CN113398923A - 一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用 - Google Patents

一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113398923A
CN113398923A CN202110562841.1A CN202110562841A CN113398923A CN 113398923 A CN113398923 A CN 113398923A CN 202110562841 A CN202110562841 A CN 202110562841A CN 113398923 A CN113398923 A CN 113398923A
Authority
CN
China
Prior art keywords
carbon
iro
iridium
catalyst
composite catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110562841.1A
Other languages
English (en)
Other versions
CN113398923B (zh
Inventor
刘景军
莫少览
金纯�
李荣超
王峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202110562841.1A priority Critical patent/CN113398923B/zh
Publication of CN113398923A publication Critical patent/CN113398923A/zh
Application granted granted Critical
Publication of CN113398923B publication Critical patent/CN113398923B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/468Iridium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/093Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one noble metal or noble metal oxide and at least one non-noble metal oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0625Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用,以铱盐为前驱体,碳材料为载体,采用多巴胺等有机胺类物质作为金属盐的稳定剂、分散剂和锚定剂,通过铱盐与碳载体混合,然后在惰性气氛下热处理处理,利用稳定剂和分散剂对催化剂纳米晶的长大的抑制,形成了具有典型草莓状结构的碳担载超细IrO2@Ir异质结颗粒的复合催化剂,异质结颗粒的尺寸为5.03 nm左右。该催化剂具有优良的水分解电催化活性,可在电解水槽、一体式可再生燃料电池、可充电锌‑空气电池等装置中作为析氧、析氢反应电极电催化剂应用。

Description

一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及 其制备方法和应用
技术领域
本发明属于氢能源应用中的制氢领域,具体涉及一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用,特别是一种在电解水、一体式可再生燃料电池等装置中涉及到的氧析出反应和氢析出反应过程的高活性和稳定性的电催化剂。
背景技术
近年来,以氢为燃料的质子交换膜燃料电池由于清洁、能量密度高、能量转化率高等优点,作为一种能源转化装置,是传统化石燃料的最有前景的替代品,因而受到了广泛的关注。目前氢气的主要来源是甲醇重整制氢、化石能源裂解制氢、电解水等方式。其中电解水制氢是制备高纯度氢气的重要来源。对于电解水制氢过程的阴极上的氢析出反应(HER)和阳极上的氧析出反应(OER),由于受到电极极化的影响,两个反应均具有较高的过电位,因此需要催化剂进行催化,以降低电能损耗。
目前,可同时实现水分解的氧析出反应和氢析出反应过电位的有效催化剂主要是Ru和Ir基催化剂,主要包括铱、钌金属以及他们的氧化物。Ru及其氧化物具有很高的氧析出性能,但是会在使用过程中发生较为严重的溶解,稳定性很差,这限制了钌基催化剂在氧析出电极反应的发展。因此,具有高活性的铱及其氧化物更受到人们的广泛关注。虽然铱可作为极佳的氧析出和氢析出反应的电催化剂,但是铱的储量低,价格昂贵,这也限制了铱基催化剂的发展。此外,在高电位下铱的溶解也仍面临较大的挑战。因此,铱基催化剂的活性和稳定性仍需要通过采取一系列措施以进一步提升它们的性能,以降低在电催化过程中的铱使用量并达到理想的催化效果。
发明内容
本发明的目的在于提供一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用,本发明以铱盐为前驱体,碳材料为载体,采用多巴胺等有机胺类物质作为金属盐的稳定剂、分散剂和锚定剂,通过铱盐与碳载体混合,然后在惰性气氛下热处理处理,利用稳定剂和分散剂对催化剂纳米晶的长大的抑制,形成了具有典型草莓状结构的碳担载超细IrO2@Ir异质结颗粒的复合催化剂,异质结颗粒的尺寸为5.03 nm左右,实现复合催化剂的异质成分和特殊结构的设计。该催化剂为能在电解水制氢过程中应用为氢析出催化剂和氧析出催化剂,所制备得到的IrO2@Ir异质结/碳复合催化剂,IrO2@Ir异质结颗粒均匀地负载在纳米碳载体表面,化学低配位且处于应力收缩状态的无定形IrO2层外延生长在金属Ir表面。
为实现发明目的,本发明采用如下技术方案:一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂,所述的复合催化剂为黑色固体粉末,IrO2@Ir异质结被均匀的负载在碳载体表面,无定形IrO2层外延在金属Ir表面上,IrO2层厚度小于1纳米,超薄IrO2层处于低化学配位和应力收缩状态。
在本发明的优选实施方式中,所述的复合催化剂的负载量为10~80%之间,IrO2@Ir纳米粒子的粒径范围为3-9 nm。
本发明还保护所述的复合催化剂的制备方法,包括如下步骤:
(1)首先以金属铱盐为前驱体,碳材料为载体,采用有机胺类物质作为金属盐的稳定剂、分散剂和锚定剂,通过溶液分散将铱盐与碳载体充分混合;
(2)然后在惰性气氛下,通过碳热还原出金属铱,并均匀地负载在碳载体上,通过稳定剂和分散剂对催化剂纳米晶长大的抑制作用以及对铱基催化剂成分和结构的调控作用,进而制备出具有典型草莓状结构的碳担载超细IrO2@Ir异质结颗粒的复合催化剂。
在本发明的优选实施方式中,所述的铱盐包括四氯化铱,三氯化铱、醋酸铱、氯铱酸钾、氯铱酸钠中的一种或几种。
在本发明的优选实施方式中,作为载体的碳材料包括碳纳米管、商业碳黑、石墨烯、石墨碳、生物质碳中的一种或几种;优选为商业碳黑。
在本发明的优选实施方式中,所述的有机胺类物质包括多巴胺、苯胺、牛磺酸、尿素、三聚氰胺中的一种或几种;优选为多巴胺。
在本发明的优选实施方式中,所述的惰性气氛为氩气、氮气、氦气中的一种或几种。
在本发明的优选实施方式中,碳载体、有机胺和金属盐的质量比为碳载体:有机胺:金属盐=50:5~40:17~140,更优选为50:5~40:9~70。
在本发明的优选实施方式中,步骤(1)中,乙醇和水比例为乙醇和水比例(体积比)为乙醇:水=3:1~1:3。
在本发明的优选实施方式中,步骤(2)中,所述的碳热还原温度为700-900℃,升温速率为2~10℃/min。
进一步的,所述的制备方法包括如下步骤:
(1)将50 mg碳载体超声分散在乙醇和水比列为1:1的混合溶液中,随后加入2 mL0.1 M IrCl4水溶液,继续超声半小时;
(2)往步骤(1)的混合液中加入10 mg多巴胺,继续磁力搅拌12 h,然后在70℃下烘干;
(3)将步骤2中烘干后的样品放入瓷舟,在Ar气氛中以5℃/min的升温速率升至900℃,保温1 h,冷却后得到IrO2@Ir/C-900复合催化剂;
其中IrO2@Ir异质结颗粒的尺寸为5.03 nm左右,表面低配位的无定形状IrO2包覆在金属铱表面,厚度小于1纳米,极薄IrO2活性层处于应力收缩状态。
本发明还保护所述的复合催化剂用于电解水析氢和析氧的催化剂,更为具体的,在电解水槽、一体式可再生燃料电池等涉及氧析出反应或氢析出反应的装置中应用。
与现有技术相比,本发明通过催化剂成分、形貌与结构的设计,制备出具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂(IrO2@Ir/C),将其应用于水全分解催化剂,解决了相关反应转化效率不高的问题。该催化剂具有优良的水分解电催化活性。可在电解水槽、一体式可再生燃料电池、可充电锌-空气电池等装置中作为析氧、析氢反应电极电催化剂的应用。
与现有技术相比,本发明具有如下有益效果:
本发明使用包括碳纳米管、商业碳黑、石墨烯、石墨碳、生物质碳等碳材料为载体,有利于活性组分IrO2@Ir在碳载体上的高度分散和高负载,进而提升其电催化性能。
本发明采用多巴胺等有机胺类物质,有利于Ir在碳载体表面的均匀吸附并增强Ir在碳载体表面的吸附力,多巴胺等有机胺类物质对金属原子的锚定作用强有力的降低了金属纳米粒子的粒径,实现铱在碳载体表面的高度分散。
本发明采用碳载体为还原剂还原出Ir,避免了有机溶剂的使用,操作简便、可操作性强、而且可大规模制备。所得到的复合催化剂,可应用于适用于酸性、碱性环境中的氧析出、氢析出反应,表现出比商业二氧化铱优异的电催化性能和稳定性。在高电流密度下表现出比商业铂碳优异的氢析出反应性能。
附图说明
以下结合附图对本发明作进一步说明, 附图仅对本发明做示意性说明和解释,并不限定本发明的范围。
图1为 实施例1~3中所得的催化剂的 X射线衍射 (XRD) 图谱;
图2 为实施例3中所得的催化剂的(a-b)TEM图,(c)粒径分布图和(d)HRTEM图;
图3 为实施例3中所得的催化剂的粒径分布图;
图4 为实施例3中所得的催化剂的的Ir 4f光谱的高分辨率X射线光电子能谱(XPS)图;
图5 为实施例1~3中所得的催化剂的(a)氧析出反应(OER)极化曲线和(b)10 mAcm-2电流密度下的过电位;
图6 为实施例3所得的催化剂和商业二氧化铱(IrO2)催化剂(a)在10 mA cm-2电流密度下的计时电流稳定性测试以及(b-c)在稳定性测试前后的极化曲线性能对比图;
图7 为实施例3所得的催化剂和商业铂碳(Pt/C)催化剂的电解水氢析出反应(HER)极化曲线。
具体实施方式
下面结合具体实施例进行详细描述,但本发明的保护范围并不受具体实施方式的限制。
实施例1
(1)将50 mg商业碳黑超声分散在乙醇和水比例为1:1的混合溶液中,随后加入2mL 0.1 M IrCl4水溶液,继续超声半小时;
(2)往步骤(1)的混合液中加入10 mg多巴胺,继续磁力搅拌12 h,然后在70℃下烘干;
(3)将步骤2中烘干后的样品放入瓷舟,在Ar气氛中以5℃/min的升温速率升至700℃,保温1 h,冷却后得到IrO2@Ir/C-700复合催化剂。
实施例2
(1)将50 mg商业碳黑超声分散在乙醇和水比例为1:1的混合溶液中,随后加入2mL 0.1 M IrCl4水溶液,继续超声半小时;
(2)往步骤(1)的混合液中加入10 mg多巴胺,继续磁力搅拌12 h,然后在70℃下烘干;
(3)将步骤2中烘干后的样品放入瓷舟,在Ar气氛中以5℃/min的升温速率升至800℃,保温1 h,冷却后得到IrO2@Ir/C-800复合催化剂。
实施例3
(1)将50 mg商业碳黑超声分散在乙醇和水比例为1:1的混合溶液中,随后加入2mL 0.1 M IrCl4水溶液,继续超声半小时;
(2)往步骤(1)的混合液中加入10 mg多巴胺,继续磁力搅拌12 h,然后在70℃下烘干;
(3)将步骤2中烘干后的样品放入瓷舟,在Ar气氛中以5℃/min的升温速率升至900℃,保温1 h,冷却后得到IrO2@Ir/C-900复合催化剂。
实施例1~3制备得到的复合催化剂的X射线衍射图谱如图1所示,均可以看到明显的金属铱的衍射峰。
图2和图3是实施例3所得催化剂IrO2@Ir/C-900的透射电子显微镜 (TEM) 图片和粒径分布图,可以看出,IrO2@Ir的粒径为3~9 nm,且均匀分散在载体表面。
图4是实施例3所得催化剂IrO2@Ir/C-900的Ir 4f光谱的高分辨率X射线光电子能谱(XPS)图,拟合分峰结果表明表面含有69.1%的Ir4+,证明了二氧化铱的存在。
图5是实施例1-3所得催化剂和商业二氧化铱的氧析出反应极化曲线和对应的10mA cm-2电流密度下的过电位,表现出比商业催化剂优异的氧析出性能。
图6是实施例3所得催化剂IrO2@Ir/C-900和商业二氧化铱的稳定性对比图,证明该催化剂具有比商业催化剂优异的稳定性。
图7是实施例3所得催化剂IrO2@Ir/C-900和商业二氧化铱的氢析出反应极化曲线对比图,证明该催化剂也同时具有优异的氢析出反应催化性能。
以上实施例显示和描述了本发明的基本原理和主要特征和本发明的优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,而不是以任何方式限制本发明的范围,在不脱离本发明范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的范围内。

Claims (10)

1.一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂,其特征在于,所述的复合催化剂为黑色固体粉末,IrO2@Ir异质结被均匀的负载在碳载体表面,无定形IrO2层外延在金属Ir表面上,IrO2层厚度小于1纳米,超薄IrO2层处于低化学配位和应力收缩状态。
2.根据权利要求1所述的复合催化剂,其特征在于,所述的复合催化剂的负载量为10~80%之间,IrO2@Ir纳米粒子的粒径范围为3-9 nm。
3.根据权利要求1或2所述的复合催化剂的制备方法,其特征在于,包括如下步骤:
(1)首先以金属铱盐为前驱体,碳材料为载体,采用有机胺类物质作为金属盐的稳定剂、分散剂和锚定剂,通过溶液分散将铱盐与碳载体充分混合;
(2)然后在惰性气氛下,通过碳热还原出金属铱,并均匀地负载在碳载体上,通过稳定剂和分散剂对催化剂纳米晶长大的抑制作用以及对铱基催化剂成分和结构的调控作用,进而制备出具有典型草莓状结构的碳担载超细IrO2@Ir异质结颗粒的复合催化剂。
4.根据权利要求3所述的制备方法,其特征在于,所述的铱盐包括四氯化铱,三氯化铱、醋酸铱、氯铱酸钾、氯铱酸钠中的一种或几种;作为载体的碳材料包括碳纳米管、商业碳黑、石墨烯、石墨碳、生物质碳中的一种或几种,优选为商业碳黑;所述的有机胺类物质包括多巴胺、苯胺、牛磺酸、尿素、三聚氰胺中的一种或几种,优选为多巴胺;所述的惰性气氛为氩气、氮气、氦气中的一种或几种。
5.根据权利要求3所述的制备方法,其特征在于,碳载体、有机胺和金属盐的质量比为碳载体:有机胺:金属盐=50:5~40:9~70。
6.根据权利要求3所述的制备方法,其特征在于,步骤(1)中,乙醇和水的体积比为乙醇:水=3:1~1:3。
7.根据权利要求3所述的制备方法,其特征在于,步骤(2)中,所述的碳热还原温度为700-900℃,升温速率为2~10℃/min。
8.根据权利要求3所述的制备方法,其特征在于,所述的制备方法包括如下步骤:
(1)将碳载体超声分散在乙醇和水比列为1:1的混合溶液中,随后加入2 mL 0.1 MIrCl4水溶液,继续超声半小时;
(2)往步骤(1)的混合液中加入10 mg多巴胺,继续磁力搅拌12 h,然后在70℃下烘干;
(3)将步骤2中烘干后的样品放入瓷舟,在Ar气氛中以5℃/min的升温速率升至900℃,保温1 h,冷却后得到IrO2@Ir/C-900复合催化剂。
9.根据权利要求8所述的制备方法,其特征在于,得到的IrO2@Ir异质结颗粒的尺寸为5.03 nm左右,表面低配位的无定形状IrO2包覆在金属铱表面,厚度小于1纳米,极薄IrO2活性层处于应力收缩状态。
10.权利要求1或2所述的复合催化剂、或是权利要求3-9中任一项所述的制备方法制备得到的复合催化剂用于电解水析氢和析氧的催化剂;更优选的,在电解水槽、一体式可再生燃料电池等涉及氧析出反应或氢析出反应的装置中应用。
CN202110562841.1A 2021-05-24 2021-05-24 一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用 Active CN113398923B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110562841.1A CN113398923B (zh) 2021-05-24 2021-05-24 一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110562841.1A CN113398923B (zh) 2021-05-24 2021-05-24 一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113398923A true CN113398923A (zh) 2021-09-17
CN113398923B CN113398923B (zh) 2023-07-25

Family

ID=77679299

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110562841.1A Active CN113398923B (zh) 2021-05-24 2021-05-24 一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113398923B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941160A (zh) * 2022-06-30 2022-08-26 中自环保科技股份有限公司 一种IrOx@Ir复合铱基催化剂及其制备方法
CN115522224A (zh) * 2022-09-21 2022-12-27 温州大学 一种新型催化剂材料、制备方法及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104588A1 (en) * 2009-10-29 2011-05-05 Hyundai Motor Company Method of preparing nano-sized catalyst on carbon support
CN109772410A (zh) * 2019-02-21 2019-05-21 西南大学 一种高效铱基电解水双功能催化剂及其制备方法和应用
CN110292939A (zh) * 2019-06-28 2019-10-01 北京化工大学 一种双碳限域的铱纳米团簇及其制备方法和应用
CN111129513A (zh) * 2019-12-27 2020-05-08 大连理工大学 一种氮掺杂碳担载粒径均一的低铂金属球形纳米颗粒电催化剂的制备方法及应用
CN112002915A (zh) * 2020-07-23 2020-11-27 北京卫星制造厂有限公司 一种氧电极双功能催化剂、制备方法及应用
CN112481635A (zh) * 2020-10-14 2021-03-12 温州大学 一种贵金属铱析氢电催化剂及应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110104588A1 (en) * 2009-10-29 2011-05-05 Hyundai Motor Company Method of preparing nano-sized catalyst on carbon support
CN109772410A (zh) * 2019-02-21 2019-05-21 西南大学 一种高效铱基电解水双功能催化剂及其制备方法和应用
CN110292939A (zh) * 2019-06-28 2019-10-01 北京化工大学 一种双碳限域的铱纳米团簇及其制备方法和应用
CN111129513A (zh) * 2019-12-27 2020-05-08 大连理工大学 一种氮掺杂碳担载粒径均一的低铂金属球形纳米颗粒电催化剂的制备方法及应用
CN112002915A (zh) * 2020-07-23 2020-11-27 北京卫星制造厂有限公司 一种氧电极双功能催化剂、制备方法及应用
CN112481635A (zh) * 2020-10-14 2021-03-12 温州大学 一种贵金属铱析氢电催化剂及应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114941160A (zh) * 2022-06-30 2022-08-26 中自环保科技股份有限公司 一种IrOx@Ir复合铱基催化剂及其制备方法
CN115522224A (zh) * 2022-09-21 2022-12-27 温州大学 一种新型催化剂材料、制备方法及其应用
CN115522224B (zh) * 2022-09-21 2024-04-30 温州大学 一种新型催化剂材料、制备方法及其应用

Also Published As

Publication number Publication date
CN113398923B (zh) 2023-07-25

Similar Documents

Publication Publication Date Title
Yu et al. Interface engineering of NiO/RuO2 heterojunction nano-sheets for robust overall water splitting at large current density
Hua et al. Interface-strengthened CoP nanosheet array with Co2P nanoparticles as efficient electrocatalysts for overall water splitting
CN110252335B (zh) 一种碳包覆镍钌纳米材料及其制备方法和应用
Mu et al. Controllable synthesis of molybdenum carbide nanoparticles embedded in porous graphitized carbon matrixes as efficient electrocatalyst for hydrogen evolution reaction
Mou et al. Enhanced electrochemical reduction of carbon dioxide to formate with in-situ grown indium-based catalysts in an aqueous electrolyte
Wen NiFe-LDH/MWCNTs/NF nanohybrids as a high-performance bifunctional electrocatalyst for overall urea electrolysis
Yang et al. Novel self-supporting thin film electrodes of FeCoNiCrMn high entropy alloy for excellent oxygen evolution reaction
Zheng et al. NiCo2O4 nanoflakes supported on titanium suboxide as a highly efficient electrocatalyst towards oxygen evolution reaction
EP1553052A2 (en) Carbon nanotube and fuel cell using the same
CN109701545B (zh) 一种负载钒钴合金纳米颗粒的电催化材料及其制备方法
Boakye et al. One-step synthesis of heterostructured cobalt-iron selenide as bifunctional catalyst for overall water splitting
Bao et al. Electronic and structural engineering of NiCo2O4/Ti electrocatalysts for efficient oxygen evolution reaction
Li et al. Hollow hemisphere-shaped macroporous graphene/tungsten carbide/platinum nanocomposite as an efficient electrocatalyst for the oxygen reduction reaction
CN113398923B (zh) 一种具有草莓状结构的碳担载IrO2@Ir异质结复合催化剂及其制备方法和应用
Kim et al. Zeolitic imidazolate frameworks derived novel polyhedral shaped hollow Co-BO@ Co3O4 electrocatalyst for oxygen evolution reaction
Wu et al. Self-supported hollow Co (OH) 2/NiCo sulfide hybrid nanotube arrays as efficient electrocatalysts for overall water splitting
Lai et al. A hierarchical nickel-iron hydroxide nanosheet from the high voltage cathodic polarization for alkaline water splitting
Zeng et al. Accelerated oxygen evolution enabled by encapsulating hybrid CoOx/RuO2 nanoparticle with nanoporous carbon
Liu et al. Engineering Ir and Ni3N heterogeneous interfaces for promoted overall water splitting
Wang et al. Building strong metal-support interaction between TiN and RuO2 for efficient acidic oxygen evolution reaction
Liu et al. Metal-organic framework-derived heterostructured CoSe2-ZnSe nanorods coupled with carbon polyhedron supported carbon paper for oxygen evolution electrocatalysts
Zuo et al. Highly stable and methanol tolerant oxygen reduction reaction electrocatalyst Co/CoO/SnO@ NC nanocubes by one-step introduction of functional components
Li et al. Janus structural TaON/Graphene-like carbon dual-supported Pt electrocatalyst enables efficient oxygen reduction reaction
CN115896848A (zh) 一种氮/硫共掺杂多孔碳负载锌单原子/金属铜串联催化剂及其制备方法和应用
CN110629248A (zh) 一种Fe掺杂Ni(OH)2/Ni-BDC电催化剂的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant