CN113415340A - 类阿克曼转向机构转向控制的参数整定方法 - Google Patents

类阿克曼转向机构转向控制的参数整定方法 Download PDF

Info

Publication number
CN113415340A
CN113415340A CN202110978133.6A CN202110978133A CN113415340A CN 113415340 A CN113415340 A CN 113415340A CN 202110978133 A CN202110978133 A CN 202110978133A CN 113415340 A CN113415340 A CN 113415340A
Authority
CN
China
Prior art keywords
trolley
steering
angular speed
speed
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110978133.6A
Other languages
English (en)
Other versions
CN113415340B (zh
Inventor
董超
舒庆
王心源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Bayes Robot Co ltd
Original Assignee
Jiangsu Bayes Robot Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Bayes Robot Co ltd filed Critical Jiangsu Bayes Robot Co ltd
Priority to CN202110978133.6A priority Critical patent/CN113415340B/zh
Publication of CN113415340A publication Critical patent/CN113415340A/zh
Application granted granted Critical
Publication of CN113415340B publication Critical patent/CN113415340B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D6/00Arrangements for automatically controlling steering depending on driving conditions sensed and responded to, e.g. control circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

本发明涉及一种类阿克曼转向机构转向控制的参数整定方法,包括:给定小车一个约束范围内的速度使之围绕一个固定点做圆周运动;改变小车圆周运动的半径;得到小车的角速度数据;待角速度趋于稳定后与之前设定的小车角速度进行对比;重复上述两个步骤,直到设定的小车角速度与测试得到的小车角速度相等,得到此时小车的理论转向角,此时认为确定一组转向角和舵机转动角度;修改小车设定的角速度,重复上述四个步骤,得到若干对应的转向角和舵机转动角度数据;利用测试得到的数据进行线性回归拟合,得到小车当前运动转向角和舵机转动角度的函数关系。本发明具备误差小,适应性广的优点,解决了因机械结构导致的转向参数难以确定的问题。

Description

类阿克曼转向机构转向控制的参数整定方法
技术领域
本发明涉及车辆控制技术领域,尤其涉及一种类阿克曼转向机构转向控制的参数整定方法。
背景技术
在智能车自动导航过程中为了减小编码器的误差应尽量减小车轮与地面的打滑。而使用car-like底盘的智能车在转向时受力情况较为复杂,部分转向牵引力由前轮提供,若要使得车轮不发生打滑现象需要根据车速及转弯半径合理控制前轮转向的角度。而car-like底盘的转向控制方案通常使用舵机和一系列连杆机构,则存在车轮转向角度和舵机转向角度的转换关系。而由于转向机构的设计精度以及安装误差的存在通常转换关系会有一定差别从而影响转向控制。
现有的方案往往是假定前轮转向角和舵机转动角度之间存在一个一维函数关系。设舵机转度角度为x,车轮转向角为y则函数关系为y=kx+b。先使x为0后调整b的值同时测试车的直线行驶性能,将b设为直线行驶性能较好情况的参数值。之后使小车最大限度进行转向,并测量出小车的转弯半径与理论转弯半径相比较,调整k的值使得测量值与理论值相匹配则得到k值。现有方案需要多次手动测量,工作量大,手动测量也容易产生较大误差。并且仅仅通过两次整定得到参数,与实际函数关系拟合度较低。
发明内容
针对上述问题,本发明提供了一种类阿克曼转向机构转向控制的参数整定方法,具备误差小,测量数据多的优点,解决了实验参数与实际函数关系拟合度较低的问题。
本发明的类阿克曼转向机构转向控制的参数整定方法是通过如下技术方案实现的。
(1)给定小车一个约束范围内的速度使之围绕一个固定点做圆周运动。
进一步的,小车的速度可分解为向前做直线运动的线速度和做转向运动的角速度。
进一步的,小车的线速度越大则小车做圆周运动的半径越大,受限于测试场地大小线速度不宜设置过大,又因为一些电机在低速时转速不稳定,小车线速度也不宜设置过小,具体大小需要视实际情况而定。
(2)通过改变小车前轮转动控制舵机转动角度,改变小车转向轮的转向角,在小车速度一定的情况下改变小车圆周运动的半径。
(3)对小车上陀螺仪的转动角度数据进行采样并进行差分计算,再除以采样周期可以得到小车的角速度数据。
进一步的,通常通过陀螺仪直接得到角速度数据抖动及误差过大,所以本发明采用读取角度数据通过差分方式计算角速度。
进一步的,因为小车运动中的抖动以及与地面产生的滑移等影响,计算得到的角速度数据仍然会有抖动,还需要对数据进行滤波处理。
(4)待角速度趋于稳定后与之前设定的小车角速度进行对比,若小于之前设定的小车角速度则适当增大前轮转向角,相反适当减小小车前轮转向角。
(5)重复(3)、(4)两个步骤,直到设定的小车角速度与测试得到的小车角速度相等,通过小车转向运动模型计算得到此时小车的理论转向角,此时认为确定一组转向角和舵机转动角度。
(6)修改小车设定的角速度,重复(2)、(3)、(4)、(5)步骤,得到若干对应的转向角和舵机转动角度数据。
(7)利用测试得到的数据进行线性回归拟合,得到小车当前运动转向角和舵机转动角度的函数关系。
进一步的,通常由于各种类阿克曼转向机构只是模仿了阿克曼转向机构,在转向运动上并不具备良好的对称性,因此在测试时需要分为左转右转两种情况,分别设定小车向左做圆周运动以及向右做圆周运动,分别测试得到数据分别进行拟合得到两段转向角和舵机转动角度的函数关系。
本发明的有益效果是:本发明提供了一种类阿克曼转向机构转向控制的参数整定方法,具备误差小,测量数据多的优点,解决了实验参数与实际函数关系拟合度较低的问题。
附图说明
图1为本发明的智能车转向系统的结构示意图。
图2为本发明的类阿克曼转向机构转向控制的参数整定方法的流程图。
图3为本发明的小车转向运动模型示意图。
具体实施方式
下面结合附图对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易被本领域人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
本实施例的智能车转向系统如图1所示。
其中通过陀螺仪传感器对小车的角度数据进行采样。
其中通过两个直流电机控制小车两个驱动轮的转动。
其中通过伺服舵机控制转向轮的转向角大小。
其中通过电机驱动器接收指令,通过PID算法控制电机转速,控制小车速度。
其中控制器通过采集小车角度信息,并设定小车角速度以及控制小车转向轮转向角实现本发明的参数整定方法,其步骤如图2所示。
(1)将实验小车的线速度v固定在一个较小值(0.1m/s)。
(2)如图3所示,根据实验需求,设定一个角速度w,根据小车转向运动模型角速度w和线速度v满足关系v=wr,r为小车的转弯半径,小车设置的w不同做圆周运动的半径也不同需留出足够的场地进行测试。
(3)根据公式steer=arctan(wheelbase/v*w)计算出此时小车的设定转向角结构如图3所示,steer为此时小车的转向角,wheelbase为小车轴距,v为小车此时的线速度,w为小车此时的角速度。
(4)直接改变实验小车前轮转向舵机的转动角度theta,使小车做圆周运动。
(5)通过实验小车当前转向角度,计算得出小车此时转向运动的角速度w’值。
(6)测量得到的w’值与设定的w值相比较,若测量值小于设定值则增加舵机的转动角度,若测量值大于设定值则减小前轮的转动角度,重复步骤3直到设定值和测量值相匹配。
(7)记录下此时的转向角steer和舵机转动角度theta。
(8)重复步骤(2)至(7)。
(9)得到若干点后通过线性回归拟合计算得到转向角steer和舵机转动角度theta的映射关系,设所求函数关系式为theta=k*steer+b,其中k和b为待定系数,将所记录对应点代入公式:
Figure 348191DEST_PATH_IMAGE001
上述公式中
Figure 34387DEST_PATH_IMAGE002
为测试数据中steer的均值,
Figure 38115DEST_PATH_IMAGE003
为theta的均值,
Figure 417144DEST_PATH_IMAGE004
为每一组steer 和theta乘积的均值,
Figure 607954DEST_PATH_IMAGE005
为steer的平方的均值。
求出拟合函数的系数k值,之后采用待定系数法得到b值从而确定theta和steer的函数关系theta=k*steer+b。
具体的,所述实验小车的底盘采用car-like底盘的类似模拟用底盘;此底盘满足阿克曼梯形,即为满足阿克曼理论转向特性的四连杆机构。
具体的,若前轮转向使用了对称性不好的连杆机构则需要将小车的左转右转分开整定;因为转向机构的精度问题,在转换关系后会造成转动角度一定量的偏移误差,将不同方向的转向误差数据进行整合,计算后得到的数据更准确。
具体的,采用最小二乘法对steer和theta参数映射关系进行拟合;最小二乘法可以最小化误差的平方和寻找数据的最佳函数匹配,使实验数据结构更准确。
具体的,设定角速度w的范围最大不能超过小车转向机构所确定的最小转弯半径,w过大会影响到线速度的限制,w过小则不利于测量。
具体的,本方法采用参数自整定方法获得steer参数及其对应的theta参数;自整定的方法人为干预较少,通过多次进行实验后通过最小二乘法得到映射关系,可减少误差。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种类阿克曼转向机构转向控制的参数整定方法,其特征在于,包括如下步骤:
(1)给定小车一个约束范围内的速度使之围绕一个固定点做圆周运动;
(2)通过改变小车前轮转动控制舵机转动角度,改变小车转向轮的转向角,在小车速度一定的情况下改变小车圆周运动的半径;
(3)对小车上陀螺仪的转动角度数据进行采样并进行差分计算,再除以采样周期可以得到小车的角速度数据;
(4)待角速度趋于稳定后与之前设定的小车角速度进行对比,若小于之前设定的小车角速度则增大前轮转向角,相反减小小车前轮转向角;
(5)重复(3)、(4)两个步骤,直到设定的小车角速度与测试得到的小车角速度相等,通过小车转向运动模型计算得到此时小车的理论转向角,此时认为确定一组转向角和舵机转动角度;
(6)修改小车设定的角速度,重复(2)、(3)、(4)、(5)步骤,得到若干对应的转向角和舵机转动角度数据;
(7)利用测试得到的数据进行线性回归拟合,得到小车当前运动转向角和舵机转动角度的函数关系。
2.根据权利要求1所述的类阿克曼转向机构转向控制的参数整定方法,其特征在于,小车的底盘满足阿克曼梯形。
3.根据权利要求1所述的类阿克曼转向机构转向控制的参数整定方法,其特征在于,步骤(1)中,分别设定小车向左做圆周运动以及向右做圆周运动。
4.根据权利要求1所述的类阿克曼转向机构转向控制的参数整定方法,其特征在于,步骤(1)中,小车的速度可分解为向前做直线运动的线速度和做转向运动的角速度。
5.根据权利要求4所述的类阿克曼转向机构转向控制的参数整定方法,其特征在于,设定角速度的范围最大不超过小车转向机构所确定的最小转弯半径。
6.根据权利要求1所述的类阿克曼转向机构转向控制的参数整定方法,其特征在于,步骤(3)中,对计算得到的角速度数据进行滤波处理。
CN202110978133.6A 2021-08-25 2021-08-25 类阿克曼转向机构转向控制的参数整定方法 Active CN113415340B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110978133.6A CN113415340B (zh) 2021-08-25 2021-08-25 类阿克曼转向机构转向控制的参数整定方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110978133.6A CN113415340B (zh) 2021-08-25 2021-08-25 类阿克曼转向机构转向控制的参数整定方法

Publications (2)

Publication Number Publication Date
CN113415340A true CN113415340A (zh) 2021-09-21
CN113415340B CN113415340B (zh) 2021-11-23

Family

ID=77719332

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110978133.6A Active CN113415340B (zh) 2021-08-25 2021-08-25 类阿克曼转向机构转向控制的参数整定方法

Country Status (1)

Country Link
CN (1) CN113415340B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114932951A (zh) * 2022-06-29 2022-08-23 广州高新兴机器人有限公司 机器人底盘前轮等效转向角度的校准方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08175412A (ja) * 1994-12-21 1996-07-09 Toyo Umpanki Co Ltd パワーステアリング装置
US20050192729A1 (en) * 2004-02-28 2005-09-01 Wolfgang Reinelt Method for calculating a wheel angle of a vehicle
CN102208890A (zh) * 2010-03-31 2011-10-05 现代自动车株式会社 用于控制永磁同步电动机的方法
CN108007417A (zh) * 2016-10-27 2018-05-08 上海华测导航技术股份有限公司 一种农机自动驾驶控制系统角度传感器自动标定方法
CN110239363A (zh) * 2019-06-25 2019-09-17 覃子飞 电动汽车动态稳定系统
CN111273551A (zh) * 2020-03-12 2020-06-12 山东大学 双舵轮自动导引车轨迹追踪控制方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08175412A (ja) * 1994-12-21 1996-07-09 Toyo Umpanki Co Ltd パワーステアリング装置
US20050192729A1 (en) * 2004-02-28 2005-09-01 Wolfgang Reinelt Method for calculating a wheel angle of a vehicle
CN102208890A (zh) * 2010-03-31 2011-10-05 现代自动车株式会社 用于控制永磁同步电动机的方法
CN108007417A (zh) * 2016-10-27 2018-05-08 上海华测导航技术股份有限公司 一种农机自动驾驶控制系统角度传感器自动标定方法
CN110239363A (zh) * 2019-06-25 2019-09-17 覃子飞 电动汽车动态稳定系统
CN111273551A (zh) * 2020-03-12 2020-06-12 山东大学 双舵轮自动导引车轨迹追踪控制方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
吕宇 等: "《单片机与传感器应用实例》", 30 September 2018 *
周剑平: "《精通Origin 7.0》", 31 March 2004 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114932951A (zh) * 2022-06-29 2022-08-23 广州高新兴机器人有限公司 机器人底盘前轮等效转向角度的校准方法及系统
CN114932951B (zh) * 2022-06-29 2023-08-25 广州高新兴机器人有限公司 机器人底盘前轮等效转向角度的校准方法及系统

Also Published As

Publication number Publication date
CN113415340B (zh) 2021-11-23

Similar Documents

Publication Publication Date Title
CN107627900B (zh) 一种电动汽车双轮边电机差速转矩控制系统及控制方法
CN110466602B (zh) 轮毂电机驱动电动汽车的分时四轮转向系统及其控制方法
CN112977602B (zh) 一种双电机线控转向系统及其混合鲁棒稳定性控制方法
CN109094640B (zh) 一种轮驱电动汽车线控转向系统及控制方法
CN111086556B (zh) 一种智能线控转向系统的变传动比优化方法
US20040158375A1 (en) Motion control apparatus and method for automotive vehicle
CN112298354B (zh) 一种无人驾驶汽车转向系统方向盘与前轮转角的状态估计方法
CN110244718B (zh) 一种可自动避障的巡视智能小车
CN113415340B (zh) 类阿克曼转向机构转向控制的参数整定方法
CN113335376B (zh) 分布式独立驱动电动汽车转向时轮间差速防拖拽控制方法
CN111806430B (zh) 一种用于自动泊车的车速计算方法
CN109292018A (zh) 基于同轴式轮腿结构的四轮转向轨迹跟踪控制方法
CN111661048B (zh) 多铰接式车辆及其轨迹跟随控制方法与系统
CN112026749B (zh) 一种线控转向系统稳定性控制方法
CN109849898A (zh) 基于遗传算法混合优化gpc的车辆横摆稳定性控制方法
CN111422250B (zh) 后轮转向控制方法、装置、系统及计算机存储介质
JP2010162958A (ja) 車両制御装置
CN110723200B (zh) 一种转向回正及中间位置控制系统及其控制方法
CN112141204B (zh) 一种车辆的转向控制方法、装置、存储介质和控制器
CN219428227U (zh) 一种方向盘零偏角自动标定装置及车辆
JP2518245B2 (ja) 車両用後輪操舵装置
CN116215250B (zh) 一种电动差动转向车辆转向控制系统及方法
JPH06316273A (ja) 四輪操舵車の後輪操舵角制御装置
CN114644044B (zh) 一种车辆转向控制方法、装置及车辆
JP6273427B2 (ja) 省燃費操舵装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant