CN113415058B - 一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用 - Google Patents

一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN113415058B
CN113415058B CN202110939879.6A CN202110939879A CN113415058B CN 113415058 B CN113415058 B CN 113415058B CN 202110939879 A CN202110939879 A CN 202110939879A CN 113415058 B CN113415058 B CN 113415058B
Authority
CN
China
Prior art keywords
layer
heat
breakdown
resistant
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110939879.6A
Other languages
English (en)
Other versions
CN113415058A (zh
Inventor
罗伟
张丛见
任月璋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Omay Optical Materials Co ltd
Original Assignee
Suzhou Omay Optical Materials Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Omay Optical Materials Co ltd filed Critical Suzhou Omay Optical Materials Co ltd
Priority to CN202110939879.6A priority Critical patent/CN113415058B/zh
Publication of CN113415058A publication Critical patent/CN113415058A/zh
Application granted granted Critical
Publication of CN113415058B publication Critical patent/CN113415058B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • B32B2307/206Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • C08K2003/282Binary compounds of nitrogen with aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Organic Insulating Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明提供了一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用。本发明的导热耐电压击穿绝缘聚碳酸酯薄膜,包括导热层以及设置在所述导热层上下两侧的耐击穿电压层;其中,按质量百分比计,所述导热层包含如下组分:PC84‑93%、纳米级氮化硼1‑5%、纳米级氮化铝1‑5%、助剂5‑6%;按质量百分比计,所述耐击穿电压层包含如下组分:PC64‑89%、纳米级云母粉1‑20%、纳米级二氧化硅5‑10%、助剂5‑6%。本发明制得的聚碳酸酯薄膜具有高的机械强度的同时,具有高的导热系数和耐击穿电压。

Description

一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用
技术领域
本发明属于聚碳酸酯薄膜技术领域,涉及一种聚碳酸酯薄膜及其制备方法和应用,尤其涉及一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用。
背景技术
聚碳酸酯(PC)是一种优良的热塑性工程塑料,具有突出的抗冲击能力,耐蠕变和尺寸稳定性,且耐热、吸水率低、无毒、绝缘性能优良,是五大工程塑料中唯一具有很好透明性的产品。目前,聚碳酸酯薄膜及片材正广泛应用于汽车、电子电气、建筑、办公设备、包装、运动器材、医疗保健等领域。随着其在各种电子/电气仪表板,台式计算机、手提电脑、视屏录像机、彩色电视机、复印机等的外壳和重要电子电气零部件以及汽车的仪表板、耐热电器壳体等领域的应用越来越广,鉴于微电子的高度集成化、器件的小型化,对聚碳酸酯薄膜及片材的导热散热性能、耐电气性能的要求越来越高,很多场合需要其导热系数(λ)达到1.0w/m.K以上,耐击穿电压性能需达到更高的等级。
现有的聚碳酸酯的制备方法一般采用在聚碳酸酯中添加大量的三氧化二铝、氧化镁、碳化硅及BN等无机导热绝缘助剂,可以一定程度地获得导热性能,但这些助剂的加入导致聚碳酸酯严重降解,无法加工成薄膜或片材。
CN101418116A公开了一种导热聚碳酸酯组合物的制备方法,它包含有30-70份(质量)导热无机填料Al2O3,20-60份(质量)的聚碳酸酯,5-10份(质量)的ABS树脂,0.3-3份(质量)的接枝共聚物,0.1-1.0份(质量)抗氧剂,0.5-3份(质量)偶联剂。该发明的导热聚碳酸酯组合物具有较高的导热性能,以及良好的综合力学性能和加工性能。该发明采用氧化铝为导热剂,加入ABS树脂等改善加工性能,但无法避免氧化铝导热助剂在挤出加工过程中导致的聚碳酸酯严重降解,无法实现制备薄膜级的产品。
CN105176041B公开了一种耐拉伸耐击穿的绝缘材料及其制备方法,所述的绝缘材料包括聚碳酸酯15-40份、聚丁二酸丁二醇酯8-20份、磺基丁二酸钠二辛酯4-10份、玻璃纤维5-10份、异戊橡胶6-15份、丁苯橡胶5-10份;所述的制备方法步骤为:一次密炼、二次密炼、再用开炼机进行开炼、再用压延机压延,冷却,得到耐拉伸耐击穿的绝缘材料。制备得到的绝缘材料的拉伸强度在50MPa以上,其击穿场强在38kV/mm以上。但是,该发明制得的绝缘材料导热性能有待进一步提高。
CN109762225A公开了一种高导热绝缘功能母料,所述高导热绝缘功能母料通过双螺杆混合、挤出、造粒步骤制备,由有机高分子塑料、抗氧剂、除酸剂、润滑剂和高导热无机纳米颗粒组成,按其重量份数计:有机高分子塑料为100份;抗氧剂占高分子塑料的0.1-1.5份;除酸剂占高分子塑料的0.1-1.0份;润滑剂占无机纳米颗粒的1-40份;高导热无机纳米颗粒占高分子塑料的1-40。所述高导热绝缘功能母料应用于锂离子电池隔膜或缓冲层的制备中。该发明中高导热绝缘功能母料采用的无机纳米材料具有较高的导热系数,采用共混制备方法简单易于工业化生产。制备的高导热绝缘母料的导热系数在1-25W/(m.K),高于现在市场上使用的导热材料。但是,该发明的材料的耐击穿电压性能和力学性能有待进一步提高。
因此,开发一种不影响力学性能的前提下导热、耐电压击穿的绝缘聚碳酸酯薄膜及其制备方法很有必要。
发明内容
针对现有技术的不足,本发明的目的在于提供一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用,制得的聚碳酸酯薄膜具有高的机械强度的同时,具有高的导热系数和耐击穿电压。
本发明的目的之一在于提供一种导热耐电压击穿绝缘聚碳酸酯薄膜,为达此目的,本发明采用以下技术方案:
一种导热耐电压击穿绝缘聚碳酸酯薄膜,包括导热层以及设置在所述导热层上下两侧的耐击穿电压层;
其中,按质量百分比计,所述导热层包含如下组分:
PC 84-93%
纳米级氮化硼 1-5%
纳米级氮化铝 1-5%
助剂 5-6%;
按质量百分比计,所述耐击穿电压层包含如下组分:
PC 64-89%
纳米级云母粉 1-20%
纳米级二氧化硅 5-10%
助剂 5-6%。
本发明中,中间的导热层,通过添加纳米氮化绷和纳米级氮化铝,以实现高导热系数;上下表层通过添加纳米级云母粉和纳米级二氧化硅相结合的方式以提高PC材料的耐击穿电压值,以实现高耐电压值,最终制得的导热耐电压击穿绝缘聚碳酸酯薄膜具有高的机械强度的同时,具有高的导热系数和耐击穿电压。
具体他,按质量百分比计,所述导热层包含如下组分:
PC的质量百分比为84-93%,例如为84%、85%、86%、87%、88%、89%、90%、91%、92%或93%等。
纳米级氮化硼的质量百分比为1-5%,例如为1%、2%、3%、4%或5%等。
纳米级氮化铝的质量百分比为1-5%,例如为1%、2%、3%、4%或5%等。
助剂的质量百分比为5-6%,例如为5%、5.1%、5.2%、5.3%、5.4%、5.5%、5.6%、5.7%、5.8%、5.9%或6%等。
按质量百分比计,所述耐击穿电压层包含如下组分:
PC的质量百分比为64-89%,例如为64%、65%、66%、67%、68%、69%、70%、71%、72%、73%、74%、75%、76%、77%、78%、79%、80%、81%、82%、83%、84%、85%、86%、87%、88%或89%等。
纳米级云母粉的质量百分比为1-20%,例如为1%、2%、3%、4%、5%、6%、7%、8%、9%、10%、11%、12%、13%、14%、15%、16%、17%、18%、19%或20%等。
纳米级二氧化硅的质量百分比为5-10%,例如为5%、6%、7%、8%、9%或10%等。
助剂的质量百分比为5-6%,例如为5%、5.1%、5.2%、5.3%、5.4%、5.5%、5.6%、5.7%、5.8%、5.9%或6%等。
所述导热层中,所述PC为低玻璃化温度的PC,玻璃化温度为100-120℃,例如为100℃、101℃、102℃、103℃、104℃、105℃、106℃、107℃、108℃、109℃、110℃、111℃、112℃、113℃、114℃、115℃、116℃、117℃、118℃、119℃或120℃等。
本发明中,所述纳米级氮化硼的粒径为1-100nm,例如为1nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm或100nm。
本发明中,所述纳米级氮化铝的粒径为1-100nm,例如为1nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm或100nm。
所述耐击穿电压层中,所述PC为高流动性PC,PC的熔融指数为15-40g/10min,例如为15 g/10min、16 g/10min、17 g/10min、18 g/10min、19 g/10min、20 g/10min、21 g/10min、22 g/10min、23 g/10min、24 g/10min、25 g/10min、26 g/10min、27 g/10min、28 g/10min、29 g/10min、30 g/10min、31 g/10min、32 g/10min、33 g/10min、34 g/10min、35 g/10min、36 g/10min、37 g/10min、38 g/10min、39 g/10min或40 g/10min等。
本发明中,所述纳米级云母粉的粒径为1-100nm,例如为1nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm或100nm。
本发明中,所述纳米级二氧化硅的粒径为1-100nm,例如为1nm、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm或100nm。
所述导热层中,按质量百分比计,所述助剂包含0.5%的抗氧剂、3%的分散剂和2%的润滑剂。
所述耐击穿电压层中,按质量百分比计,所述助剂包含0.5%的抗氧剂、3%的分散剂和2%的润滑剂。
本发明中,所述导热层中的抗氧剂和所述耐击穿电压层中的抗氧剂独立地选自受阻酚抗氧剂;所述受阻酚抗氧剂为四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯。
本发明中,所述导热层中的分散剂和所述耐击穿电压层中的分散剂独立地选自戊四醇硬脂酸酯类分散剂。
本发明中,所述导热层中的润滑剂和所述耐击穿电压层中的润滑剂独立地选自硬脂酸及其盐类。
本发明中,所述导热层的厚度为0.3-5mm,例如为0.3 mm、0.4 mm、0.5 mm、0.6 mm、0.7 mm、0.8 mm、0.9 mm、1 mm、2 mm、3 mm、4 mm或5 mm等。
本发明中,上下表层考虑到不影响整体产品的导热性能,尽可能的薄型化,同时,上下表层的层厚可以相同厚度,也可以选用不同的厚度。所述导热层上下两侧的耐击穿电压层的厚度独立地为0.2-3mm,例如为0.2 mm 、0.3 mm、0.4 mm、0.5 mm、0.6 mm、0.7 mm、0.8 mm、0.9 mm、1 mm、2 mm或3 mm等。
本发明的目的之二在于提供一种目的之一所述的导热耐电压击穿绝缘聚碳酸酯薄膜的制备方法,包括如下步骤:
1)按配比,将PC、纳米级氮化硼、纳米级氮化铝和助剂混合,制备导热层材料;
2)按配比,将PC、纳米级云母粉、纳米级二氧化硅和助剂混合,制备耐击穿电压层材料;
3)以步骤1)制得的导热层材料为中间层,以步骤2)制得的耐击穿电压层材料为上下表层,通过三层共挤,得到所述导热耐电压击穿绝缘聚碳酸酯薄膜。
本发明的目的之三在于提供一种目的之一所述的导热耐电压击穿绝缘聚碳酸酯薄膜的应用,将所述导热耐电压击穿绝缘聚碳酸酯薄膜用于工控散热片或工业灯底座的制备。
与现有技术相比,本发明的有益效果为:
本发明的导热耐电压击穿绝缘聚碳酸酯薄膜,具有高的机械强度的同时,具有高的导热系数和耐击穿电压,具体的,拉伸强度为63-65MPa,断裂伸长率为82-95%,导热系数为1.1-1.8W/m.K,耐电压值为36-43kV/mm。
附图说明
图1为本发明导热耐电压击穿绝缘聚碳酸酯薄膜的结构示意图;
1-导热层;2-耐击穿电压层。
具体实施方式
下面结合附图1,并通过具体实施方式来进一步说明本发明的技术方案。
如无具体说明,本发明的各种原料均可市售购得,或根据本领域的常规方法制备得到。
如图1所示,本发明的导热耐电压击穿绝缘聚碳酸酯薄膜,包括导热层1以及设置在所述导热层1上下两侧的耐击穿电压层2。
实施例1
本实施例的导热耐电压击穿绝缘聚碳酸酯薄膜,包括导热层以及设置在导热层上下两侧的耐击穿电压层,上下两侧的耐击穿电压层采用同种材料;
其中,按质量百分比计,耐击穿电压层包含如下组分:
PC 88.5%
纳米级云母粉 1%
纳米级二氧化硅 5%
抗氧剂 0.5%
分散剂 3%
润滑剂 2%。
其中,耐击穿电压层中,PC为H-3000(Tg:150℃,熔融指数:40g/10min),纳米级云母粉的粒径为50-80nm,纳米级二氧化硅的粒径为50-80nm,抗氧剂为氰特抗氧剂2777,分散剂为美国龙沙的PETS,润滑剂为科莱恩的WAX-E,两层耐击穿电压的厚度均为0.2mm。
其中,按质量百分比计,导热层包含如下组分:
PC 92.5%
纳米级氮化硼 5%
纳米级氮化铝 5%
抗氧剂 0.5%
分散剂 3%
润滑剂 2%;
其中,导热层中,PC为AC2887(台湾化学纤维股份有限公司,Tg:120℃,熔融指数:10g/10min),纳米级氮化硼的粒径为50-80nm,纳米级氮化铝的粒径为50-80nm,抗氧剂为氰特抗氧剂2777,分散剂为美国龙沙的PETS,润滑剂为科莱恩的WAX-E,导热层的厚度为0.8mm。
实施例2-10
实施例2-10与实施例1的区别在于,上下表层耐击穿电压层的各组分用量不同,上下表层耐击穿电压层的各组分的种类与实施例1的相同,中间层导热层的各组分种类与用量与实施例1的相同,具体组成如表1所示。
对比例1
本对比例与实施例4的区别之处在于,上下表层中的PC为普通PC(三菱:S-1000R,Tg:150℃,熔融指数:7.5g/10min),其他的与实施例4的均相同。
对比例2-8
对比例2-8与实施例1的区别之处在于,上下表层耐击穿电压层的各组分用量不同,上下表层耐击穿电压层的各组分的种类与实施例1的相同,中间层导热层的各组分种类与用量与实施例1的相同,具体组成如表1所示。
Figure 118832DEST_PATH_IMAGE001
实施例11
本实施例的导热耐电压击穿绝缘聚碳酸酯薄膜,包括导热层以及设置在导热层上下两侧的耐击穿电压层,上下两侧的耐击穿电压层采用同种材料;
其中,按质量百分比计,导热层包含如下组分:
PC 88.5%
纳米级氮化硼 1%
纳米级氮化铝 5%
抗氧剂 0.5%
分散剂 3%
润滑剂 2%;
其中,导热层中,PC为AC2887(台湾化学纤维股份有限公司,Tg:120℃,熔融指数:10g/10min),纳米级氮化硼的粒径为60-80nm,纳米级氮化铝的粒径为60-80nm,抗氧剂为氰特抗氧剂2777,分散剂为美国龙沙的PETS,润滑剂为科莱恩的WAX-E,导热层的厚度为0.8mm。
按质量百分比计,耐击穿电压层包含如下组分:
PC 74.5%
纳米级云母粉 15%
纳米级二氧化硅 5%
抗氧剂 0.5%
分散剂 3%
润滑剂 2%。
其中,耐击穿电压层中,PC为H-3000(Tg:150℃,熔融指数:40g/10min),纳米级云母粉的粒径为50-80nm,纳米级二氧化硅的粒径为50-80nm,抗氧剂为氰特抗氧剂2777,分散剂为美国龙沙的PETS,润滑剂为科莱恩的WAX-E,两层耐击穿电压的厚度均为0.2mm。
实施例12-19
实施例12-19与实施例11的区别在于,中间层导热层的各组分用量不同,中间层导热层的各组分的种类与实施例11的相同,上下表层耐击穿电压层的各组分种类与用量与实施例11的相同,具体组成如表2所示。
对比例9
本对比例与实施例13的区别之处在于,中间层中的PC为普通PC(三菱:S-1000R,Tg:150℃,熔融指数:7.5g/10min),其他的与实施例13的均相同。
对比例10-16
对比例10-16与实施例13的区别之处在于,中间层导热层的各组分用量不同,中间层导热层的各组分的种类与实施例13的相同,上下表层耐击穿电压层的各组分种类与用量与实施例13的相同,具体组成如表2所示。
Figure 629448DEST_PATH_IMAGE002
将实施例1-19、对比例1-16制得的聚碳酸酯薄膜进行性能检测,实验结果如表3所示。
其中,耐电压值的测试方法参照IEC60243-1-1998的标准进行,导热系数的测试方法参照GB10295的标准进行,拉伸强度的测试方法参照GB/T 1040.3-2006的标准进行,断裂伸长率的测试参照GB/T 1040.3-2006的标准进行。
Figure 878026DEST_PATH_IMAGE003
由表3可以看出,本发明的聚碳酸酯薄膜具有良好的力学性能的基础上,具有优异的耐电压值和高的导热系数。具体的,拉伸强度为63-65MPa,断裂伸长率为82-95%,导热系数为1.1-1.8 W /m.K,耐电压值为36-43kV/mm。
对比例1的表层采用普通PC,会使材料的断裂伸长率损失很大,不利于机械性能的保持。
对比例2纳米级二氧化硅的用量太少,会使表层材料的耐电压性能无法提升。
对比例3纳米级云母粉与纳米二氧化硅添加量过大,虽然耐电压性超出35kV,但材料的断裂伸长率损失非常严重,一是增加了材料的成本,二是影响了严重影响了材料的机械性能。
对比例4纳米级云母粉的含量高,直接影响产品的断裂伸长率。
对比例5纳米级云母粉添加量不足,耐电压值无法达到指标要求。
对比例6、7类似,单独添加单一的纳米级成分,耐电压值无法达到35kV/mm的要求,或材料的断裂伸长率受到损失。
对比例8纳米级的材料替换为纳米级碳酸钙,无法提升材料的耐电压值。
对比例9、10采用任何一种PC料,不添加纳米氮化硼与纳米级氮化铝,材料的导热系相同,无提高。
对比例11、12、13添加过量的纳米粉体或添加量不足的,一是增加了成本,二是影响了材料的机械性能或导热率不达标。
对比例14、15在单一组分或另一组分添加量不足的情况下,材料的导热率无法达到需要的数值。
对比例16纳米级的材料替换为纳米级碳酸钙,无法提升材料的导热系数。
本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (8)

1.一种导热耐电压击穿绝缘聚碳酸酯薄膜,其特征在于,包括导热层以及设置在所述导热层上下两侧的耐击穿电压层;
其中,按质量百分比计,所述导热层包含如下组分:
PC 84-93%
纳米级氮化硼 1-5%
纳米级氮化铝 1-5%
助剂 5-6%,
所述导热层中,所述PC的玻璃化温度为100-120℃;
按质量百分比计,所述耐击穿电压层包含如下组分:
PC 64-89%
纳米级云母粉 1-20%
纳米级二氧化硅 5-10%
助剂 5-6%,
所述耐击穿电压层中,所述PC的熔融指数为15-40g/10min。
2.根据权利要求1所述的导热耐电压击穿绝缘聚碳酸酯薄膜,其特征在于,所述纳米级氮化硼的粒径为1-100nm;
所述纳米级氮化铝的粒径为1-100nm。
3.根据权利要求1所述的导热耐电压击穿绝缘聚碳酸酯薄膜,其特征在于,所述纳米级云母粉的粒径为1-100nm;
所述纳米级二氧化硅的粒径为1-100nm。
4.根据权利要求1所述的导热耐电压击穿绝缘聚碳酸酯薄膜,其特征在于,所述导热层中,按质量百分比计,所述助剂包含0.5%的抗氧剂、3%的分散剂和2%的润滑剂;
所述耐击穿电压层中,按质量百分比计,所述助剂包含0.5%的抗氧剂、3%的分散剂和2%的润滑剂。
5.根据权利要求3或4所述的导热耐电压击穿绝缘聚碳酸酯薄膜,其特征在于,所述导热层中的抗氧剂和所述耐击穿电压层中的抗氧剂独立地选自受阻酚抗氧剂;
所述受阻酚抗氧剂为四[β-(3,5-二叔丁基-4-羟基苯基)丙酸]季戊四醇酯;
所述导热层中的分散剂和所述耐击穿电压层中的分散剂独立地选自戊四醇硬脂酸酯类分散剂;
所述导热层中的润滑剂和所述耐击穿电压层中的润滑剂独立地选自硬脂酸及其盐类。
6.根据权利要求1所述的导热耐电压击穿绝缘聚碳酸酯薄膜,其特征在于,所述导热层的厚度为0.3-5mm;
所述导热层上下两侧的耐击穿电压层的厚度独立地为0.2-3mm。
7.一种如权利要求1-6任一项所述的导热耐电压击穿绝缘聚碳酸酯薄膜的制备方法,其特征在于,所述制备方法包括如下步骤:
1)按配比,将PC、纳米级氮化硼、纳米级氮化铝和助剂混合,制备导热层材料;
2)按配比,将PC、纳米级云母粉、纳米级二氧化硅和助剂混合,制备耐击穿电压层材料;
3)以步骤1)制得的导热层材料为中间层,以步骤2)制得的耐击穿电压层材料为上下表层,通过三层共挤,得到所述导热耐电压击穿绝缘聚碳酸酯薄膜。
8.一种如权利要求1-6任一项所述的导热耐电压击穿绝缘聚碳酸酯薄膜的应用,其特征在于,将所述导热耐电压击穿绝缘聚碳酸酯薄膜用于工控散热片或工业灯底座的制备。
CN202110939879.6A 2021-08-17 2021-08-17 一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用 Active CN113415058B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110939879.6A CN113415058B (zh) 2021-08-17 2021-08-17 一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110939879.6A CN113415058B (zh) 2021-08-17 2021-08-17 一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113415058A CN113415058A (zh) 2021-09-21
CN113415058B true CN113415058B (zh) 2021-11-16

Family

ID=77719161

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110939879.6A Active CN113415058B (zh) 2021-08-17 2021-08-17 一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113415058B (zh)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113844117A (zh) * 2014-06-23 2021-12-28 伊利诺斯工具制品有限公司 绝缘薄膜及其生产方法
CN104817831A (zh) * 2015-05-21 2015-08-05 国网智能电网研究院 一种电气绝缘热塑性树脂组合物及其制备方法
CN109102971A (zh) * 2017-06-20 2018-12-28 伊利诺斯工具制品有限公司 一种绝缘薄膜
CN112455034A (zh) * 2020-11-23 2021-03-09 深圳市金海洋实业发展有限公司 一种新能源汽车电池组散热用石墨烯/高分子复合导热绝缘膜及其制备方法

Also Published As

Publication number Publication date
CN113415058A (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
CN110591209A (zh) 含均分散、高取向石墨烯的聚合物导热薄膜及其制备方法
US20160325994A1 (en) High aspect boron nitride, methods, and composition containing the same
CN102585470B (zh) 一种绝缘导热玻纤增强的pc/abs合金材料及其制备方法
CN101418116B (zh) 一种导热聚碳酸酯组合物及其制备方法
CN112500644B (zh) 一种导电聚丙烯组合物及其制备方法
CN106675008B (zh) 高导热尼龙6复合材料及其制备方法
WO2014047249A1 (en) Methods for making thermally conductive compositions containing boron nitride
CN108250747B (zh) 一种热塑性聚醚酰亚胺绝缘导热复合材料及其制备方法
TW201319135A (zh) 阻燃導熱塑膠組成物
JP2008260830A (ja) 伝熱性樹脂組成物
CN113105732A (zh) 一种高导热率的树脂基复合材料及其制备方法
JP2010001402A (ja) 高熱伝導性樹脂成形体
KR20090067820A (ko) 전기절연성 고열전도성 수지 조성물
CN112694661A (zh) 一种兼具导热和吸波功能的电磁屏蔽聚丙烯复合材料及其制备方法
CN113415058B (zh) 一种导热耐电压击穿绝缘聚碳酸酯薄膜及其制备方法和应用
CN113234317B (zh) 一种高流动性高韧性导热绝缘pa6复合材料及其制备方法
CN115678196A (zh) 基于液态金属增韧的高分子复合材料及其制备方法
CN115850963A (zh) 一种pa66材料及其制备方法、电气设备
CN108997718A (zh) 高导热性无卤阻燃tpee弹性体组合物
JP2017043673A (ja) 樹脂組成物及びそのシート
CN111534075B (zh) 一种热塑性导热复合材料及其制备方法
CN114276611A (zh) 一种导热无卤阻燃聚烯烃复合材料及其制备方法和应用
CN111454533B (zh) 一种导电塑胶及其应用
CN107163489A (zh) 一种高强度高导热pc/abs塑料及其制备方法
CN106467667B (zh) 一种注塑级led灯专用导热尼龙复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant