling rape leaf shape and application thereof
CN114438056B (en) CasF2 protein, CRISPR/Cas gene editing system and application thereof in plant gene editing
CN107365772B (en) Plant pollen specific promoter PSP1 and application thereof
CN110373418A (en) Regulate and control gene and its application of size of plant seed
CN112219714B (en) Method for breeding sporophyte recessive male nuclear sterility
CN108660139A (en) Plant fertility controlling gene NP2 and its coding albumen and application
CN112522299A (en) Method for obtaining rice with increased tillering by using OsTNC1 gene mutation
CN113215187A (en) Method for rapidly obtaining fragrant rice material by using CRISPR/Cas9 technology
CN114480415B (en) sgRNA for improving drought tolerance and saline-alkali tolerance of cotton and application thereof
CN106866802B (en) PSF protein related to plant photosynthesis as well as encoding gene and application thereof
Ilori et al. Transgene expression in cowpea (Vigna unguiculata (L.) Walp.) through Agrobacterium transformation of pollen in flower buds
CN116789780B (en) Chloroplast transit peptide for glyphosate-resistant herbicide gene and application thereof
CN116904466B (en) Enhancer for promoting gene expression and application thereof

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant