CN113380942B - 约瑟夫森结的制备方法及约瑟夫森结 - Google Patents

约瑟夫森结的制备方法及约瑟夫森结 Download PDF

Info

Publication number
CN113380942B
CN113380942B CN202110610839.7A CN202110610839A CN113380942B CN 113380942 B CN113380942 B CN 113380942B CN 202110610839 A CN202110610839 A CN 202110610839A CN 113380942 B CN113380942 B CN 113380942B
Authority
CN
China
Prior art keywords
material layer
layer
metal material
superconducting metal
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110610839.7A
Other languages
English (en)
Other versions
CN113380942A (zh
Inventor
高建峰
贺晓彬
李俊杰
王佳
刘卫兵
杨涛
李俊峰
罗军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Microelectronics of CAS
Original Assignee
Institute of Microelectronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Microelectronics of CAS filed Critical Institute of Microelectronics of CAS
Priority to CN202110610839.7A priority Critical patent/CN113380942B/zh
Publication of CN113380942A publication Critical patent/CN113380942A/zh
Application granted granted Critical
Publication of CN113380942B publication Critical patent/CN113380942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0912Manufacture or treatment of Josephson-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/10Junction-based devices
    • H10N60/12Josephson-effect devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • H10N60/805Constructional details for Josephson-effect devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

本发明公开了一种约瑟夫森结的制备方法及约瑟夫森结,包括以下步骤:提供一衬底,在衬底上形成牺牲层,在牺牲层上形成感光层,在牺牲层中形成第一沟道,在感光层中形成第二沟道;衬底在第一沟道、第二沟道处形成衬底暴露区;在衬底暴露区、感光层表面形成第一超导金属材料层;氧化第一超导金属材料层,形成第一绝缘材料层;去除牺牲层和感光层;去除第一超导金属材料层表面的第一绝缘材料层;氧化第一超导金属材料层,形成第二绝缘材料层;在第二绝缘材料层表面、衬底表面形成第二超导金属材料层;图形化第二超导金属材料层,刻蚀至第二绝缘材料层,第二超导金属材料层与带有第二绝缘材料层的第一超导金属材料层交叉形成约瑟夫森结。

Description

约瑟夫森结的制备方法及约瑟夫森结
技术领域
本发明属于超导电子学技术领域,具体涉及一种约瑟夫森结的制备方法及约瑟夫森结。
背景技术
近年来,超导电子学技术在量子计算、高性能数字集成电路、高灵敏磁场探测、精密物理量标定、微波辐射探测等领域有着广泛的需求和应用。而超导约瑟夫森结是超导电子技术中最基础的器件,因此制备高质量的约瑟夫森结,已成为本领域技术人员亟待解决的问题之一。但是,目前已有的几种工艺制备的约瑟夫森结在大规模量子计算方面存在不足,高质量和可规模化的条件难以同时满足。双角度蒸发制备的铝约瑟夫森结,虽然质量高,但不利于集成度提高规模化;且与常规半导体技术差别很多,而平面工艺制备的铝约瑟夫森结,不可避免需要引入的绝缘层或者其它不可控因素,这既增加了工艺步骤,又引入了可能影响器件退相干的因素。
发明内容
有鉴于此,本发明提供了一种约瑟夫森结的制备方法及约瑟夫森结,以期至少部分地解决上述技术问题。
为实现上述目的,作为本发明的一个方面,一种约瑟夫森结的制备方法,包括以下步骤:提供一衬底,在衬底上形成牺牲层,在牺牲层上形成感光层,在牺牲层中形成第一沟道,在感光层中形成第二沟道;第二沟道设置在第一沟道的上方,且第一沟道的宽度大于第二沟道的宽度;衬底在第一沟道、第二沟道处形成衬底暴露区;在衬底暴露区、感光层表面形成第一超导金属材料层;氧化第一超导金属材料层,形成第一绝缘材料层;去除牺牲层和感光层;去除第一超导金属材料层表面的第一绝缘材料层;氧化第一超导金属材料层,形成第二绝缘材料层;在第二绝缘材料层表面、衬底表面形成第二超导金属材料层;图形化第二超导金属材料层,刻蚀至第二绝缘材料层,第二超导金属材料层与带有第二绝缘材料层的第一超导金属材料层交叉形成约瑟夫森结。
根据本发明实施例,牺牲层的厚度为第一超导金属材料层的厚度的1~2倍;衬底暴露区的纵向截面呈倒置的T型。
根据本发明实施例,第一超导金属材料层、第二超导金属材料层的纵截面呈拱形。
根据本发明实施例,第一超导金属材料层、第二超导金属层的金属材料包括铝、铌、镍中的任意一种。
根据本发明实施例,在衬底暴露区、感光层表面形成第一超导金属材料层包括采用电子束蒸发法或磁控溅射法在衬底暴露区、感光层表面形成第一超导金属材料层。
根据本发明实施例,去除第一超导金属材料层表面的第一绝缘材料层包括采用氩等离子体去除第一超导金属材料层表面的第一绝缘材料层。
根据本发明实施例,在第二绝缘材料层、衬底表面形成第二超导金属材料层包括采用电子束蒸发法或磁控溅射法在第二绝缘材料层、衬底表面形成第二超导金属材料层。
根据本发明实施例,氧化第一超导金属材料层形成第一绝缘材料层或第二绝缘材料层包括采用氧气氧化法、测控溅射法、原子层沉积法中的任意一种方法氧化第一超导金属材料层形成第一绝缘材料层或第二绝缘材料层。
根据本发明实施例,氧化第一超导金属材料层,形成第一绝缘材料层或第二绝缘材料层,包括采用氧气氧化法,在氧气流量5~100sccm、压力1~100mtorr的室温环境下氧化第一超导金属材料层形成第一绝缘材料层或第二绝缘材料层。
作为本发明的另一个方面,本发明还提供了一种约瑟夫森结,包括采用上述方法制备的约瑟夫森结。
本发明提供的约瑟夫森结的制备方法,一方面通过蒸发/剥离工艺图形化和刻蚀工艺图形化相结合,分步采用半导体工艺制备第一超导金属层和第二超导金属层,使制得的约瑟夫森结均匀性好,可用于大规模集成。
另一方面,通过蒸发剥离工艺,可以制备表面均匀的第一超导层,接着原位氧化后可以对第一超导层起到较好的保护,后续真空环境下去除表面第一绝缘材料层后,再次原位氧化可以获得高质量的绝缘介质,最后原位沉积第二超导金属材料层,刻蚀停止在绝缘介质表面,保证了约瑟夫森结界面的平滑或较少的损伤,可以确保器件的性能均一。
附图说明
图1示意性地示出了约瑟夫森结制备工艺流程图;
图2示意性地示出了形成第一沟道、第二沟道的结构剖面示意图;
图3示意性地示出了形成第一超导金属材料层的结构剖面示意图;
图4示意性地示出了形成第一绝缘材料层的结构剖面示意图;
图5示意性地示出了去除牺牲层和感光层后的结构剖面示意图;
图6示意性地示出了去除第一绝缘材料层后的结构剖面示意图;
图7示意性地示出了形成第二绝缘材料层的结构剖面示意图;
图8示意性地示出了形成第二超导金属材料层的结构剖面示意图;
图9示意性地示出了约瑟夫森结的结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
图1示意性地示出了本发明提供的约瑟夫森结的制备工艺流程图。包括以下步骤:提供一衬底,在衬底上形成牺牲层,在牺牲层上形成感光层,在牺牲层中形成第一沟道,在感光层中形成第二沟道;第二沟道设置在第一沟道的上方,且第一沟道的宽度大于第二沟道的宽度;衬底在第一沟道、第二沟道处形成衬底暴露区;在衬底暴露区、感光层表面形成第一超导金属材料层;氧化第一超导金属材料层,形成第一绝缘材料层;去除牺牲层和感光层;去除第一超导金属材料层表面的第一绝缘材料层;氧化第一超导金属材料层,形成第二绝缘材料层;在第二绝缘材料层表面、衬底表面形成第二超导金属材料层;图形化第二超导金属材料层,刻蚀至第二绝缘材料层,第二超导金属材料层与带有第二绝缘材料层的第一超导金属材料层交叉形成约瑟夫森结。
本发明提供的约瑟夫森结的制备方法,一方面通过蒸剥离工艺和刻蚀工艺相结合,分步采用半导体工艺制备第一超导金属层和第二超导金属层,使制得的约瑟夫森结的均匀性好,可用于大规模集成。
另一方面,通过蒸剥离工艺,可以制备表面均匀的第一超导层,原位氧化后可以对第一超导层起到较好的保护,后续真空环境下去除表面第一绝缘材料层后,再次原位氧化可以获得高质量的绝缘介质,最后原位沉积第二超导金属材料层,刻蚀停止在绝缘介质表面,保证了约瑟夫森结界面的平滑或较少的损伤,可以确保器件的性能均一。
图2~9示意性地示出了制备过程中形成的每一个结构层的示意图。
如图2所示,牺牲层2设置在衬底1上表面,在牺牲层中设置第一沟道4;在牺牲层上设置感光层3,在感光层3中设置第二沟道5;第二沟道5设置在第一沟道4的上方,且第一沟道4的宽度大于第二沟道5的宽度;衬底1在第一沟道4、第二沟道5处形成衬底暴露区6。第二沟道5的宽度为感光层3厚度的两倍;衬底暴露区6的纵向截面呈倒置的T型。
本发明实施例中,牺牲层2的厚度为第一超导金属材料层的厚度的1~2倍,例如:1倍、1.5倍、2倍。第一沟道4在保证感光层3不塌陷的前提下,尽量扩大第一沟道4的宽度,可以为沉积第一超导金属材料层保留足够的空间。
如图3所示,第一超导金属材料层7设置在衬底暴露区6、感光层3的上表面。第一超导金属材料层7的纵截面呈拱形。
本发明实施例中,第一超导金属材料层7的纵截面呈拱形,提高第一超导金属材料层7的有限空间内的牢固程度,为后续原位氧化形成第一绝缘材料层、剥离第一绝缘材料层再原位沉积第二超导金属材料层,奠定牢固的基础。
如图4所示,氧化第一超导金属材料层7形成的第一绝缘材料层8设置在第一超导金属材料层7上表面。
如图5所示,去除牺牲层2和感光层3之后,衬底1的表面仅留有带有第一绝缘材料层8的第一超导金属层7。
如图6所示,去除第一超导金属材料层7表面的第一绝缘材料层8之后,衬底1的表面仅留有第一超导金属材料层7。
如图7所示,氧化第一超导金属材料层7形成的第二绝缘材料层9设置在第一超导金属材料层7的上表面。
如图8所示,在第二绝缘材料层9表面、衬底1表面形成的第二超导金属材料层10设置在衬底1、第二绝缘材料层9的表面。
如图9所示,图形化第二超导金属材料层10,刻蚀至第二绝缘材料层9,第二超导金属材料层10的纵截面呈拱形,其与带有第二绝缘材料层9的第一超导金属材料层7交叉形成约瑟夫森结。
本发明实施例中,分两步采用半导体工艺制备第一超导金属层和第二超导金属层,使制得的约瑟夫森结的均匀性好,保证了器件在大规模集成时器件性能的均一。
本发明实施例中,去除牺牲层和感光层的方法包括但不限于采用丙酮剥离工艺,必要的时候,可以结合超声法去除。
根据本发明实施例,第一超导金属材料层、第二超导金属层的金属材料包括铝、铌、镍中的任意一种。
本发明实施例中,第一超导金属材料层、第二超导金属层包括但不限于铝、铌、镍中的任意一种,还可以采用氮化铌。
根据本发明实施例,在衬底暴露区、感光层表面形成第一超导金属材料层包括采用电子束蒸发法或磁控溅射法在衬底暴露区、感光层表面形成第一超导金属材料层。
根据本发明实施例,去除第一超导金属材料层表面的第一绝缘材料层包括采用氩等离子体去除第一超导金属材料层表面的第一绝缘材料层。
本发明实施例中,采用氩等离子体去除第一超导金属材料层表面的第一绝缘材料层包括但不限于在衬底上的偏压功率为50~200W,产生等离子体的功率为50~200W,氩气流量5~20sccm的工艺条件下进行去除。
根据本发明实施例,在第二绝缘材料层、衬底表面形成第二超导金属材料层包括采用电子束蒸发法或磁控溅射法在第二绝缘材料层、衬底表面形成第二超导金属材料层。
根据本发明实施例,氧化第一超导金属材料层形成第一绝缘材料层或第二绝缘材料层包括采用氧气氧化法、测控溅射法、原子层沉积法中的任意一种方法氧化第一超导金属材料层形成第一绝缘材料层或第二绝缘材料层。
根据本发明实施例,氧化第一超导金属材料层,形成第一绝缘材料层或第二绝缘材料层,包括采用氧气氧化法,在氧气流量5~100sccm,例如:5sccm、50sccm、70sccm、100sccm;压力1~100mtorr,例如:1mtorr、30mtorr、50mtorr、100mtorr的室温环境下氧化第一超导金属材料层形成第一绝缘材料层或第二绝缘材料层。具体的工艺参数根据实际情况而定。
本发明实施例中,氧化第一超导金属材料层,形成第一绝缘材料层或第二绝缘材料层的方法包括但不限于氧气氧化法、测控溅射法、原子层沉积法。
本发明实施例中,采用测控溅射法氧化第一超导金属材料层,形成第一绝缘材料层或第二绝缘材料层包括但不限于在射频300~400W(例如:300W、350W、400W),靶材距离晶圆160mm,氩气流量30sccm,压力2~3mtorr(例如:2mtorr、2.5mtorr、3mtorr)的工艺条件下进行氧化。具体的工艺参数根据实际情况而定。
本发明实施例中,采用原子层沉积法氧化第一超导金属材料层,形成第一绝缘材料层或第二绝缘材料层包括但不限于以下步骤,300℃下,采用三甲基铝(TMA)为前驱体,三甲基铝脉冲125ms,抽气排空750ms,水气脉冲125ms,抽气排空1s,如此循环5-30次,完成第一超导金属材料表面的第一绝缘材料层的沉积。
作为本发明的另一个方面,本发明还提供了一种约瑟夫森结,包括采用上述方法制备的约瑟夫森结。
本发明实施例中制备的约瑟夫森结,表面平滑,损伤少,器件性能均一,适于大规模集成。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种约瑟夫森结的制备方法,包括以下步骤:
提供一衬底,在所述衬底上形成牺牲层,在所述牺牲层上形成感光层,在所述牺牲层中形成第一沟道,在所述感光层中形成第二沟道;
所述第二沟道设置在所述第一沟道的上方,且所述第一沟道的宽度大于所述第二沟道的宽度;
所述衬底在所述第一沟道、所述第二沟道处形成衬底暴露区;
采用电子束蒸发法在所述衬底暴露区、所述感光层表面形成第一超导金属材料层;
氧化所述第一超导金属材料层,形成第一绝缘材料层;
去除所述牺牲层和所述感光层;
去除所述第一超导金属材料层表面的所述第一绝缘材料层;
氧化所述第一超导金属材料层,形成第二绝缘材料层;
采用电子束蒸发法在所述第二绝缘材料层表面、所述衬底表面形成第二超导金属材料层;
图形化所述第二超导金属材料层,刻蚀至所述第二绝缘材料层,所述第二超导金属材料层与带有所述第二绝缘材料层的所述第一超导金属材料层交叉形成约瑟夫森结;
所述第一超导金属材料层、所述第二超导金属材料层的纵截面呈拱形。
2.根据权利要求1所述的方法,其中,
所述牺牲层的厚度为所述第一超导金属材料层的厚度的1~2倍;
所述衬底暴露区的纵向截面呈倒置的T型。
3.根据权利要求1所述的方法,其中,所述第一超导金属材料层、所述第二超导金属材料层的金属材料包括铝、铌、镍中的任意一种。
4.根据权利要求1所述的方法,其中,所述去除所述第一超导金属材料层表面的所述第一绝缘材料层包括采用氩等离子体去除所述第一超导金属材料层表面的所述第一绝缘材料层。
5.根据权利要求1所述的方法,其中,所述氧化所述第一超导金属材料层形成第一绝缘材料层或第二绝缘材料层包括采用氧气氧化法、测控溅射法、原子层沉积法中的任意一种方法氧化所述第一超导金属材料层形成第一绝缘材料层或第二绝缘材料层。
6.根据权利要求5所述的方法,其中,所述氧化所述第一超导金属材料层,形成第一绝缘材料层或第二绝缘材料层,包括采用氧气氧化法,在氧气流量5~100sccm、压力1~100mtorr的室温环境下氧化所述第一超导金属材料层形成第一绝缘材料层或第二绝缘材料层。
7.一种约瑟夫森结,包括采用权利要求1~6任意一项所述的方法制备的约瑟夫森结。
CN202110610839.7A 2021-05-31 2021-05-31 约瑟夫森结的制备方法及约瑟夫森结 Active CN113380942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110610839.7A CN113380942B (zh) 2021-05-31 2021-05-31 约瑟夫森结的制备方法及约瑟夫森结

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110610839.7A CN113380942B (zh) 2021-05-31 2021-05-31 约瑟夫森结的制备方法及约瑟夫森结

Publications (2)

Publication Number Publication Date
CN113380942A CN113380942A (zh) 2021-09-10
CN113380942B true CN113380942B (zh) 2022-09-16

Family

ID=77575270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110610839.7A Active CN113380942B (zh) 2021-05-31 2021-05-31 约瑟夫森结的制备方法及约瑟夫森结

Country Status (1)

Country Link
CN (1) CN113380942B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117355205A (zh) * 2022-06-23 2024-01-05 腾讯科技(深圳)有限公司 约瑟夫森结制备方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212147A (en) * 1991-05-15 1993-05-18 Hewlett-Packard Company Method of forming a patterned in-situ high Tc superconductive film
CN104701451A (zh) * 2015-03-20 2015-06-10 清华大学 一种原位三层膜边缘覆盖超导约瑟夫森结制备工艺
CN111403590A (zh) * 2020-04-30 2020-07-10 合肥本源量子计算科技有限责任公司 一种超导约瑟夫森结的制备方法
CN112670401A (zh) * 2020-12-21 2021-04-16 中国科学院上海微系统与信息技术研究所 约瑟夫森结及其超导器件与制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212147A (en) * 1991-05-15 1993-05-18 Hewlett-Packard Company Method of forming a patterned in-situ high Tc superconductive film
CN104701451A (zh) * 2015-03-20 2015-06-10 清华大学 一种原位三层膜边缘覆盖超导约瑟夫森结制备工艺
CN111403590A (zh) * 2020-04-30 2020-07-10 合肥本源量子计算科技有限责任公司 一种超导约瑟夫森结的制备方法
CN112670401A (zh) * 2020-12-21 2021-04-16 中国科学院上海微系统与信息技术研究所 约瑟夫森结及其超导器件与制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Fabrication of Ta/Ta-oxide/Ta trilayer Josephson junctions;S.K.H. Lam等;《Nuclear Instruments and Methods in Physics Research A》;20060105;第474-476页 *

Also Published As

Publication number Publication date
CN113380942A (zh) 2021-09-10

Similar Documents

Publication Publication Date Title
JP3202913B2 (ja) シリコン基板に深くて垂直な構造を作製する方法
JPS62253785A (ja) 間欠的エツチング方法
US10276504B2 (en) Preclean and deposition methodology for superconductor interconnects
CN112992678B (zh) 基于金刚石衬底的GaN场效应晶体管的制备方法
CN113380942B (zh) 约瑟夫森结的制备方法及约瑟夫森结
CN115274999B (zh) 一种约瑟夫森结及其制备方法和应用
Kamto et al. Cryogenic inductively coupled plasma etching for fabrication of tapered through-silicon vias
JP3160961B2 (ja) ドライエッチング方法
CN115233156A (zh) 约瑟夫森结制备方法及约瑟夫森结
CN110534429B (zh) 一种超导薄膜及其制备方法
Dupuy et al. Spectral analysis of sidewall roughness during resist-core self-aligned double patterning integration
JP3527165B2 (ja) コンタクトホール形成方法
CN116598200B (zh) 一种Mo基金属薄膜的刻蚀方法
CN118280818A (zh) 一种复合掩膜刻蚀Si基GaN图形阵列结构的方法
CN115835768B (zh) 一种超导量子芯片制备用保护层及超导量子芯片
JPS6237530B2 (zh)
Suyama et al. A new trench fabrication technique for silicon substrate utilizing undercutting and selective etching
CN106981420A (zh) 一种图形化敏感金属或金属氧化物材料的加工方法
JPH06120353A (ja) 半導体装置の製造方法
JP3060677B2 (ja) 反応性ドライエッチング法
TW202343564A (zh) 一種類光柵結構金屬電極製造方法和電極
CN118263118A (zh) 一种半导体器件的制造方法及制造系统
CN117219505A (zh) 一种基于SiC衬底的斜槽刻蚀方法
CN116417337A (zh) 一种减少金属膜层等离子体刻蚀损伤的方法
CN115347090A (zh) 纳米级图案化衬底的制备方法及纳米级图案化衬底

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant