CN113375624A - Measurement and data processing method for brake disc DTV of commercial vehicle - Google Patents

Measurement and data processing method for brake disc DTV of commercial vehicle Download PDF

Info

Publication number
CN113375624A
CN113375624A CN202110766656.4A CN202110766656A CN113375624A CN 113375624 A CN113375624 A CN 113375624A CN 202110766656 A CN202110766656 A CN 202110766656A CN 113375624 A CN113375624 A CN 113375624A
Authority
CN
China
Prior art keywords
displacement sensor
stepping motor
brake disc
lead screw
motor module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202110766656.4A
Other languages
Chinese (zh)
Inventor
曾繁卓
王应国
张志�
雷文
李伟
任学良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Automotive Engineering Research Institute Co Ltd
Original Assignee
China Automotive Engineering Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Automotive Engineering Research Institute Co Ltd filed Critical China Automotive Engineering Research Institute Co Ltd
Priority to CN202110766656.4A priority Critical patent/CN113375624A/en
Publication of CN113375624A publication Critical patent/CN113375624A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Braking Arrangements (AREA)

Abstract

The invention provides a measuring and data processing method of a brake disc DTV of a commercial vehicle, which comprises a support frame, wherein a support rod is fixedly arranged on the support frame, and a first lead screw stepping motor module and a second lead screw stepping motor module which move along the axial direction of the support rod are fixedly arranged on the support rod; a first lead screw stepping motor module is fixedly arranged on a sliding block of the first lead screw stepping motor module, and a first displacement sensor is arranged on the sliding block of the first lead screw stepping motor module; and a second lead screw stepping motor module is fixedly mounted on a sliding block of the second lead screw stepping motor module, a second displacement sensor is arranged on the sliding block of the second lead screw stepping motor module, and the thickness of the object to be detected at different positions is measured according to the positions of the first displacement sensor and the second displacement sensor. The invention can measure the thickness of the DTV at different positions of the brake disc.

Description

Measurement and data processing method for brake disc DTV of commercial vehicle
Technical Field
The invention relates to the technical field of measurement of circumferential thickness Difference (DTV) of a brake disc of a commercial vehicle, in particular to a method for measuring and processing data of the DTV of the brake disc of the commercial vehicle.
Background
From the perspective of the subjective evaluation of the whole vehicle, the comfort of braking is an important index of the driving experience, and the comfort of driving is directly influenced by the problem of shaking in the braking process. From the excitation source, the problem of jitter in the braking process is mainly caused by braking pressure fluctuation and braking torque fluctuation; the main factors causing the brake torque fluctuation and the brake pressure fluctuation are as follows: circumferential thickness difference, end face run-out and friction coefficient variation of the brake disc. It can be seen that the measurement of the thickness difference in the circumferential direction is particularly important in the model test of the brake disc. At present, in the field of passenger vehicles, a circumferential thickness difference measuring scheme for a brake disc of a passenger vehicle is perfect, but the circumferential thickness difference of the brake disc of a commercial vehicle is still blank.
At present, the brake disc is mainly checked on safety indexes such as thermal fatigue and high load of the brake disc, and the dangerous goods transportation semitrailer, the railing type semitrailer and the warehouse railing type semitrailer must be equipped with air pressure disc brakes along with the regulation of GB 7258 and 2017 motor vehicle operation safety technical conditions, and the disc brakes are widely used on commercial vehicles. The comfort index such as brake judder must be paid much attention to in the host plant and the component plant of the commercial vehicle. At present, a circumferential thickness difference measuring mechanism is not developed on a commercial vehicle brake disc, and the difficulty of developing circumferential thickness difference measurement on the commercial vehicle brake disc mainly lies in 2 points: firstly, in the rotating process of a brake disc, the thickness change of the brake disc on the same circumference is um level, and direct measurement cannot be carried out; and secondly, the statistical analysis and calculation of the acquired circumferential thickness difference data of the brake disc are complex. Therefore, it is urgently needed to develop an embodiment and a data processing method suitable for measuring the circumferential thickness difference of the brake disc of the commercial vehicle.
Disclosure of Invention
The invention aims to at least solve the technical problems in the prior art, and particularly creatively provides a method for measuring and processing data of a brake disc DTV of a commercial vehicle.
In order to achieve the above purpose, the invention provides a measuring device for a brake disc DTV of a commercial vehicle, which comprises a support frame, wherein a support rod is fixedly arranged on the support frame, and a first lead screw stepping motor module and a second lead screw stepping motor module which move along the axial direction of the support rod are fixedly arranged on the support rod; (ii) a
A first lead screw stepping motor module is fixedly mounted on a sliding block of the first lead screw stepping motor module, a first K displacement sensor is arranged on the sliding block of the first lead screw stepping motor module, a second lead screw stepping motor module is fixedly mounted on a sliding block of the second lead screw stepping motor module, and a second K displacement sensor is arranged on the sliding block of the second lead screw stepping motor module;
and measuring the thickness of the object to be detected at different positions or the thickness variation of the object to be detected at different positions according to the positions of the first K displacement sensor and the second K displacement sensor.
In conclusion, due to the adoption of the technical scheme, the thickness of the brake disc can be measured at different positions of the DTV.
Additional aspects and advantages of the invention will be set forth in part in the description which follows and, in part, will be obvious from the description, or may be learned by practice of the invention.
Drawings
The above and/or additional aspects and advantages of the present invention will become apparent and readily appreciated from the following description of the embodiments, taken in conjunction with the accompanying drawings of which:
fig. 1 is a schematic diagram of the brake disk DTV testing principle of the present invention.
Fig. 2 is a schematic diagram of the measurement positions of the displacement sensor in the DTV experiment of the present invention.
Fig. 3 is a schematic diagram of a brake disc inertia test stand test DTV rig of the present invention.
Fig. 4 is a diagram illustrating initial testing curves of the DTV of the present invention.
FIG. 5 is a diagram of a portion of the data filtering and result calculation according to the present invention.
Fig. 6 is a diagram of a filtered DTV curve and test results according to the present invention.
FIG. 7 is a schematic view of a measuring device of the present invention.
Fig. 8 is an enlarged schematic view of the invention of fig. 7 installed in fig. 3.
Detailed Description
Reference will now be made in detail to embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein like or similar reference numerals refer to the same or similar elements or elements having the same or similar function throughout. The embodiments described below with reference to the accompanying drawings are illustrative only for the purpose of explaining the present invention, and are not to be construed as limiting the present invention.
Measurement principle of brake disc DTV of commercial vehicle
The circumferential thickness difference of the brake disc, abbreviated as the DTV of the brake disc, is the maximum thickness difference on the same circumference of two parallel friction surfaces when the brake disc rotates around the central axis for one circle, and the unit μm represents that the brake disc DTV test principle diagram is shown in fig. 1.
During the rotation of the brake disc, the thickness variation of the brake disc on the same circumference can not be directly measured, so that the method of indirectly measuring the thickness variation of the brake disc is adopted. The distance between two non-contact displacement sensors is S0The distance between the displacement sensor 1 and the inner end face of the brake disc is S1The distance between the displacement sensor 2 and the outer end face of the brake disc is S2Thickness of the brake disc is S3The specific mathematical relationship is as follows:
S3=S0-(S1+S2) (formula 1)
The distance between two non-contact displacers is kept constant during the test, i.e. S0Keeping the same; thus having the thickness S of the brake disc3The sum (S) of the variation of (A) and the distance of the two displacement sensors from the brake disc1+S2) Are equal, the specific mathematical relationship is as follows:
ΔS3=Δ(S1+S2) (formula 2)
In the testing process, the brake disc keeps rotating at a low speed, data of the two non-contact displacement sensors are collected in real time, the variation of the sum of the displacements of the two non-contact displacement sensors after the brake disc rotates for one or more circles is the DTV of the brake disc, and the specific arithmetic relation is as follows:
DTV=Δ(S1+S2) (formula 3)
Test scheme of brake disc DTV of commercial vehicle
Mounting requirements for non-contact displacement sensor
The non-contact displacement sensor with the measuring range of 0 mm-2.5 mm is used in the brake disc DTV test, the distance between a probe of the sensor and a brake disc is installed and controlled within the effective measuring range, the sampling frequency is 1kHz, and the measuring point is shown in figure 2, wherein the displacement sensor 1 and the displacement sensor 2 move to the point 1 and the point 2 to measure the thickness change of the inner diameter of the brake disc, the displacement sensor 1 and the displacement sensor 2 move to the point 3 and the point 4 to measure the thickness change of the middle diameter of the brake disc, and the displacement sensor 1 and the displacement sensor 2 move to the point 5 and the point 6 to measure the thickness change of the outer diameter of the brake disc. The first displacement sensor 1 and the second displacement sensor 1 are positioned at a point 1 and a point 2 to measure the thickness change of the inner diameter of the brake disc, the first displacement sensor 2 and the second displacement sensor 2 are positioned at a point 3 and a point 4 to measure the thickness change of the middle diameter of the brake disc, and the first displacement sensor 3 and the second displacement sensor 3 are positioned at a point 5 and a point 6 to measure the thickness change of the outer diameter of the brake disc.
TABLE 1 brake disc position definition
Inner diameter (mm) Middle diameter (mm) Outer diameter (mm)
Inner diameter of friction surface of brake disc +10mm Effective working diameter of brake disc The outer diameter of the friction surface of the brake disc is 10mm below zero
Calculation of test moment of inertia
The experimental moment of inertia is calculated as follows:
I=Gmr2(formula 4)
In equation 4:
i-calculated value of moment of inertia, kg · m 2;
Gmdistributing the maximum designed total mass of the automobile to the part of mass, kg, born by the wheels corresponding to the tested brake according to the braking force distribution ratio design value;
r-rolling radius of wheel, m.
Specification of test conditions
Starting to measure the DTV when the temperature of the friction plate reaches (60 +/-1) DEG C, wherein the rotating speed of a main shaft is constant at 30r/min, and the data measuring time is 8.5 s; taking the arithmetic mean value of DTV measured by 3 groups of displacement sensors as the final measurement result; table 2.DTV growth test sequence number 1 measures DTV for new discs, DTV growth being the DTV value measured at the 34 th time minus the DTV value for new discs.
TABLE 2 DTV growth test sequence
Figure BDA0003151953520000021
Bench test
The DTV testing device (testing device a) is mounted on a commercial vehicle brake inertia test bed (comprising a tailstock 1a, a force arm 2a, a force sensor 3a, a disc brake assembly 4a, a throttling ring 5a, a speed detector 6a, a middle support 7a, a flywheel disc 8a, a transmission shaft 9a and a motor 10a) to realize the measurement of the DTV of the commercial vehicle brake disc, as shown in FIG. 3, a K-type thermocouple (the temperature measuring range is minus 40 ℃ to 1300 ℃) is mounted on the effective friction radius of the outer friction plate of the friction plate, and the surface of the thermocouple is about (0.5 to 1) mm away from the surface of the friction plate according to the specific requirements of QC/T556 (automobile brake temperature measurement and thermocouple mounting) and the key point of verification. The support frame is arranged at the fixed end of the rack, and the displacement signal enters a computer for storage through a data acquisition system. The brake disc is connected to a direct current motor 10a through an intermediate support 7a and a transmission shaft 9a, wherein the motor 10a is used for simulating the rotating speed of a wheel, and the flywheel disc 8a is used for simulating the load borne by the disc brake assembly 4 a. The fixed end (namely a brake bottom plate) of the brake assembly is connected to a tailstock of the commercial vehicle inertia test bench, and a force arm on the tailstock is connected with a force sensor; in the braking process, the braking force generated by the brake is transmitted to the force sensor through the force arm, and the product of the testing value of the force sensor and the force arm is the braking torque in the test.
Data processing of brake disc DTV of commercial vehicle
Taking the original data of the DTV measured at the middle diameter position of the brake disc of the commercial vehicle as an example, the specific test data is shown in Table 3.
TABLE 3 brake disc pitch diameter DTV raw data
Figure BDA0003151953520000031
Figure BDA0003151953520000041
Figure BDA0003151953520000051
Figure BDA0003151953520000061
Figure BDA0003151953520000071
Figure BDA0003151953520000081
Figure BDA0003151953520000091
Figure BDA0003151953520000101
Figure BDA0003151953520000111
Figure BDA0003151953520000121
Figure BDA0003151953520000131
Figure BDA0003151953520000141
Figure BDA0003151953520000151
Figure BDA0003151953520000161
Figure BDA0003151953520000171
Figure BDA0003151953520000181
Figure BDA0003151953520000191
Figure BDA0003151953520000201
Figure BDA0003151953520000211
Figure BDA0003151953520000221
Figure BDA0003151953520000231
The sampling frequency is 1kHz, the acquisition time is 8.5s, the rotation angle of the brake disc measured by the DTV at one time is 1530 degrees, the acquired data are 8500 groups, and the precision error of the testing equipment, the interference of external electromagnetic signals and the like can influence the acquired test data of the brake disc DTV to a certain extent, so that the test data fluctuation is large, a plurality of bad spots are generated, the test result is not favorably obtained, and the initial test curve of the DTV is shown in FIG. 4.
Therefore, in the process of processing the test data, the filter is required to be used for eliminating interference items in the DTV data, and the accuracy of the data is improved. The invention provides a system suitable for DTV data filtering and test result processing. The data filtering and result calculating part of the procedure is shown in fig. 5. The data reading end of the reading test data module is connected with the test data output end of the controller, the data input end of the data filtering module is connected with the data output end of the reading test data module, the data output end of the data filtering module is connected with the data input end of the DTV data calculating module, the data output end of the DTV data calculating module is connected with the data input end of the cursor intercepting data module, and the data output end of the cursor intercepting data module is connected with the data display end of the curve display module;
the data filtering module generates a digital Butterworth filter by calling a Butterworth coefficient VI, the type of the filter is selected to be a low-pass filter (Lowpass), the sampling frequency is set to be 1Hz, the low cut-off frequency is set to be 0.008Hz, and the order is set to be 1; the cursor intercepting data module sets a starting point and an ending point of the DTV data in the DTV data calculating module by using a cursor option in the XY diagram; and calling the array subset VI and the data maximum value and minimum value VI to calculate the maximum value and minimum value of the data in the cursor selected region and calculate the maximum DTV of the brake disc. The filtered DTV curves and the experimental results are shown on the curve display module as shown in fig. 6.
The invention discloses a measuring device of a brake disc DTV (digital television) of a commercial vehicle, which comprises a support frame, wherein a support rod 11 is fixedly arranged on the support frame, and a first lead screw stepping motor module and a second lead screw stepping motor module which move along the axial direction of the support rod 11 are fixedly arranged on the support rod 11; the first lead screw stepping motor module and the second lead screw stepping motor module are arranged in parallel;
a first lead screw stepping motor module 7 is fixedly installed on a sliding block of the first lead screw stepping motor module, and a first K displacement sensor 8, a first 2 displacement sensor, a first 3 displacement sensor … … and a first K displacement sensor are respectively arranged on a sliding block 7A of the first lead screw stepping motor module 7; the K is a positive integer larger than or equal to 1, a second lead screw stepping motor module 9 is fixedly installed on a sliding block of the second lead screw stepping motor module, and a second K displacement sensor is arranged on a sliding block 9A of the second lead screw stepping motor module 9 and is respectively a second 1 displacement sensor 10, a second 2 displacement sensor, a second 3 displacement sensor … … and a second K displacement sensor; wherein, the 1 st displacement sensor 8 and the 1 st displacement sensor 10 are the 1 st group displacement sensors, the 2 nd displacement sensor 2 and the 2 nd displacement sensor 2 are the 2 nd group displacement sensors, the 3 rd displacement sensor 3 and the 3 rd displacement sensor 3 are the 3 rd group displacement sensors, and the … … Kth displacement sensor 8 and the Kth displacement sensor two are the Kth group displacement sensors; only group 1 displacement sensors are shown in fig. 7. The first distance between every displacement sensor that sets up on the sliding block 7A equals, and every displacement sensor measures the displacement of coplanar and equals, and is corresponding, and the second distance between every displacement sensor that sets up on the sliding block 9A equals, and every displacement sensor measures the displacement of coplanar and equals.
The object to be detected is positioned between the first K displacement sensor and the second K displacement sensor, and the moving directions of the first K displacement sensor and the second K displacement sensor are vertical to the axial direction of the support rod 11;
the controller also comprises a controller, wherein the controller end of a stepping motor of the first lead screw stepping motor module is connected with the control end of a stepping motor of the first lead screw stepping motor module of the controller, the controller end of a stepping motor of the second lead screw stepping motor module is connected with the control end of a stepping motor of the second lead screw stepping motor module of the controller, the controller end of a stepping motor of the first lead screw stepping motor module 7 is connected with the control end of a stepping motor of the lead screw stepping motor module of the controller, the controller end of a stepping motor of the second lead screw stepping motor module 9 is connected with the control end of a stepping motor of the lead screw stepping motor module of the controller, the displacement data output end of the first kth displacement sensor is connected with the displacement kth data input end of the controller, and the displacement data output end of the second kth displacement sensor is connected with the displacement kth + K data input end of the controller; namely, the displacement data output end of the 1 st displacement sensor I is connected with the 1 st data input end of the displacement of the controller, and the displacement data output end of the 1 st displacement sensor II is connected with the K +1 th data input end of the displacement of the controller; the displacement data output end of the 2 nd displacement sensor I is connected with the displacement 2 nd data input end of the controller, and the displacement data output end of the 2 nd displacement sensor II is connected with the displacement K +2 th data input end of the controller; the displacement data output end of the 3 rd displacement sensor I is connected with the displacement 3 rd data input end of the controller, and the displacement data output end of the 3 rd displacement sensor II is connected with the displacement K +3 th data input end of the controller; … …, respectively; the displacement data output end of the first Kth displacement sensor is connected with the displacement Kth data input end of the controller, and the displacement data output end of the second Kth displacement sensor is connected with the displacement 2 Kth data input end of the controller;
and measuring the thickness of the object to be detected at different positions or the thickness variation of the object to be detected at different positions according to the positions of the first K displacement sensor and the second K displacement sensor.
In a preferred embodiment of the invention, the support frame comprises a Z-shaped support seat 2, a connecting cross rod 3, an adjusting block 4, a fixed cross rod 5, a first fixed block 6 and a second fixed block 12;
a first support seat through hole 1 for fixing the Z-shaped support seat 2 through a bolt and a second support seat through hole for connecting one end of a cross rod 3 to pass through are formed in the Z-shaped support seat 2;
the adjusting block 4 is provided with an adjusting block through hole I for one end of the fixed cross rod 5 to pass through and an adjusting block through hole II for the other end of the connecting cross rod 3 to pass through;
a first fixing block through hole and a second fixing block through hole for the other end of the fixing cross rod 5 to pass through are respectively formed in the first fixing block 6 and the second fixing block 12, a third fixing block through hole for one end of the supporting rod 11 to pass through is formed in the first fixing block 6, and a fourth fixing block through hole for the other end of the supporting rod 11 to pass through is formed in the second fixing block 12;
threads matched with the first nut and the second nut are respectively arranged at two ends of the connecting cross rod 3, the Z-shaped supporting seat 2 and the connecting cross rod 3 are fixed through the first nut, and the connecting cross rod 3 and the adjusting block 4 are fixed through the second nut;
threads matched with the three phases of the nuts are arranged at one end of the fixed cross rod 5, and the adjusting block 4 is fixed with the fixed cross rod 5 through the third nut;
a first thread and a second thread which are matched with a fourth nut and a fifth nut are arranged at the other end of the fixed cross rod 5, the first fixed block 6 is fixed with the fixed cross rod 5 through the fourth nut, and the second fixed block 12 is fixed with the fixed cross rod 5 through the fifth nut;
and a thread which is matched with the nut six is arranged at one end of the supporting rod 11, the supporting rod 11 is fixed with the first fixing block 6 through the nut six, a thread which is matched with the nut seven is arranged at the other end of the supporting rod 11, and the supporting rod 11 is fixed with the second fixing block 12 through the nut seven. The support frame realizes the regulation to measuring position, is convenient for install and measure.
In a preferred embodiment of the invention, the diameters of the two ends of the connecting cross rod 3 are smaller than the diameter of the middle of the connecting cross rod 3, and the diameter of the middle of the connecting cross rod 3 is larger than the diameters of the supporting seat through hole II and the adjusting block through hole II;
the diameter of one end of the fixed cross rod 5 is smaller than the diameter of the middle of the fixed cross rod 5, and the diameter of the middle of the fixed cross rod 5 is larger than the diameter of the first adjusting block through hole; the first diameter of the other end of the fixed cross rod 5 is smaller than the diameter of the middle of the fixed cross rod 5, the diameter of the middle of the fixed cross rod 5 is larger than the diameter of the first fixing block through hole, the second diameter of the other end of the fixed cross rod 5 is smaller than the first diameter of the other end of the fixed cross rod 5, and the first diameter of the other end of the fixed cross rod 5 is larger than the diameter of the second fixing block through hole;
the diameters of the two ends of the supporting rod 11 are smaller than the diameter of the middle of the supporting rod 11, and the diameter of the middle of the supporting rod 11 is larger than the diameters of the third fixing block through hole and the fourth fixing block through hole.
The invention also discloses a measuring system of the brake disc DTV of the commercial vehicle, wherein a measuring device of the brake disc DTV of the commercial vehicle is arranged near the object to be measured, and the thickness of the object to be measured or the thickness variation of different positions is measured.
The invention also discloses a measurement processing method of the brake disc DTV of the commercial vehicle, which comprises the following steps:
s1, mounting the measuring device of the brake disc DTV of the commercial vehicle near an object to be measured;
and S2, acquiring the thickness of the object to be detected at different positions or the thickness variation of the object to be detected at different positions.
In a preferred embodiment of the present invention, step S1 includes the following steps:
s11, the controller sends a motion command to the first lead screw stepping motor module, the second lead screw stepping motor module, the first lead screw stepping motor module 7 and the second lead screw stepping motor module 9 to enable the first 1 st displacement sensor 8 and the second 1 st displacement sensor 10 to respectively reach a first position and a second position, and when the first position and the second position are located, the brake disc of the object to be detected can be placed between the first 1 st displacement sensor 8 and the second 1 st displacement sensor 10;
s12, placing the brake disc of the object to be detected between the first 1 st displacement sensor 8 and the second 1 st displacement sensor 10;
s13, the controller sends motion commands to the first lead screw stepping motor module, the second lead screw stepping motor module, the first lead screw stepping motor module 7 and the second lead screw stepping motor module 9 to enable the first 1 st displacement sensor 8 and the second 1 st displacement sensor 10 to respectively reach the measuring positions, and the distance between the first 1 st displacement sensor 8 and the second 1 st displacement sensor 10 is S0
S14, establishing a rectangular coordinate system:
taking the center of the brake disc of the object to be measured as the origin O of a rectangular coordinate system; the moving direction of the 1 st displacement sensor I8 or the 1 st displacement sensor II 10 to the support rod 11 is the positive direction of the X axis; the moving direction of the screw rod stepping motor module I7 or the screw rod stepping motor module II 9 to the fixing block II 12 is the positive direction of the Y axis;
s15, the brake disc of the object to be detected starts to rotate at the moment t;
s16, recording the distance measured by the first displacement sensor 8 at the moment t +1 as S1,t+1The distance measured by the second displacement sensor 10 at the time t +1 is recorded as S2,t+1
In a preferred embodiment of the present invention, in step S2, the thickness of the object to be detected at different positions of the brake disc is calculated by:
ΔSt+1=S0-(S1,t+1+S2,t+1),
wherein, Delta St+1Represents the thickness of the brake disc of the object to be detected at position P; s0The distance between a 1 st displacement sensor I8 and a 1 st displacement sensor II 10 is shown; s1,t+1The distance between a first 1 st displacement sensor 8 and a brake disc of an object to be detected is represented; s2,t+1The distance between the second 1 st displacement sensor 10 and a brake disc of an object to be detected is represented;
ΔSt+1′=(S1,t+1+S2,t+1)-(S1,0+S2,0),
wherein, Delta St+1' indicates that the brake disk is at position P on the object to be detectedThe amount of thickness variation; s1,t+1The distance between the first displacement sensor (8) 1 and a brake disc of an object to be detected is represented; s2,t+1The distance between the second displacement sensor (10) 1 and a brake disc of an object to be detected is represented; s1,0The initial distance between the first displacement sensor (8) 1 and a brake disc of an object to be detected is represented; s2,0The initial distance between the second 1 st displacement sensor (10) and the brake disc of the object to be detected is shown.
In a preferred embodiment of the present invention, the position P is calculated by:
s61, calculating the initial position (x) at the time tt,yt) Distance from origin of coordinates:
Figure BDA0003151953520000251
wherein (x)t,yt) Two-dimensional coordinates representing an initial position at time t; d represents the distance between the initial position and the origin of coordinates;
s62, calculating the initial position (x) at the time tt,yt) The connecting line between the coordinate origin and the X axis forms an angle:
Figure BDA0003151953520000252
wherein alpha represents an angle formed between a connecting line between the initial position and the origin of coordinates and the positive direction of the X axis; alpha is more than or equal to 0 and less than 2 pi;
exist of
Figure BDA0003151953520000253
Wherein, & represents a logical relationship and;
s63, calculating the rotating angle of the brake disc of the object to be measured from the moment t to the moment t + 1:
Figure BDA0003151953520000261
wherein, betat→t+1Representing the rotating angle of the brake disc of the object to be measured from the moment t to the moment t + 1;
t represents the rotation period of the brake disc of the object to be measured;
t → t +1 represents the time from time t to time t + 1;
s64, calculating the measuring position (x) at the t +1 momentt+1,yt+1) The connecting line between the coordinate origin and the X axis forms an angle:
Figure BDA0003151953520000262
wherein, betat+1Representing an angle formed between a connecting line between the measurement position at the t +1 moment and the origin of coordinates and the X axis;
q is more than 0, which indicates that the brake disc of the object to be detected rotates clockwise;
q < 0 represents that the brake disc of the object to be detected rotates anticlockwise;
| | represents taking an absolute value;
s65, calculating the coordinates of the measurement position P:
Figure BDA0003151953520000263
wherein (x)t+1,yt+1) Coordinates representing the measurement location.
In a preferred embodiment of the present invention, the controller sends a motion command to the first lead screw stepping motor module or/and the second lead screw stepping motor module, so that the distance between the first displacement sensor 8 and the second displacement sensor 10 is S0′;S0′<S0
In a preferred embodiment of the present invention, the controller sends a motion command to the first lead screw stepping motor module 7 and the second lead screw stepping motor module 9 to change the distance between the measuring point of the brake disc of the object to be measured and the origin.
The invention also discloses a measurement display system of the commercial vehicle brake disc DTV, which comprises a measurement device of the commercial vehicle brake disc DTV or a measurement system of the commercial vehicle brake disc DTV or a measurement processing method of the commercial vehicle brake disc DTV;
the data reading end of the reading test data module is connected with the test data output end of the controller, the data input end of the data filtering module is connected with the data output end of the reading test data module, the data output end of the data filtering module is connected with the data input end of the DTV data calculating module, the data output end of the DTV data calculating module is connected with the data input end of the cursor intercepting data module, and the data output end of the cursor intercepting data module is connected with the data display end of the curve display module.
While embodiments of the invention have been shown and described, it will be understood by those of ordinary skill in the art that: various changes, modifications, substitutions and alterations can be made to the embodiments without departing from the principles and spirit of the invention, the scope of which is defined by the claims and their equivalents.

Claims (10)

1. The measuring device for the brake disc DTV of the commercial vehicle is characterized by comprising a support frame, wherein a support rod (11) is fixedly arranged on the support frame, and a first lead screw stepping motor module and a second lead screw stepping motor module which move along the axial direction of the support rod (11) are fixedly arranged on the support rod (11); (ii) a
A first lead screw stepping motor module (7) is fixedly mounted on a sliding block of the first lead screw stepping motor module, and a first K displacement sensor, namely a first 1 st displacement sensor (8), a first 2 nd displacement sensor, a first 3 rd displacement sensor, … … and a first K th displacement sensor, is arranged on a sliding block (7A) of the first lead screw stepping motor module (7); the K is a positive integer larger than or equal to 1, a second lead screw stepping motor module (9) is fixedly installed on a sliding block of the second lead screw stepping motor module, and a second K displacement sensor (10) is arranged on a sliding block (9A) of the second lead screw stepping motor module (9) and is respectively a second 1 displacement sensor (10), a second 2 displacement sensor, a second 3 displacement sensor, … … and a second K displacement sensor;
the object to be detected is positioned between the first K displacement sensor and the second K displacement sensor, and the moving directions of the first K displacement sensor and the second K displacement sensor are axially vertical to the supporting rod (11);
the controller also comprises a controller, the controller end of the stepping motor of the first lead screw stepping motor module is connected with the control end of the stepping motor of the first lead screw stepping motor module of the controller, the controller end of the stepping motor of the second lead screw stepping motor module is connected with the control end of the stepping motor of the second lead screw stepping motor module of the controller, the controller end of the stepping motor of the first lead screw stepping motor module (7) is connected with the control end of the stepping motor of the lead screw stepping motor module of the controller, the controller end of the stepping motor of the second lead screw stepping motor module (9) is connected with the control end of the stepping motor of the lead screw stepping motor module of the controller, the displacement data output end of the first kth displacement sensor is connected with the displacement kth data input end of the controller, the K is a positive integer less than or equal to K, and the displacement data output end of the kth displacement sensor II is connected with the displacement K + kth data input end of the controller;
and measuring the thickness of the object to be detected at different positions or the thickness variation of the object to be detected at different positions according to the positions of the first K displacement sensor and the second K displacement sensor.
2. The measuring device of the commercial vehicle brake disc DTV of claim 1, wherein the supporting frame comprises a Z-shaped supporting seat (2), a connecting cross rod (3), an adjusting block (4), a fixing cross rod (5), a first fixing block (6) and a second fixing block (12);
a first support seat through hole (1) for fixing the Z-shaped support seat (2) through a bolt and a second support seat through hole for connecting one end of a cross rod (3) to pass through are formed in the Z-shaped support seat (2);
the adjusting block (4) is provided with an adjusting block through hole I for one end of the fixed cross rod (5) to pass through and an adjusting block through hole II for the other end of the connecting cross rod (3) to pass through;
a first fixing block through hole and a second fixing block through hole for the other end of the fixing cross rod (5) to pass through are respectively formed in the first fixing block (6) and the second fixing block (12), a third fixing block through hole for one end of the supporting rod (11) to pass through is formed in the first fixing block (6), and a fourth fixing block through hole for the other end of the supporting rod (11) to pass through is formed in the second fixing block (12);
threads matched with the first nut and the second nut are respectively arranged at two ends of the connecting cross rod (3), the Z-shaped supporting seat (2) is fixed with the connecting cross rod (3) through the first nut, and the connecting cross rod (3) is fixed with the adjusting block (4) through the second nut;
threads adaptive to three phases of nuts are arranged at one end of the fixed cross rod (5), and the adjusting block (4) is fixed with the fixed cross rod (5) through the third nut;
a first thread and a second thread which are matched with a fourth nut and a fifth nut are arranged at the other end of the fixed cross rod (5), the first fixed block (6) is fixed with the fixed cross rod (5) through the fourth nut, and the second fixed block (12) is fixed with the fixed cross rod (5) through the fifth nut;
one end of the supporting rod (11) is provided with a thread which is matched with the nut six, the supporting rod (11) is fixed with the first fixing block (6) through the nut six, the other end of the supporting rod (11) is provided with a thread which is matched with the nut seven, and the supporting rod (11) is fixed with the second fixing block (12) through the nut seven.
3. The measuring device of the brake disc DTV of the commercial vehicle as claimed in claim 1, wherein the diameters of both ends of the connecting cross bar (3) are smaller than the diameter of the middle of the connecting cross bar (3), and the diameter of the middle of the connecting cross bar (3) is larger than the diameters of the second supporting seat through hole and the second adjusting block through hole;
the diameter of one end of the fixed cross rod (5) is smaller than the diameter of the middle of the fixed cross rod (5), and the diameter of the middle of the fixed cross rod (5) is larger than the diameter of the first adjusting block through hole; the first diameter of the other end of the fixed cross rod (5) is smaller than the diameter of the middle of the fixed cross rod (5), the diameter of the middle of the fixed cross rod (5) is larger than the diameter of the first fixing block through hole, the second diameter of the other end of the fixed cross rod (5) is smaller than the first diameter of the other end of the fixed cross rod (5), and the first diameter of the other end of the fixed cross rod (5) is larger than the diameter of the second fixing block through hole;
the diameters of the two ends of the supporting rod (11) are smaller than the diameter of the middle of the supporting rod (11), and the diameter of the middle of the supporting rod (11) is larger than the diameters of the third fixing block through hole and the fourth fixing block through hole.
4. A system for measuring a brake disc DTV of a commercial vehicle, wherein the device for measuring a brake disc DTV of a commercial vehicle according to any one of claims 1 to 3 is installed near an object to be measured, and the thickness or the thickness variation of the object to be measured is measured.
5. A measurement processing method of a brake disc DTV of a commercial vehicle is characterized by comprising the following steps:
s1, installing the measuring device of the brake disc DTV of the commercial vehicle as claimed in any claim 1-3 near the object to be measured;
and S2, acquiring the thickness of the object to be detected at different positions or the thickness variation of the object to be detected at different positions.
6. The measurement processing method of the brake disc DTV of the commercial vehicle of claim 5, wherein the step S1 comprises the following steps:
s11, the controller sends a motion command to a first lead screw stepping motor module, a second lead screw stepping motor module, a first lead screw stepping motor module (7) and a second lead screw stepping motor module (9) to enable a first 1 st displacement sensor (8) and a second 1 st displacement sensor (10) to respectively reach a first position and a second position, and when the first position and the second position are located, the brake disc of the object to be detected can be placed between the first 1 st displacement sensor (8) and the second 1 st displacement sensor (10);
s12, placing the brake disc of the object to be detected between the 1 st displacement sensor I (8) and the 1 st displacement sensor II (10);
s13, the controller sends motion commands to the first lead screw stepping motor module, the second lead screw stepping motor module, the first lead screw stepping motor module (7) and the second lead screw stepping motor module (9) to enable the first 1 st displacement sensor (8) and the second 1 st displacement sensor (10) to respectively reach the measuring positions, and the distance between the first 1 st displacement sensor (8) and the second 1 st displacement sensor (10) is S0
S14, establishing a rectangular coordinate system:
taking the center of the brake disc of the object to be measured as the origin O of a rectangular coordinate system;
the moving direction of the 1 st displacement sensor I (8) or the 1 st displacement sensor II (10) to the support rod (11) is the positive direction of the X axis;
the moving direction of the screw rod stepping motor module I (7) or the screw rod stepping motor module II (9) to the fixing block II (12) is the positive direction of the Y axis;
s15, the brake disc of the object to be detected starts to rotate at the moment t;
s16, recording the distance measured by the 1 st displacement sensor I (8) at the moment t +1 as S1,t+1The distance measured by the second (10) 1 st displacement sensor at the time t +1 is recorded as S2,t+1
7. The method for measuring and processing the brake disc DTV of the commercial vehicle as claimed in claim 5, wherein in step S2, the thickness of the braking disc of the object to be detected at different positions is calculated by:
ΔSt+1=S0-(S1,t+1+S2,t+1),
wherein, Delta St+1Represents the thickness of the brake disc of the object to be detected at position P;
S0the distance between a 1 st displacement sensor I (8) and a 1 st displacement sensor II (10) is shown;
S1,t+1the distance between the first displacement sensor (8) 1 and a brake disc of an object to be detected is represented;
S2,t+1the distance between the second displacement sensor (10) 1 and a brake disc of an object to be detected is represented;
the method for calculating the thickness variation of the brake disc of the object to be detected at different positions comprises the following steps:
ΔSt+1′=(S1,t+1+S2,t+1)-(S1,0+S2,0),
wherein, Delta St+1' represents the amount of change in thickness of the brake disc at position P of the object to be inspected;
S1,t+1the distance between the first displacement sensor (8) 1 and a brake disc of an object to be detected is represented;
S2,t+1the distance between the second displacement sensor (10) 1 and a brake disc of an object to be detected is represented;
S1,0the initial distance between the first displacement sensor (8) 1 and a brake disc of an object to be detected is represented;
S2,0the initial distance between the second 1 st displacement sensor (10) and the brake disc of the object to be detected is shown.
8. The method for processing measurement of a brake disc DTV of a commercial vehicle according to claim 7, wherein the position P is calculated by:
s61, calculating the initial position (x) at the time tt,yt) Distance from origin of coordinates:
Figure FDA0003151953510000051
s62, calculating the initial position (x) at the time tt,yt) The connecting line between the coordinate origin and the X axis forms an angle:
Figure FDA0003151953510000052
wherein alpha represents an angle formed between a connecting line between the initial position and the origin of coordinates and the positive direction of the X axis;
0≤α<2π;
exist of
Figure FDA0003151953510000053
Wherein, & represents a logical relationship and;
s63, calculating the rotating angle of the brake disc of the object to be measured from the moment t to the moment t + 1:
Figure FDA0003151953510000054
wherein, betat→t+1Represents the time t toTurning the brake disc of the object to be detected by a turning angle of t + 1;
t represents the rotation period of the brake disc of the object to be measured;
t → t +1 represents the time from time t to time t + 1;
s64, calculating the measuring position (x) at the t +1 momentt+1,yt+1) The connecting line between the coordinate origin and the X axis forms an angle:
Figure FDA0003151953510000061
wherein, betat+1Representing an angle formed between a connecting line between the measurement position at the t +1 moment and the origin of coordinates and the X axis;
q is more than 0, which indicates that the brake disc of the object to be detected rotates clockwise;
q < 0 represents that the brake disc of the object to be detected rotates anticlockwise;
| | represents taking an absolute value;
s65, calculating the coordinates of the measurement position P:
Figure FDA0003151953510000062
wherein (x)t+1,yt+1) Coordinates representing the measurement location.
9. The method as claimed in claim 6, wherein in step S13, the controller sends a motion command to the first lead screw stepping motor module or/and the second lead screw stepping motor module to make the distance between the first displacement sensor (8) and the second displacement sensor (10) be S0′;S0′<S0
And the controller sends a motion command to the first lead screw stepping motor module (7) and the second lead screw stepping motor module (9) to change the distance between the measuring point of the brake disc of the object to be measured and the original point.
10. A measurement display system of a brake disc DTV of a commercial vehicle, which is characterized by comprising the measurement device of the brake disc DTV of the commercial vehicle of one of claims 1 to 3, the measurement system of the brake disc DTV of the commercial vehicle of claim 4 or the measurement processing method of the brake disc DTV of the commercial vehicle of one of claims 5 to 9;
the data reading end of the reading test data module is connected with the test data output end of the controller, the data input end of the data filtering module is connected with the data output end of the reading test data module, the data output end of the data filtering module is connected with the data input end of the DTV data calculating module, the data output end of the DTV data calculating module is connected with the data input end of the cursor intercepting data module, and the data output end of the cursor intercepting data module is connected with the data display end of the curve display module.
CN202110766656.4A 2021-07-07 2021-07-07 Measurement and data processing method for brake disc DTV of commercial vehicle Pending CN113375624A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110766656.4A CN113375624A (en) 2021-07-07 2021-07-07 Measurement and data processing method for brake disc DTV of commercial vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110766656.4A CN113375624A (en) 2021-07-07 2021-07-07 Measurement and data processing method for brake disc DTV of commercial vehicle

Publications (1)

Publication Number Publication Date
CN113375624A true CN113375624A (en) 2021-09-10

Family

ID=77581183

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110766656.4A Pending CN113375624A (en) 2021-07-07 2021-07-07 Measurement and data processing method for brake disc DTV of commercial vehicle

Country Status (1)

Country Link
CN (1) CN113375624A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113916551A (en) * 2021-10-12 2022-01-11 中国汽车工程研究院股份有限公司 Method for measuring thermal deformation of brake disc and processing data

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845564A (en) * 1972-03-27 1974-11-05 Century Wheels Inc Micrometer with movable anvil
JPS59200911A (en) * 1983-04-28 1984-11-14 Toshiba Corp Device for measuring size of disc
US6233533B1 (en) * 1998-06-04 2001-05-15 Performance Friction Corporation Turning center with integrated non-contact inspection system
JP2006177886A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Measuring instrument for disk rotor
CN201311276Y (en) * 2008-11-11 2009-09-16 信义集团公司 Dynamic measuring device of brake disk thickness
CN201436574U (en) * 2009-04-02 2010-04-07 上海汽车制动系统有限公司 Road test DTV measurement equipment
CN201811728U (en) * 2010-09-14 2011-04-27 上海汽车制动系统有限公司 Displacement sensor fixture for brake system measurement
JP2015006945A (en) * 2013-06-25 2015-01-15 株式会社日立ビルシステム Elevator brake mechanism inspection apparatus
CN205718857U (en) * 2016-04-22 2016-11-23 南京晨光集团有限责任公司 The wall thickness measuring device of circular shell
CN205808356U (en) * 2016-05-23 2016-12-14 奇瑞捷豹路虎汽车有限公司 A kind of device of the disc thickness fluctuation for measuring vehicle
CN206192275U (en) * 2016-11-04 2017-05-24 无锡市计量检定测试中心 Laser disk axle class part measuring appearance
CN110332896A (en) * 2019-04-25 2019-10-15 太仓北新建材有限公司 A kind of plasterboard thickness monitor device
CN212409570U (en) * 2020-09-27 2021-01-26 南方天合底盘系统有限公司 Brake disc DTV measuring device
CN112902880A (en) * 2021-01-22 2021-06-04 大连理工大学 Method and device for measuring parallelism of planar member

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3845564A (en) * 1972-03-27 1974-11-05 Century Wheels Inc Micrometer with movable anvil
JPS59200911A (en) * 1983-04-28 1984-11-14 Toshiba Corp Device for measuring size of disc
US6233533B1 (en) * 1998-06-04 2001-05-15 Performance Friction Corporation Turning center with integrated non-contact inspection system
JP2006177886A (en) * 2004-12-24 2006-07-06 Toyota Motor Corp Measuring instrument for disk rotor
CN201311276Y (en) * 2008-11-11 2009-09-16 信义集团公司 Dynamic measuring device of brake disk thickness
CN201436574U (en) * 2009-04-02 2010-04-07 上海汽车制动系统有限公司 Road test DTV measurement equipment
CN201811728U (en) * 2010-09-14 2011-04-27 上海汽车制动系统有限公司 Displacement sensor fixture for brake system measurement
JP2015006945A (en) * 2013-06-25 2015-01-15 株式会社日立ビルシステム Elevator brake mechanism inspection apparatus
CN205718857U (en) * 2016-04-22 2016-11-23 南京晨光集团有限责任公司 The wall thickness measuring device of circular shell
CN205808356U (en) * 2016-05-23 2016-12-14 奇瑞捷豹路虎汽车有限公司 A kind of device of the disc thickness fluctuation for measuring vehicle
CN206192275U (en) * 2016-11-04 2017-05-24 无锡市计量检定测试中心 Laser disk axle class part measuring appearance
CN110332896A (en) * 2019-04-25 2019-10-15 太仓北新建材有限公司 A kind of plasterboard thickness monitor device
CN212409570U (en) * 2020-09-27 2021-01-26 南方天合底盘系统有限公司 Brake disc DTV measuring device
CN112902880A (en) * 2021-01-22 2021-06-04 大连理工大学 Method and device for measuring parallelism of planar member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113916551A (en) * 2021-10-12 2022-01-11 中国汽车工程研究院股份有限公司 Method for measuring thermal deformation of brake disc and processing data
CN113916551B (en) * 2021-10-12 2024-05-07 中国汽车工程研究院股份有限公司 Method for measuring thermal deformation of brake disc and data processing method

Similar Documents

Publication Publication Date Title
CN105307913B (en) Method and apparatus for determining braking moment on braking equipment used for rail vehicle
CN201945299U (en) Abrasion wheel circular runout gauge
CN102128587A (en) Jump detector for grinding wheel circle
CN113375624A (en) Measurement and data processing method for brake disc DTV of commercial vehicle
US5485678A (en) Apparatus and method for measuring the circularity and eccentricity of a brake drum while mounted upon a vehicle
US5895442A (en) Method for making coordinate measurements on a workpiece
CN109141225A (en) Shafting five, six degree of freedom error measurement method and measuring system based on Circular gratings
CN107063043A (en) Ball screw assembly, journey error detecting system
CN107314731A (en) Detect the cubing and the detection method using the cubing of the cage out star wheel equation of the ecentre
CN106092582A (en) Hub bearing unit torque rigidity test device and method
CN107702836B (en) Precise thread clamping ring torque-pretightening force mapping relation measuring device
CN110243711A (en) A kind of constant speed formula frictional wear experiment data measuring method and testing machine
CN117232820A (en) Method and device for detecting maximum return error of precise planetary reducer
CN110411634B (en) Device and method for measuring grinding force of spherical basal plane of conical roller
US7716974B2 (en) Apparatus and method for testing a brake rotor
US6631337B2 (en) Modulation error compensation for a rotating load cell
CN113916551B (en) Method for measuring thermal deformation of brake disc and data processing method
CN206930239U (en) Ball screw assembly, journey error detecting system
CN216283325U (en) Detection fixture for detecting polished rod bounce by taking pitch diameter of threads as reference
CN102052994B (en) Device for testing performance of built-in shaft type dynamic balancing instrument
JP3774740B2 (en) Tooth profile measuring machine verification method
JP6553906B2 (en) Machine tool and its tool rotating device
JP4912017B2 (en) Rolling bearing runout signal analyzer and rolling bearing production system
CN105203015A (en) Motor train unit wheel hub diameter detection device and using method thereof
CN110440977A (en) A kind of detection method of roller counter-force type automobile brake inspection bench dynamic brake power

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210910