CN113394302A - 一种基于不同类黑磷材料的太阳能电池及制备方法 - Google Patents

一种基于不同类黑磷材料的太阳能电池及制备方法 Download PDF

Info

Publication number
CN113394302A
CN113394302A CN202110464509.1A CN202110464509A CN113394302A CN 113394302 A CN113394302 A CN 113394302A CN 202110464509 A CN202110464509 A CN 202110464509A CN 113394302 A CN113394302 A CN 113394302A
Authority
CN
China
Prior art keywords
layer
double
stack
sns
ges
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110464509.1A
Other languages
English (en)
Other versions
CN113394302B (zh
Inventor
涂昌昕
雷双瑛
江源长
陈洁
黄庆安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN202110464509.1A priority Critical patent/CN113394302B/zh
Publication of CN113394302A publication Critical patent/CN113394302A/zh
Application granted granted Critical
Publication of CN113394302B publication Critical patent/CN113394302B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022475Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of indium tin oxide [ITO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本文给出了一种通过不同类黑磷的不同堆垛结构来实现一种新型的异质结太阳能电池。所述异质结薄膜太阳能电池由下至上依次包括五层结构:基底、ITO涂层、双层AB堆垛GeS、双层旋转AD堆垛的SnS和上电极。双层AB堆垛GeS和双层旋转SnS‑ADd堆垛结合可构成Ⅱ型半导体异质结,以AD结构的双层旋转SnS为给体,其能带间隙为1.4654eV,以AB结构的GeS为受体。通过机械剥离的方法来得到不同堆垛结构的双层类黑磷结构。在白光照射下,本文提供的太阳能电池其开路电压理论上达到1.088V,短路电流密度达到301.937A/㎡,太阳能电池的AM1.5能量转换效率高达21.35%。

Description

一种基于不同类黑磷材料的太阳能电池及制备方法
技术领域
本发明涉及一种用少层GeS堆垛和少层SnS堆垛结构实现半导体太阳能电池的方法,属于半导体技术领域。
背景技术
能源是人类生存的基石,是人类全球经济发展的引擎。非可再生传统能源无约束的使用产生了温室效应、大气污染等许多的生态问题,影响了人类的生存。因此,开发可再生清洁能源迫在眉睫,太阳能作为一种新型绿色环保能源,引起了新能源开发者的广泛关注。
太阳能具有取之不尽用之不竭、清洁无污染等特点,在人类急迫需要能源替代来缓解能源紧缺之际,太阳能无疑是一个非常优质的选项。可再生能源替代不可再生能源已经成为全球迫切解决的问题。太阳能的有效利用和开发有助于解决目前存在的能源问题。通过科学研究实验的不断突破和创新,规模化有序化地开发并利用可再生清洁能源来解决因不可再生能源利用带来的恶劣问题,达到人与自然和谐发展,这有着极大的战略意义。
近几年来,具有原子层厚度的2D材料因其优越的的性质受到了人们的广泛研究,如石墨烯、MoS2、黑磷烯等等。近期,新型的类黑磷烯材料受到了人们的关注。类黑磷材料和黑磷材料具有及其相似的性质,如高电子迁移率和优越的光学性质等等。且类黑磷烯相比于黑磷烯更加稳定。本文通过理论计算,选取2 种稳定的类黑磷烯结构即双层GeS-AB堆垛和双层旋转SnS-AD堆垛。本文通过这2种结构构成Ⅱ型半导体异质结来制造半导体太阳能电池。在白光照射下,本文提供的太阳能电池其开路电压理论上达到1.088V,短路电流密度达到 301.937A/㎡,太阳能电池的AM1.5能量转换效率高达21.35%。
发明内容
1.技术问题:本发明的目的在于提供一种异质结太阳能电池及其制备方法,使用二维材料SnS和GeS的不同堆垛结构组成Ⅱ型异质结制备太阳能电池,降低制备成本,且具有很高的光电转化效率。
2.技术方案:一种基于类黑磷材料的异质结薄膜太阳能电池,该异质结太阳能电池由下而上包括如下结构:最底层为衬底,第二层为阳极涂层,第三层为双层AB堆垛的GeS结构;第四层为双层旋转AD堆垛SnS,最上面为阴极,阴极占双层旋转SnS-AD堆垛总面积的10%到15%,而阳极在阳极涂层上,使得阳极与双层AB堆垛的GeS结构不接触。
所述异质结材料分别为双层AB堆垛的GeS结构和双层旋转AD堆垛SnS,这两种结构都是。
通过探针剥离的方法将初始结构进行错位得到。
所述异质结太阳能电池中的双层AB堆垛的GeS和双层旋转AD堆垛SnS 为双层,厚度为
Figure RE-RE-GDA0003202463850000021
双层GeS-AB堆垛结构为:第一层结构相当于相对第二层沿a方向移动了约0.281个周期,而双层旋转SnS-AD堆垛的第二层相当于第一层沿b方向移动了半个周期的距离,且其第二层相对第一层旋转了180°;AB 堆垛的GeS双层薄膜和AD堆垛旋转SnS双层薄膜组成异质结,AD堆垛作为给体部分,AB堆垛作为受体部分,双层旋转的SnS-AD堆垛和双层AB堆垛GeS 构成了一个Ⅱ型异质结。
采用的阳极和衬底都为一体化的导电玻璃。
一种所述的基于类黑磷材料的异质结薄膜太阳能电池的制备方法,该制备方法包括以下步骤:
a.采用光刻法制备衬底和阳极电极,使得阳极与双层AB堆垛的GeS结构不接触;
b.GeS薄膜和SnS薄膜的制备:使用液相法制备GeS,通过电沉积法来制备 SnS;
c.SnS堆垛和GeS堆垛制备:
1)将上述得到的SnS膜,在电子显微镜下,通过探针剥离的方法,剥离得到双层的SnS膜;
2)将1)得到的SnS在电子显微镜下,使用探针移动层与层间的相对距离或进行层间的旋转变换,得到所要求的双层旋转SnS-AD堆垛,最后再将二者通过层间的范德瓦尔斯力相互结合形成横向异质结;
3)经过步骤1)和2)相同的方法制备得到GeS-AB堆垛;
d.器件组合
将c得到的双层GeS-AB堆垛通过二维材料转移装置转移到ITO涂层上方,然后将c得到的双层旋转SnS-AD堆垛通过二维材料转移系统堆叠在GeS-AB 堆垛的上方,最后对得到的器件进行退火处理,
e.将d得到的器件,通过金属蒸镀技术在顶部蒸镀一层金属层作为阴极,占双层旋转SnS-AD堆垛总面积的10%到15%。
所述的一种基于类黑磷材料的异质结薄膜太阳能电池的制备方法,步骤a中采用光刻法制备衬底和阳极电极的具体方法为:
采用导电玻璃作为衬底和电极,首先在导电玻璃上涂上均匀的光刻胶,通过光刻技术得到对应电极图形的反图形,经过曝光处理,得到下金属电极的图形,然后进行金属蒸镀。使用丙酮混合液体清洗掉多余的光刻胶,使得阳极与双层 AB堆垛的GeS结构不接触,这就得到了带金属电极的导电玻璃结构。
使用液相法制备GeS的具体方法为,将计量比的锗氯化二噁烷络合物、硫脲、油酰胺0LA分别在空气中轻微的磁力搅拌;将搅拌后的液体混合物超声处理,除去油胺中的空气;随后连接到Schlenk线,抽真空,除去水分和氧气;在磁力搅拌下通氮气进行惰性气体保护;将处理过后的液体混合物加热,随着温度的升高,液体逐渐变成了黄色透明溶液,反应混合物在氮气流中回流反应;反应结束将溶液冷却至室温,沉淀离心分离,洗涤真空干燥获得样品。
通过电沉积法来制备SnS先制备沉积液,先将去离子水通氮气后,在水中加入药品,称取以定量的SnCl2-2H2O、Na2S2O3-5H2O、K4P2O7及添加剂C19H42BrN 或CO(NH2)2,适量CuCl2-2H2O或AlCl3-6H2O溶于去离子水中,使用稀硫酸调节电沉积液pH值2.8~3.0,搅拌均匀备用,将三电极插入上述沉积液中,在恒温水浴锅进行沉积,搅拌速度恒定,恒电位沉积,将前面得到的沉积薄膜放置在瓷舟中,再将瓷舟放置于管式炉中,惰性气氛下退火,而后随炉冷却至室温。
有益效果:与现有技术相比,本发明有以下有益效果:
1.本发明中选取的是二维材料,所述异质结材料分别为双层AB堆垛的GeS 结构和双层旋转AD堆垛SnS,这两种结构都是通过探针剥离法得到的;这两种材料都为双层结构,这类材料的厚度能达到原子级别,厚度很薄,具有良好的透光性和导电性,所以可以将半导体太阳能电池制作的极薄。
2.本发明选用的材料同属于类黑磷材料,其很容易达到晶格适配。
3.本发明所采用的异质结为Ⅱ型异质结结构,所谓Ⅱ型异质结通常定义为该异质结的能带结构表现为:ΔEc(窄带与宽带导带底能量差)和ΔEv(窄带与宽带价带顶能量差)的符号相同;因此本结构就定义为双层旋转的SnS-AD堆垛的CBM(导带底)在双层GeS-AB堆垛的CBM之上,且双层旋转SnS-AD堆垛的VBM(价带顶)也在双层GeS-AB堆垛VBM之上。Ⅱ型能带对准形成的内建电场能有效分离光生电子-空穴对,这对于光电子的收集是有利的。本发明选用的材料堆叠形成Ⅱ型半导体异质结太阳能电池,这种太阳能电池其开路电压理论上可达到1.088V,短路电流密度可达到301.937A/㎡,AM1.5能量转换效率高达21.35%。
4.本发明采用的阳极和衬底都为一体化的导电玻璃,其能形成良好的欧姆接触,从而显著提升器件性能。
附图说明:
图1为本发明提供的异质结太阳能电池的结构示意图。其中,底层为衬底 1,第二层为阳极涂层2,第三层为双层AB堆垛的GeS结构4;5为第四层为双层旋转AD堆垛SnS,6为阴极,3为阳极
图2为双层GeSe-AD堆垛和双层旋转GeS-AB堆垛的能带分布图。
具体实施方式
:本发明提供了一种异质结薄膜太阳能电池,该异质结太阳能电池由下而上包括如下结构:最底层位衬底1,第二层为ITO涂层2,第三层为双层AB堆垛的GeS结构4;第四层为双层旋转AD堆垛SnS,最上面为上电极6,而阳极3 在ITO涂层上。、
所述的异质结薄膜太阳能电池,所述异质结材料分别为双层AB堆垛的GeS 和双层旋转AD堆垛SnS,这两种结构都是通过探针剥离法得到的;这两种材料都为双层结构,厚度很薄,具有良好的透光性和导电性。
所述的异质结半导体太阳能电池,双层旋转AD型SnS堆垛和双层AB型 GeS堆垛通过探针剥离的方法将初始结构进行错位得到。
所述的异质结薄膜太阳能电池,所述异质结太阳能电池中的双层AB堆垛的 GeS和双层旋转AD堆垛SnS厚度需要做到双层,厚度为
Figure RE-RE-GDA0003202463850000051
双层GeS-AB 堆垛结构为:第一层结构相当于相对第二层沿a方向移动了约0.281个周期,而双层旋转SnS-AD堆垛的第二层相当于第一层沿b方向移动了半个周期的距离,且其第二层相对第一层旋转了180°;AB堆垛的GeS双层薄膜和AD堆垛旋转 SnS双层薄膜组成异质结,AD堆垛作为给体部分,AB堆垛作为受体部分,双层旋转的SnS-AD堆垛和双层AB堆垛GeS构成了一个Ⅱ型异质结。
所述的异质结太阳能电池,所采用的异质结为Ⅱ型异质结结构,所谓Ⅱ型异质结通常定义为该异质结的能带结构表现为:ΔEc(窄带与宽带导带底能量差) 和ΔEv(窄带与宽带价带顶能量差)的符号相同;因此本结构就定义为双层旋转的SnS-AD堆垛的CBM(导带底)在双层GeS-AB堆垛的CBM之上,且双层旋转SnS-AD堆垛的VBM(价带顶)也在双层GeS-AB堆垛VBM之上。Ⅱ型能带对准形成的内建电场能有效分离光生电子-空穴对,这对于光电子的收集是有利的。
所述的异质结太阳能电池,这里采用的阳极和衬底可以选用一体化的铟锡氧化物玻璃(ITO)、铝锌氧化物玻璃(AZO)或铟锌氧化物玻璃(IZO);其能形成良好的欧姆接触,从而显著提升器件性能。可选地,阴极材料为业界常规选择,如可以使用金属铝。
本发明的异质结半导体太阳能电池的制备方法包括以下步骤:
a.衬底和电极的制备
本发明中采用ITO导电玻璃作为衬底和电极,首先在ITO玻璃上涂上均匀的光刻胶,通过光刻技术得到对应电极图形的反图形,经过曝光处理,得到下金属电极的图形,然后进行金属蒸镀。使用丙酮混合液体清洗掉多余的光刻胶,这就得到了带金属电极的ITO玻璃结构。
b.GeS薄膜和SnS薄膜的制备
本发明使用液相法制备GeS纳米片,将0.2g锗氯化二噁烷络合物、0.4g硫脲、20ml油酰胺0LA分别加入到25ml的三颈瓶中,在空气中轻微的磁力搅拌;将搅拌后的液体混合物超声处理5min,除去油胺中的空气;随后将三颈瓶连接到Schlenk线,抽真空30min,除去水分和氧气;在磁力搅拌下通氮气30min进行惰性气体保护;将处理过后的液体混合物加热至593k,随着温度的升高,液体逐渐变成了黄色透明溶液。反应混合物在氮气流中593k温度下回流4h;反应结束将溶液冷却至室温,沉淀离心分离,用去离子水和无水乙醇洗涤多次,在40℃真空干燥4h获得样品。
本发明通过电沉积法来制备SnS纳米片,先制备沉积液,先将去离子水通氮气30min后,在水中加入药品,称取以定量的SnCl2-2H2O、Na2S2O3-5H2O、 K4P2O7及添加剂C19H42BrN或CO(NH2)2,适量CuCl2-2H2O或AlCl3-6H2O 溶于200ml去离子水中,使用稀硫酸调节电乘积液pH值2.8~3.0,搅拌均匀备用。将三电极插入上述乘积液中,在恒温水浴锅设定温度40℃~60℃条件下进行乘积,搅拌速度恒定300rpm/min,恒电位乘积实验,乘积时间位30min~50min。将前面得到的沉积薄膜放置在瓷舟中,再将瓷舟放置于管式炉中。设置退火程序,升温时间5℃/min,保温温度位350℃,保温时间为30min,调整保护气氩气通气速度为200ml/min~300ml/min。而后随炉冷却至室温。
c.SnS堆垛和GeS堆垛制备
1)将上述得到的SnS膜,在电子显微镜下,通过探针剥离的方法,剥离得到双层的SnS膜;
2)将1)得到的SnS在电子显微镜下,使用探针移动层与层间的相对距离或进行层间的旋转变换,得到我们所要求的双层旋转SnS-AD堆垛。最后再将二者通过层间的范德瓦尔斯力相互结合形成横向异质结;
3)经过相同的方法可以制备得到GeS-AB堆垛;
d.器件组合
将c得到的双层GeS-AB堆垛通过二维材料转移装置转移到ITO涂层上方,然后将c得到的双层旋转SnS-AD堆垛通过二维材料转移系统堆叠在GeS-AB 堆垛的上方,最后我们对得到的器件进行退火处理。
e.将d得到的器件,通过金属蒸镀技术在其顶部蒸镀一层金属。
图1中,双层AB型GeS堆垛(3)和双层旋转AD型SnS(4)堆垛组成的异质结为半导体太阳能电池的核心部分,在光照射的情况下,把光能转换为电能。其原因在于:当双层AB型GeS(3)与双层旋转AD型SnS(4)相接触时,由于两者的能带结构不同,两者导带底CBM和价带顶VBM的排列组成了Ⅱ型半导体异质结,在接触界面形成耗尽层,在光照射的情况下,由于光生伏特效应,在异质结的两端会产生电势差。
实施例
a.衬底和电极的制备
本发明中采用ITO导电玻璃作为衬底和电极,首先在ITO玻璃上涂上均匀的光刻胶,通过光刻技术得到对应电极图形的反图形,经过曝光处理,得到下金属电极的图形,然后进行金属蒸镀。使用丙酮混合液体清洗掉多余的光刻胶,这就得到了带金属电极的ITO玻璃结构。
b.GeS薄膜和SnS薄膜的制备
本发明使用液相法制备GeS纳米片,将0.2g锗氯化二噁烷络合物、0.4g硫脲、20ml油酰胺0LA分别加入到25ml的三颈瓶中,在空气中轻微的磁力搅拌;将搅拌后的液体混合物超声处理5min,除去油胺中的空气;随后将三颈瓶连接到Schlenk线,抽真空30min,除去水分和氧气;在磁力搅拌下通氮气30min进行惰性气体保护;将处理过后的液体混合物加热至593k,随着温度的升高,液体逐渐变成了黄色透明溶液。反应混合物在氮气流中593k温度下回流4h;反应结束将溶液冷却至室温,沉淀离心分离,用去离子水和无水乙醇洗涤多次,在40℃真空干燥4h获得样品。
本发明通过电沉积法来制备SnS纳米片,先制备沉积液,先将去离子水通氮气30min后,在水中加入药品,称取以定量的SnCl2-2H2O、Na2S2O3-5H2O、 K4P2O7及添加剂C19H42BrN或CO(NH2)2,适量CuCl2-2H2O或AlCl3-6H2O 溶于200ml去离子水中,使用稀硫酸调节电乘积液pH值2.8~3.0,搅拌均匀备用。将三电极插入上述乘积液中,在恒温水浴锅设定温度40℃~60℃条件下进行乘积,搅拌速度恒定300rpm/min,恒电位乘积实验,乘积时间位30min~50min。将前面得到的沉积薄膜放置在瓷舟中,再将瓷舟放置于管式炉中。设置退火程序,升温时间5℃/min,保温温度位350℃,保温时间为30min,调整保护气氩气通气速度为200ml/min~300ml/min。而后随炉冷却至室温。
c.SnS堆垛和GeS堆垛制备
1)将上述得到的SnS膜,在电子显微镜下,通过探针剥离的方法,剥离得到双层的SnS膜;
2)将1)得到的SnS在电子显微镜下,使用探针移动层与层间的相对距离或进行层间的旋转变换,得到我们所要求的双层旋转SnS-AD堆垛。最后再将二者通过层间的范德瓦尔斯力相互结合形成横向异质结;
3)经过相同的方法可以制备得到GeS-AB堆垛;
d.器件组合
将c得到的双层GeS-AB堆垛通过二维材料转移装置转移到ITO涂层上方,然后将c得到的双层旋转SnS-AD堆垛通过二维材料转移系统堆叠在GeS-AB 堆垛的上方,最后我们对得到的器件进行退火处理。
e.将d得到的器件,通过金属蒸镀技术在其顶部蒸镀,金属可以为铝。

Claims (8)

1.一种基于不同类黑磷材料的太阳能电池及制备方法,其特征在于,该异质结太阳能电池由下而上包括如下结构:最底层为衬底(1),第二层为阳极涂层(2),第三层为双层AB堆垛的GeS结构(4);第四层为双层旋转AD堆垛SnS(5),最上面为阴极(6),阴极占双层旋转SnS-AD堆垛总面积的10%到15%,而阳极(3)在阳极涂层上,使得阳极(3)与双层AB堆垛的GeS结构(4)不接触。
2.根据权利要求1所述的基于不同类黑磷材料的太阳能电池及制备方法,其特征在于,所述异质结材料分别为双层AB堆垛的GeS结构和双层旋转AD堆垛SnS,这两种结构都是。
通过探针剥离的方法将初始结构进行错位得到。
3.根据权利要求1所述的基于不同类黑磷材料的太阳能电池及制备方法,其特征在于:所述异质结太阳能电池中的双层AB堆垛的GeS和双层旋转AD堆垛SnS为双层,厚度为
Figure FDA0003043027660000011
双层GeS-AB堆垛结构为:第一层结构相当于相对第二层沿a方向移动了约0.281个周期,而双层旋转SnS-AD堆垛的第二层相当于第一层沿b方向移动了半个周期的距离,且其第二层相对第一层旋转了180°;AB堆垛的GeS双层薄膜和AD堆垛旋转SnS双层薄膜组成异质结,AD堆垛作为给体部分,AB堆垛作为受体部分,双层旋转的SnS-AD堆垛和双层AB堆垛GeS构成了一个Ⅱ型异质结。
4.根据权利要求1所述的基于不同类黑磷材料的太阳能电池及制备方法,其特征在于,采用的阳极(3)和衬底(1)都为一体化的导电玻璃。
5.一种如权利要求1所述的基于不同类黑磷材料的太阳能电池的制备方法,其特征在于,该制备方法包括以下步骤:
a.采用光刻法制备衬底和阳极电极,使得阳极(3)与双层AB堆垛的GeS结构(4)不接触;
b.GeS薄膜和SnS薄膜的制备:使用液相法制备GeS,通过电沉积法来制备SnS;
c.SnS堆垛和GeS堆垛制备:
1)将上述得到的SnS膜,在电子显微镜下,通过探针剥离的方法,剥离得到双层的SnS膜;
2)将1)得到的SnS在电子显微镜下,使用探针移动层与层间的相对距离或进行层间的旋转变换,得到所要求的双层旋转SnS-AD堆垛,最后再将二者通过层间的范德瓦尔斯力相互结合形成横向异质结;
3)经过步骤1)和2)相同的方法制备得到GeS-AB堆垛;
d.器件组合
将c得到的双层GeS-AB堆垛通过二维材料转移装置转移到ITO涂层上方,然后将c得到的双层旋转SnS-AD堆垛通过二维材料转移系统堆叠在GeS-AB堆垛的上方,最后对得到的器件进行退火处理,
e.将d得到的器件,通过金属蒸镀技术在顶部蒸镀一层金属层作为阴极,占双层旋转SnS-AD堆垛总面积的10%到15%。
6.如权利要求5所述的一种基于类黑磷材料的异质结薄膜太阳能电池的制备方法,其特征在于,步骤a中采用光刻法制备衬底和阳极电极的具体方法为:;采用导电玻璃作为衬底和电极,首先在导电玻璃上涂上均匀的光刻胶,通过光刻技术得到对应电极图形的反图形,经过曝光处理,得到下金属电极的图形,然后进行金属蒸镀,使用丙酮混合液体清洗掉多余的光刻胶,使得阳极(3)与双层AB堆垛的GeS结构(4)不接触,这就得到了带金属电极的导电玻璃结构。
7.如权利要求5所述的基于不同类黑磷材料的太阳能电池的制备方法,其特征在于,使用液相法制备GeS的具体方法为,将计量比的锗氯化二噁烷络合物、硫脲、油酰胺0LA分别在空气中轻微的磁力搅拌;将搅拌后的液体混合物超声处理,除去油胺中的空气;随后连接到Schlenk线,抽真空,除去水分和氧气;在磁力搅拌下通氮气进行惰性气体保护;将处理过后的液体混合物加热,随着温度的升高,液体逐渐变成了黄色透明溶液,反应混合物在氮气流中回流反应;反应结束将溶液冷却至室温,沉淀离心分离,洗涤真空干燥获得样品。
8.如权利要求5所述的一种基于不同类黑磷材料的太阳能电池的制备方法,其特征在于,通过电沉积法来制备SnS先制备沉积液,先将去离子水通氮气后,在水中加入药品,称取以定量的SnCl2-2H2O、Na2S2O3-5H2O、K4P2O7及添加剂C19H42BrN或CO(NH2)2,适量CuCl2-2H2O或AlCl3-6H2O溶于去离子水中,使用稀硫酸调节电沉积液pH值2.8~3.0,搅拌均匀备用,将三电极插入上述沉积液中,在恒温水浴锅进行沉积,搅拌速度恒定,恒电位沉积,将前面得到的沉积薄膜放置在瓷舟中,再将瓷舟放置于管式炉中,惰性气氛下退火,而后随炉冷却至室温。
CN202110464509.1A 2021-04-28 2021-04-28 一种基于不同类黑磷材料的太阳能电池及制备方法 Active CN113394302B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110464509.1A CN113394302B (zh) 2021-04-28 2021-04-28 一种基于不同类黑磷材料的太阳能电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110464509.1A CN113394302B (zh) 2021-04-28 2021-04-28 一种基于不同类黑磷材料的太阳能电池及制备方法

Publications (2)

Publication Number Publication Date
CN113394302A true CN113394302A (zh) 2021-09-14
CN113394302B CN113394302B (zh) 2022-09-02

Family

ID=77617818

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110464509.1A Active CN113394302B (zh) 2021-04-28 2021-04-28 一种基于不同类黑磷材料的太阳能电池及制备方法

Country Status (1)

Country Link
CN (1) CN113394302B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057953A (zh) * 2016-07-13 2016-10-26 东南大学 一种异质结薄膜太阳能电池及其制备方法
CN106129811A (zh) * 2016-07-13 2016-11-16 东南大学 一种用少层黑磷的不同堆垛结构实现激光半导体的方法
CN106847985A (zh) * 2017-03-31 2017-06-13 东南大学 异质结激子太阳能电池及制备方法
CN107394013A (zh) * 2017-07-26 2017-11-24 卡姆丹克太阳能(江苏)有限公司 一种硅锗黑磷烯pin异质结太阳能电池的制备方法
CN108963021A (zh) * 2018-06-13 2018-12-07 东南大学 一种基于化学修饰的黑磷材料太阳能电池及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106057953A (zh) * 2016-07-13 2016-10-26 东南大学 一种异质结薄膜太阳能电池及其制备方法
CN106129811A (zh) * 2016-07-13 2016-11-16 东南大学 一种用少层黑磷的不同堆垛结构实现激光半导体的方法
CN106847985A (zh) * 2017-03-31 2017-06-13 东南大学 异质结激子太阳能电池及制备方法
CN107394013A (zh) * 2017-07-26 2017-11-24 卡姆丹克太阳能(江苏)有限公司 一种硅锗黑磷烯pin异质结太阳能电池的制备方法
CN108963021A (zh) * 2018-06-13 2018-12-07 东南大学 一种基于化学修饰的黑磷材料太阳能电池及制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEI, SY 等: "Stacking Fault Enriching the Electronic and Transport Properties of Few-Layer Phosphorenes and Black Phosphorus", 《NANO LETTERS》 *

Also Published As

Publication number Publication date
CN113394302B (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
CN106449985A (zh) 一种具有石墨烯阻挡层的钙钛矿电池及制备方法
CN102522434A (zh) 铜铟镓硒薄膜光伏电池装置及其制备方法
CN109802041B (zh) 一种非富勒烯钙钛矿平面异质结太阳能电池及制备方法
KR20110051821A (ko) 유기태양전지의 P형 전도막으로 사용되는 NiO 전도막, 이의 제조방법 및 이를 포함하는 광전변환효율이 향상된 유기태양전지
CN105552236A (zh) 一种钙钛矿太阳电池及其制备方法
Chen et al. Efficient planar perovskite solar cells with low-temperature atomic layer deposited TiO2 electron transport layer and interfacial modifier
CN109326715A (zh) 一种p-i-n型钙钛矿太阳能电池及其制造方法
Chen et al. Facile preparation of organometallic perovskite films and high-efficiency solar cells using solid-state chemistry
KR20130044850A (ko) 태양전지 및 이의 제조방법
CN109244249A (zh) 对空穴传输层进行修饰的钙钛矿太阳能电池器件及其制备方法
Ye et al. Recent advances of Cu-based hole transport materials and their interface engineering concerning different processing methods in perovskite solar cells
Chan et al. High-performance perovskite solar cells based on low-temperature processed electron extraction layer
Singh et al. Perspective on predominant metal oxide charge transporting materials for high-performance perovskite solar cells
US20130061931A1 (en) Efficient organic solar cell using core/shell metal oxide nanoparticles, and method for manufacturing same
Makenali et al. Charge transfer balancing of planar perovskite solar cell based on a low cost and facile solution-processed CuO x as an efficient hole transporting layer
CN103151463A (zh) 一种有机太阳能电池及其制备方法
Qian et al. ITO-free organic solar cells with oxide/metal/oxide multilayer structure cathode
CN107742673B (zh) 电子传输层及其制备方法、钙钛矿电池及其制备方法
CN113394302B (zh) 一种基于不同类黑磷材料的太阳能电池及制备方法
CN110311043B (zh) 一种Sb-二氧化锡纳米前驱体、利用其作为电子传输层制备钙钛矿太阳能电池的方法
Kim et al. Low-temperature thermally evaporated SnO2 based electron transporting layer for perovskite solar cells with annealing process
CN104377252B (zh) 一种柔性铜基硫属半导体薄膜太阳电池窗口层结构
Chen et al. In situ growth of CuInS 2 nanocrystals on nanoporous TiO 2 film for constructing inorganic/organic heterojunction solar cells
CN113258003B (zh) 一种基于金属纳米颗粒磁热效应退火工艺的有机光伏器件制备工艺
CN113178496B (zh) 一种基于类黑磷材料的太阳能电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant